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Abstract 

In the context of the correspondence between real functions on the unit circle 
and inner analytic functions within the open unit disk, that was presented in 
previous papers, we show that the constructions used to establish that 
correspondence lead to very general proofs of existence of solutions of the 
Dirichlet problem on the plane. At first, this establishes the existence of 
solutions for almost arbitrary integrable real functions on the unit circle, 
including functions which are discontinuous and unbounded. The proof of 
existence is then generalized to a large class of non-integrable real functions on 
the unit circle. Further, the proof of existence is generalized to real functions on 
a large class of other boundaries on the plane, by means of conformal 
transformations. 
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1. Introduction 

In previous papers [1-4], we have shown that there is a 
correspondence between, on the one hand, integrable real functions, 
singular Schwartz distributions and non-integrable real functions which 
are locally integrable almost everywhere, and on the other hand, inner 
analytic functions within the open unit disk of the complex plane. This 
correspondence is based on the complex-analytic structure within the 
unit disk of the complex plane, which we introduced in [1]. In order to 
establish this correspondence for integrable and non-integrable real 
functions, we presented in [1] and [4] certain constructions which, given 
just such a real function, produce from it a unique corresponding inner 
analytic function. 

In this paper, we will show that these constructions have, as 
collateral consequences, the establishment of very general constructive 
proofs of the existence of the solution of the Dirichlet boundary value 
problem for the Laplace equation on regions of the plane. We will first 
establish the proof for integrable real functions on the unit circle, then 
generalize it to non-integrable real functions which are locally integrable 
almost everywhere on that circle. Furthermore, with the use of conformal 
transformations it is possible to generalize the proof to integrable and 
non-integrable real function on other boundaries on the plane. We will 
first establish this generalization for a large class of differentiable curves, 
and then, with a single weak additional limitation on the real functions, 
for a large class of curves that can be non-differentiable at a finite set of 
points, such as polygons. 

For ease of reference, we include here a one-page synopsis of the 
complex-analytic structure introduced in [1]. It consists of certain 
elements within complex analysis [5], as well as of their main properties. 
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Synopsis: The Complex-Analytic Structure 

An inner analytic function ( )zw  is simply a complex function which is 

analytic within the open unit disk. An inner analytic function that has 
the additional property that ( ) 00 =w  is a proper inner analytic function. 

The angular derivative of an inner analytic function is defined by 

( ) ( ) .dz
zdwzzw ı=•   (1) 

By construction we have that ( ) ,00 =•w  for all ( ).zw  The angular 

primitive of an inner analytic function is defined by 

( ) ( ) ( ) .0
0

1
z

wzwzdzw
z

′
−′′−= ∫

•− ı   (2) 

By construction we have that ( ) ,001 =
•−w  for all ( ).zw  In terms of a 

system of polar coordinates ( )θρ,  on the complex plane, these two 

analytic operations are equivalent to differentiation and integration with 
respect to ,θ  taken at constant .ρ  These two operations stay within the 

space of inner analytic functions, they also stay within the space of 
proper inner analytic functions, and they are the inverses of one another. 
Using these operations, and starting from any proper inner analytic 

function ( ),0 zw
•  one constructs an infinite integral-differential chain of 

proper inner analytic functions, 

( ) ( ) ( ) ( ) ( ) ( ) ( ){ }.,,,,,,,, 3210123 …… zwzwzwzwzwzwzw
•••••−•−•−   (3) 

Two different such integral-differential chains cannot ever intersect 
each other. There is a single integral-differential chain of proper inner 
analytic functions which is a constant chain, namely, the null chain, in 
which all members are the null function ( ) .0≡zw  
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A general scheme for the classification of all possible singularities of 
inner analytic functions is established. A singularity of an inner analytic 
function ( )zw  at a point 1z  on the unit circle is a soft singularity if the 

limit of ( )zw  to that point exists and is finite. Otherwise, it is a hard 

singularity. Angular integration takes soft singularities to other soft 
singularities, and angular differentiation takes hard singularities to 
other hard singularities. 

Gradations of softness and hardness are then established. A hard 
singularity that becomes a soft one by means of a single angular 
integration is a borderline hard singularity, with degree of hardness zero. 
The degree of softness of a soft singularity is the number of angular 
differentiations that result in a borderline hard singularity, and the 
degree of hardness of a hard singularity is the number of angular 
integrations that result in a borderline hard singularity. Singularities 
which are either soft or borderline hard are integrable ones. Hard 
singularities which are not borderline hard are non-integrable ones. 

Given an integrable real function ( )θf  on the unit circle, one can 

construct from it a unique corresponding inner analytic function ( ).zw  

Real functions are obtained through the ( )−→ρ 1  limit of the real and 

imaginary parts of each such inner analytic function and, in particular, 
the real function ( )θf  is obtained from the real part of ( )zw  in this limit. 

The pair of real functions obtained from the real and imaginary parts of 
one and the same inner analytic function are said to be mutually Fourier-
conjugate real functions. 

Singularities of real functions can be classified in a way which is 
analogous to the corresponding complex classification. Integrable real 
functions are typically associated with inner analytic functions that have 
singularities which are either soft or at most borderline hard. This ends 
our synopsis. 
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The treatment of the Dirichlet problem is usually developed under the 
hypothesis that the boundary conditions are given by continuous real 
functions at the boundary, leading to solutions which are continuous and 
twice differentiable, with continuous derivatives, within the interior. For 
the two-dimensional problems we will consider here, we will be able to 
relax the conditions on the real functions at the boundary, accepting as 
valid boundary conditions real functions which may not be continuous, 
and not even bounded, at a finite set of boundary points. In order to allow 
for this, the condition that the solution within the interior reproduces the 
boundary condition everywhere at the boundary will have to be relaxed to 
the reproduction only almost everywhere at the boundary. On the other 
hand, it will also follow from the proofs offered that the solutions within 
the interior are not only continuous and twice differentiable, but in fact 
that they are always infinitely differentiable functions, on both their 
arguments. 

We begin our work in this paper in Section 2, by establishing the 
existence theorem for boundary conditions given by integrable real 
functions on the unit circle. This is followed, in Section 3, by an extension 
of the existence theorem to non-integrable real functions on the unit 
circle, which are, however, locally integrable almost everywhere there. In 
Section 4, we discuss the conformal transformations that are required for 
the further versions of the existence theorem, that are established in the 
subsequent sections. In Section 5, we establish the existence theorem for 
integrable real functions on almost arbitrary differentiable simple closed 
curves on the plane. In Section 6, this existence theorem is extended to 
the case of integrable real functions on non-differentiable simple closed 
curves on the plane, curves which have, however, at most a finite set of 
points of non-differentiability. In Section 7, the existence theorem is 
further extended, this time to non-integrable real functions, as qualified 
above, on differentiable simple closed curves. Finally, in Section 8, we 
present the last and most general extension of the existence theorem, to 
non-integrable real functions, as qualified above, on non-differentiable 
simple closed curves, also as qualified above. 
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When we discuss real functions in this paper, some properties will be 
globally assumed for these functions, just as was done in the previous 
papers [1-4] leading to this one. These are rather weak conditions to be 
imposed on these functions, that will be in force throughout this paper. It 
is to be understood, without any need for further comment, that these 
conditions are valid whenever real functions appear in the arguments. 
These weak conditions certainly hold for any real functions that are 
obtained as restrictions of corresponding inner analytic functions to the 
unit circle, or to other simple closed curves with finite total length. 

The most basic global condition we will impose is that the real 
functions must be measurable in the sense of Lebesgue, with the usual 
Lebesgue measure [6, 7]. The second global condition we will impose is 
that the real functions have no removable singularities. The third and 
last global condition is that the number of hard singularities of the real 
functions on their domains of definition be finite, and hence that they be 
all isolated from one another. There will be no limitation on the number 
of soft singularities. 

The material contained in this paper is a development, reorganization 
and extension of some of the material found, sometimes still in rather 
rudimentary form, in the papers [8-12]. 

2. Integrable Real Functions on the Unit Circle 

In a previous paper [1] we have shown that, given an integrable real 
function on the unit circle, one can define from it a unique inner analytic 
function whose real part reproduces that real function when restricted to 
the unit circle. What follows is an outline of the construction of this inner 
analytic function. Given the integrable real function ( ),θf  we define from 

it, by means of the usual integrals, the Fourier coefficients kαα ,0  and 

,kβ  for { },,,3,2,1 ∞∈ …k  and from those coefficients we define the 

complex Taylor coefficients 200 α=c  and ,kkk β−α= ıc  for 
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{ }.,,3,2,1 ∞∈ …k  As was shown in [1], the complex power series 

generated from these coefficients, 

( ) ,
0

k
k

k

zczS ∑
∞

=

=   (4) 

always converges to an inner analytic function ( )zw  within the open unit 

disk, 

( ) ( ) ( ).,, θρ+θρ= vuzw ı   (5) 

As was also shown in [1], the ( )−→ρ 1  limit of the real part ( )θρ,u  

reproduces ( )θf  at all points on the unit circle where ( )zw  does not have 

hard singularities. It does have hard singularities at all points where 
( )θf  does, so we are led to impose that these must be finite in number. 

However, in some special cases ( )zw  may have hard singularities at 

points where ( )θf  does not, and therefore we are led to assume 

independently that the number of hard singularities of ( )zw  is finite. For 

all integrable real functions ( )θf  that correspond to inner analytic 

functions ( )zw  which have at most a finite number of hard singularities 

on the unit circle, we have that 

( )
( )

( ),,lim
1

θρ=θ
−→ρ

uf   (6) 

almost everywhere. Since, being the real part of an analytic function, the 
real function ( )θρ,u  is a harmonic function defined on the plane, and 

thus satisfies the Laplace equation within the open unit disk, 

( ) ,0,2 =θρ∇ u   (7) 

this construction establishes the existence of a solution of the Dirichlet 
problem on the unit disk or, more precisely, the existence of a solution of 
the Dirichlet boundary value problem of the Laplace equation on the unit 
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disk. Given the boundary condition ( ) ( ),,1 θ=θ fu  the solution is ( ),, θρu  

which by construction satisfies the Laplace equation within the open unit 
disk and which, also by construction, assumes the values ( )θf  on the unit 

circle, at least almost everywhere. 

Note that, since ( )θf  may have isolated singular points where it 

diverges to infinity, at which it is, therefore, not well defined, it is clear 
that ( )θρ,u  can reproduce ( )θf  only almost everywhere. However, 

( )θρ,u  may fail to reproduce ( )θf  at points other than its hard 

singularities, namely, points where ( )zw  has hard singularities but ( )θf  

happens to have soft ones, due to the way in which the complex 
singularities of ( )zw  are oriented with respect to the directions tangent 

to the unit circle at these singular points. In this case the ( )−→ρ 1  limit 

of ( )θρ,u  does not exist at such points, and therefore at these points it is 

not possible to recover the values of ( )θf  in this way. 

Note also that, if one introduces some removable singularities of ( )θf  

at some points on the unit circle, then this does not change the Fourier 
coefficients ,,0 kαα  and ,kβ  for { },,,3,2,1 ∞∈ …k  since these are given 

by integrals, which implies that it does not change the Taylor coefficients 

0c  and ,kc  for { },,,3,2,1 ∞∈ …k  and therefore that it also does not 

change the corresponding inner analytic function ( ).zw  It follows that 

( )θρ,u  cannot reproduce ( )θf  at these points, if arbitrary real values are 

attributed to ( )θf  at them. Therefore, we are led to also assume that ( )θf  

has no such removable singularities or, equivalently, we are led to 
assume that all such removable singularities have been removed, and the 
function redefined by continuity at these trivial singular points. 

Here is, then, a complete and precise statement of the Dirichlet 
problem on the unit disk, followed by the complete set of assumptions to 
be imposed on ( )θf  in order to ensure the existence of the solution of that 

problem. 
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Definition 1 (The Dirichlet problem on the unit disk). 

Given the unit circle on the complex plane and a real function ( )θf  

defined on it, the existence problem of the Dirichlet boundary value 
problem of the Laplace equation on the unit disk is to show that a 
function ( )θρ,u  exists such that it satisfies 

( ) ,0,2 =θρ∇ u   (8) 

within the open unit disk, and such that it also satisfies 

( ) ( ),,1 θ=θ fu   (9) 

almost everywhere on the unit circle. 

In this section, using our results from previous papers, we will 
establish the following theorem. 

Theorem 1. Given a real function ( )θf  at the boundary of the unit 

disk, that satisfies the list of conditions described below, there is a 
solution ( )θρ,u  of the Dirichlet problem of the Laplace equation within 

the open unit disk, that assumes the values ( )θf  almost everywhere at its 

boundary, the unit circle. 

Proof 1.1. According to the construction introduced in [1] and 
reviewed above, which provides ( )θρ,u  starting from ( ),θf  the function 

( )θρ,u  that results from that construction is a solution to this problem so 

long as ( )θf  satisfies the following set of conditions, which ensure that 

the construction of the inner analytic function ( )zw  from the real 

function ( )θf  succeeds, and that the real part ( )θρ,u  of ( )zw  reproduces 

( )θf  almost everywhere oven the unit circle in the ( )−→ρ 1  limit. Apart 

from the global conditions that the real function ( )θf  be a Lebesgue-

measurable function and that it have no removable singularities, the 
conditions on ( )θf  for this theorem are as follows. 
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(1) The real function ( )θf  is integrable on the unit circle. 

(2) The number of hard singularities of the corresponding inner 
analytic function ( )zw  is finite. 

This completes the proof of Theorem 1. 

Note that the last condition implies, in particular, that the number of 
hard singularities of ( ),θf  where it is either discontinuous or diverges to 

infinity, is also finite. Note also that, since the function must be 
integrable, any hard singularities where it diverges to infinity must be 
integrable ones, in the real sense of the terms involved. This requires 
that these hard singularities be all isolated from each other, so that there 
is a neighbourhood around each one of them within which the two lateral 
asymptotic limits of integrals can be considered. It is important to 
emphasize that the conditions above over the real functions ( )θf  include 

functions which are non-differentiable at any number of points, 
discontinuous at a finite number of points, and unbounded at a finite 
number of points, thus constituting a rather large set of boundary 
conditions. 

3. Non-Integrable Real Functions on the Unit Circle 

In a previous paper [4] we showed that the correspondence between 
real functions and inner analytic functions established in [1] can be 
extended to non-integrable real functions, so long as these functions are 
locally integrable almost everywhere, and so long as the non-integrable 
hard singularities of the corresponding inner analytic functions have 
finite degrees of hardness. The definition of local integrability almost 
everywhere on the unit circle is as follows. 
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Definition 2. A real function ( )θf  is locally integrable almost 

everywhere on the unit circle if it is integrable on every closed interval 
[ ]⊕θθ ,  contained within that domain, that does not contain any of the 

points where the function has non-integrable hard singularities, of which 
there is a finite number. 

Although the construction used in this case, which is given in [4], is 
considerably more involved than the one for the case of integrable real 
functions, it is still true that given such a non-integrable real function 
one can define a unique inner analytic function ( )zw  that corresponds to 

it, as well as a unique and complete set of complex Taylor coefficients 
200 α=c  and ,kkk β−α= ıc  for { },,,3,2,1 ∞∈ …k  and thus a 

corresponding unique and complete set of Fourier coefficients kαα ,0  and 

,kβ  for { },,,3,2,1 ∞∈ …k  that are associated to it, despite the fact that 

the real function is not integrable. From the real part of this inner 
analytic function one can, once again, recover the real function almost 
everywhere by taking the ( )−→ρ 1  limit to the unit circle. Therefore we 

have at hand all that we need in order to implement the proof of 
existence in this more general case. 

In this section, using again our results from previous papers, we will 
establish the following theorem. 

Theorem 2. Given a real function ( )θf  at the boundary of the unit 

disk, that satisfies the list of conditions described below, there is a 
solution ( )θρ,u  of the Dirichlet problem of the Laplace equation within 

the open unit disk, that assumes the values ( )θf  almost everywhere at its 

boundary, the unit circle. 

Proof 2.1. The argument is the same as the one used before for 
Theorem 1 in Section 2, in the case of integrable real functions, but using 
now the construction presented in [4], instead of the one presented in [1]. 
Due to this, the only change with respect to that previous case is that our 
list of conditions on the real functions can now be upgraded to the 
following, still including the previous case. 
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(1) The real function ( )θf  is locally integrable almost everywhere on 

the unit circle, including the cases in which this function is globally 
integrable there. 

(2) The number of hard singularities of the corresponding inner 
analytic function ( )zw  is finite. 

(3) The hard singularities of the corresponding inner analytic 
function ( )zw  have finite degrees of hardness. 

This completes the proof of Theorem 2. 

In this way we have generalized the proof of existence of the Dirichlet 
problem from boundary conditions given by integrable real functions to 
others given by a certain class of non-integrable real functions. Note that 
the degree of hardness in the previous case, that of borderline hard 
singularities of integrable real functions, is simply zero. In other words, if 
all the hard singularities are borderline hard ones, then the function is 
simply integrable. Therefore, this theorem is a strict generalization of the 
previous one, and contains it. 

4. Conformal Transformations to Other Curves 

As we will see in the subsequent sections, it is possible to extend the 
proof of existence of the Dirichlet problem to boundaries other than the 
unit circle, through the use of conformal transformations. Therefore, as a 
preliminary to the proof of further versions of the existence theorem, in 
this section we will describe such conformal transformations and 
examine some of their well-known properties, targeting their use here. In 
order to do this, consider two complex variables az  and bz  and the 

corresponding complex planes, a complex analytic function ( )zγ  defined 

on the complex plane az  with values on the complex plane ,bz  and its 

inverse function, which is a complex analytic function ( )( )z1−γ  defined on 

the complex plane bz  with values on the complex plane ,az  
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( ),ab zz γ=  

( )( ).1
ba zz −γ=   (10) 

Consider a bounded and simply connected open region aS  on the complex 

plane az  and its image bS  under ( ),zγ  which is a similar region on the 

complex plane .bz  It can be shown that if ( )zγ  is analytic on ,aS  is 

invertible there, and its derivative has no zeros there, then its inverse 

function ( )( )z1−γ  has these same three properties on ,bS  and the 

mapping between the two complex planes established by ( )zγ  and 

( )( )z1−γ  is conformal, in the sense that it preserves the angles between 

oriented curves at points where they cross each other. Note that this 
mapping is a bijection between the two regions, and establishes an 
equivalence relation that can be extended in a transitive way to other 
regions. 

Consider now that the regions under consideration are the interiors 
of simple closed curves. One of these curves will be the unit circle aC  on 

the complex plane ,az  and the other will be a given curve bC  on the 

complex plane .bz  We will assume that the curve bC  has finite total 

length, for two reasons, one being to ensure that the interior of the curve 
is a bounded set, and the other being to ensure that the integrals of real 
functions over the curve bC  are integrals over a finite-length, compact 

domain. Since ( ),azγ  being analytic, is in particular a continuous 

function, the image on the bz  plane of the unit circle aC  on the az  plane 

must be a continuous closed curve .bC  We can also see that bC  must be a 

simple curve, because the fact that ( )azγ  is invertible on aC  means that 

it cannot have the same value at two different points of ,aC  and 

therefore no two points of bC  can be the same. Consequently, the curve 

bC  cannot self-intersect. 
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We thus see that, so far, we are restricted to simple closed curves bC  

with finite total lengths. However, there are further limitations on the 
curves, implied by our hypotheses. Since the transformation is conformal 
and thus preserves angles, it follows that in this case the smooth unit 
circle aC  is mapped onto another equally differentiable circuit .bC  One 

can see this by considering the angles between tangents to the curve bC  

at pairs of neighboring points, the corresponding elements on the curve 
,aC  and the limit of these angles when the two points tend to each other, 

given that the transformation is conformal. Therefore, with such 
limitations one cannot map the unit circle onto a square or any other 
polygon. This limitation can be lifted by allowing the derivative of ( )azγ  

to have a finite number of isolated zeros on the curve ,aC  which then 

implies that the derivative of ( )( )bz1−γ  will have a finite number of 

corresponding isolated singular points on .bC  

Let us assume that the unit circle aC  is described by the real arc-

length parameter θ  on the az  plane, and that the curve bC  is described 

by a corresponding real parameter λ  on the bz  plane. Let us assume also 

that λ  is chosen in such a way that bdzd =λ  over the curve ,bC  just 

as adzd =θ  over ,aC  which means that λ  is also an arc-length 

parameter. Since every point az  on the curve aC  is mapped by the 

conformal transformation onto a corresponding point bz  on the curve ,bC  

and since a point az  on aC  is described by a certain value of ,θ  while the 

corresponding point bz  on bC  is described by a certain value of ,λ  it is 

clear that the complex conformal transformation induces a corresponding 
real transformation between the values of θ  and the values of ,λ  

( ) ⇒γ= ab zz  

( ),θ=λ g   (11) 
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where the real function ( )θg  is continuous, differentiable and invertible 

on .aC  We will refer to the function ( )θg  as the real transformation 

induced on the curve aC  by the complex conformal transformation ( ).azγ  

The same is true for the inverse transformation, which induces the 
inverse function of ( ),θg  on the curve ,bC  

( )( ) ⇒γ= −
ba zz 1  

( )( ),1 λ=θ −g   (12) 

where the real function ( )( )λ−1g  is continuous and invertible on ,bC  and 

also differentiable so long as bC  is a differentiable curve. Before we 

proceed, we must now consider in more detail the question of what is the 
set of curves bC  for which the structure described above can be set up. 

We assume that this curve is a simple closed curve of finite total length, 
and the question is whether or not this structure can be set up for an 
arbitrary such curve. Given the curve ,bC  the only additional objects we 

need in order to do this is the conformal mapping ( )azγ  and its inverse 

( )( ),1
bz−γ  between that curve and the unit circle .aC  

The existence of these transformation functions can be ensured as a 
consequence of the famous Riemann mapping theorem, and of the 
associated results relating to conformal mappings between regions of the 
complex plane. According to that theorem, a conformal transformation 
such as the one we described here exists between any bounded simply 
connected open set of the plane and the open unit disk. In addition to 
this, one can show that this conformal mapping can be extended to the 
respective boundaries as a continuous function so long as the boundary 
curve bC  satisfies a certain condition [13]. 
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The condition on bC  that implies the existence of the continuous 

extension to the boundary is that every point on that curve be what is 
called in the relevant literature a simple point. This means that no point 
of bC  can be a multiple point, which in essence is a point on the 

boundary that is accessible from the interior via two or more independent 
continuous paths contained in the interior, that cannot be continuously 
deformed into each other without crossing the boundary. We can see, 
therefore, that this condition has a topological character. Note that the 
presence of a multiple point on the boundary means that, even if the open 
set under consideration is simply connected, its closure will not be. 
Therefore, one way to formulate this condition is to simply state that the 
closure of the bounded simply connected open set must also be simply 
connected. 

Since the existence of a multiple point at the boundary means that 
this boundary is not a simple curve, it follows that, under the limitations 
over bC  that we have here, the conformal mapping on the open unit disk 

can always be continuously extended to the unit circle, and hence from 
the interior of the curve bC  to that curve, which is mapped from the unit 

circle. Therefore, we conclude that it is a known fact that such a 
conformal transformation exists for all possible simple closed curves bC  

with finite total lengths, and in particular for all such curves which are 
also differentiable, in which case the extension is also differentiable on 
the unit circle .aC  It is therefore not necessary to impose explicitly any 

additional hypotheses about the existence of the conformal 
transformation, regardless of whether or not the curves bC  under 

consideration are differentiable. 

Let us close this section with a discussion of the nature of the 
singularities that appear in the case of simple closed curves bC  which 

are not differentiable at a finite set of points ,, ibz  for { }.,,1 Ni …∈  The 

additional difficulty that appears in this case stems from the fact that, if 
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the curve bC  is not differentiable at the points ,, ibz  then the derivative 

of the transformation ( )azγ  has isolated zeros at the corresponding 

points ,, iaz  on the curve ,aC  and therefore the derivative of the inverse 

transformation ( )( )bz1−γ  has isolated hard singularities at the points 

., ibz  In order to see how this comes about we start by noting that, since 

we have that 

( ) ( )( ) ,1
aa zz =γγ −   (13) 

for all az  on the closed unit disk, differentiating this equation we get, 

due to the chain rule, 

( )
.1

1
=γγ

α

−

dz
d

dz
d

b
  (14) 

Therefore, to every point iaz ,  on aC  where the derivative of the 

transformation has a zero corresponds a point ibz ,  on bC  where the 

derivative of the inverse transformation diverges to infinity. Taking 
absolute values we have, in terms of the arc-length parameters θ  and ,λ  

( )

a
b

b
a

ab dz
dz

dz
dz

dz
d

dz
d =γγ −1

 

,
θ
λ

λ
θ= d

d
d
d  (15) 

which implies that 

.1=
θ
λ

λ
θ

d
d

d
d  (16) 

In fact, the real function in the left-hand side of this last equation has a 
removable singularity at every point where the first derivative in the 
product diverges and the second one is zero. Consequently, they can be 
removed by simply redefining the product by continuity at these points. 
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When we approach one of the points ,, iaz  which are characterized by the 

values iθ  of the parameter ,θ  along the curve ,aC  we have that 

,iθ→θ  

iλ→λ  

⇓  

,0→
θ
λ

d
d  

,∞→
λ
θ

d
d  (17) 

where the corresponding points ibz ,  are characterized by the values iλ  

of the parameter ,λ  along the curve .bC  Although the derivative λθ dd  
does, therefore, have hard singularities at ,, ibz  we can show that these 

are still integrable singularities. We simply integrate the expressions in 
either side of Equation (16) absolutely over ,aC  thus obtaining 

.2π=
θ
λ

λ
θθ d

d
d
dd

aC
   (18) 

If we now change variables in this integral from θ  to ,λ  we get the 
integral over bC  

.2π=
λ
θλ d

dd
bC
   (19) 

This shows that the real function appearing as the integrand in this 
integral is an integrable real function on .bC  Therefore, the hard 
singularities where the derivative λθ dd  diverges to infinity are 
integrable hard singularities, which therefore have degree of hardness 
zero. These are also referred to as borderline hard singularities. Note 
that, as a consequence, the corresponding singularities of the inverse real 

transformation ( )( )λ−1g  itself must be soft ones, with degrees of softness 
equal to one. 
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5. Integrable Real Functions on Differentiable Curves 

In this section we will show how one can generalize the proof of 
existence of the solution of the Dirichlet problem on the unit disk, given 
by Theorem 1 in Section 2, to the case in which we have, as the boundary 
condition, integrable real functions defined on boundaries given by 
differentiable curves on the plane. In order to do this, the first thing we 
must do here is to establish the precise definition of the Dirichlet problem 
in this case. 

Definition 3 (The Dirichlet problem on a given curve and its 
interior). 

Given a simple closed curve C on the complex plane, described by a 
real arc-length parameter ,λ  and a real function ( )λf  defined on it, the 

existence problem of the Dirichlet boundary value problem of the Laplace 
equation on this curve and its interior is to show that a function ( )yxu ,  

exists such that it satisfies 

( ) ,0,2 =∇ yxu   (20) 

within the interior of C, and such that it also satisfies 

( ) ( ),, λ= fyxu   (21) 

for yxz ı+=  on C, thus corresponding to ,λ  almost everywhere over 
that curve. 

Therefore, using the notation established in Section 4, let bC  be a 

differentiable simple closed curve on the complex bz  plane, with finite 

total length, and let us assume that a Dirichlet boundary value problem 
for the Laplace equation is given on the region whose boundary is the 
curve ,bC  that is, let there be given also an integrable real function ( )λbf  

on ,bC  that is, a function such that the integral 

( )λλ b
bC

fd   (22) 
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exists and is finite. The problem is then to establish the existence of a 

function ( )yxub ,  that satisfies ( ) 0,2 =∇ yxub  in the interior of the 

curve bC  and that assumes the values ( )λbf  almost everywhere over that 

curve. In order to do this using the conformal transformation ( )zγ  from 

the complex plane az  to the complex plane ,bz  we start by constructing a 

corresponding Dirichlet problem on the unit disk of the az  plane, using 

the mapping between bz  and az  provided by the conformal 

transformation ( )azγ  and its inverse ( )( ).1
bz−γ  We define a 

corresponding real function ( )θaf  on the unit circle aC  by simply 

transferring the values of ( )λbf  through the use of the conformal 

mapping from point to point, 

( ) ( )λ=θ ba ff  

( )( ),θ= gfb   (23) 

where θ  describes a point on aC  given by the complex number λ,az  

describes the corresponding point on bC  given by the complex number 

( ),ab zz γ=  and ( )θg  is the induced real transformation, so that we have 

that ( )θ=λ g  and that ( )( ).1 λ=θ −g  We will start by establishing the 

following preliminary fact about the real function ( )θaf  defined as above 

from an integrable real function ( ).λbf  

Lemma 1. Given a real function ( )λbf  which is integrable on the 

differentiable simple closed curve bC  of finite total length, it follows     

that the corresponding function ( )θaf  defined on the unit circle aC  by 

( )θaf  ( )λ= bf  is integrable on that circle. 
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Given that ( )λbf  is integrable on ,bC  we must show that ( )θaf  

defined by the composition of ( )λbf  with ( ),θg  is also integrable, that is, 

it is integrable on .aC  Since all real functions under discussion here are 

assumed to be Lebesgue-measurable, and since for such measurable 
functions defined on compact domains integrability and absolute 
integrability are equivalent conditions [6, 7], given that ( )λbf  is 

integrable on bC  we have that the integral 

( )λλ b
bC

fd   (24) 

exists and is finite. We must now show that the integral 

( )θθ a
C

fd
a
   (25) 

exists and is finite, which is equivalent to the statement that ( )θaf  is 

integrable on .aC  Changing variables on this integral from θ  to ,λ  and 

using the fact that by definition we have that ( ) ( ),λ=θ ba ff  we obtain 

( ) ( ) .λ
λ
θλ=θθ b

bC
a

C
fd

ddfd
a

   (26) 

Since ( )λbf  is integrable on ,bC  and since the absolute value of the 

derivative shown exists and is finite, given that we have 

b
a

dz
dz

d
d =
λ
θ  

( )( ) ,
1

b
b

dz
zd −γ

=  (27) 

where ( )( )bz1−γ  is analytic on bC  and therefore differentiable there, it 

follows that the absolute value of the derivative which appears in the 
integrand on the right-hand side of Equation (26) is a limited real 
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function on .bC  Since ( )λbf  is integrable on ,bC  from this it follows that 

the whole integrand of the integral on the right-hand side of Equation 
(26), which is the product of a limited real function with an integrable 
real function, is itself an integrable real function on ,bC  so that we may 

conclude that the integral in Equation (25) exists and is finite, and 
therefore that ( )θaf  is an integrable real function on .aC  

This establishes Lemma 1. 

In this section, using the results from the previous sections, we will 
establish the following theorem. 

Theorem 3. Given a differentiable simple closed curve C of finite total 
length on the complex plane ,yxz ı+=  given the invertible conformal 

transformation ( )zγ  whose derivative has no zeros on the closed unit disk, 

that maps it from the unit circle, and given a real function ( )λf  on that 

curve, that satisfies the list of conditions described below, there is a 
solution ( )yxu ,  of the Dirichlet problem of the Laplace equation within 

the interior of that curve, that assumes the given values ( )λf  almost 

everywhere on the curve. 

Proof 3.1. The proof consists of using the conformal transformation 
between the closed unit disk and the union of the curve C with its 
interior, a transformation which according to the analysis in Section 4 
always exists, to map the given boundary condition on C onto a 
corresponding boundary condition on the unit circle, then using the proof 
of existence established before by Theorem 1 in Section 2 for the closed 
unit disk to establish the existence of the solution of the corresponding 
Dirichlet problem on that disk, and finally using once more the conformal 
transformation to map the resulting solution back to C and its interior, 
showing in the process that one obtains in this way the solution of the 
Dirichlet problem there. The list of conditions on the real functions is 
now the following. 
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(1) The real function ( )λf  is integrable on C. 

(2) The number of hard singularities on the unit circle of the 
corresponding inner analytic function ( )zw  on the unit disk is finite. 

According to the preliminary result established in Lemma 1, if the 
real function ( )λbf  satisfies these conditions on ,bC  then ( )θaf  is an 

integrable real function on .aC  Therefore, due to the existence theorem 

of the Dirichlet problem on the unit disk of the plane ,az  which was 

established by Theorem 1 in Section 2, we know that there is an inner 
analytic function ( )aa zw  such that its real part ( )θρ,au  is harmonic 

within the open unit disk and also satisfies ( ) ( )θ=θ aa fu ,1  almost 

everywhere at the boundary .aC  Now, by composing ( )aa zw  with the 

inverse conformal transformation ( )( )bz1−γ  we get on the bz  plane the 

complex function 

( ) ( )aabb zwzw =  

( )( )( ),1
ba zw −γ=   (28) 

which corresponds to simply transferring back the values of ( ),aa zw  by 

the use of the conformal mapping from point to point, while we also have, 
of course, the corresponding inverse real transformation at the boundary, 

( ) ( )θ=λ ab ff  

( )( )( ).1 λ= −gfa   (29) 

Given that the composition of two analytic functions is also analytic, in 

their chained domain of analyticity, and since ( )( )bz1−γ  is analytic in the 

interior of the curve ,bC  and also since ( )aa zw  is analytic in the interior 

of the curve ,aC  we conclude that ( )bb zw  is analytic in the interior of the 
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curve .bC  Therefore, the real part ( )yxub ,  of ( )bb zw  is harmonic and 

thus satisfies 

( ) ,0,2 =∇ yxub   (30) 

in the interior of ,bC  while by construction the fact that we have 

( ) ( )θ=θρ aa fu ,  for the points given by ( )θρ= ıexpaz  almost everywhere 

on ,aC  where ,1=ρ  implies that we also have 

( ) ( ),, λ= bb fyxu   (31) 

for the corresponding points given by yxzb ı+=  almost everywhere on 

,bC  and which thus correspond to .λ  This establishes the existence, by 

construction, of the solution of the Dirichlet problem on the bz  plane, 

under our current hypotheses. 

This completes the proof of Theorem 3. 

In this way we have generalized the proof of existence of the Dirichlet 
problem from the unit circle to all differentiable simple closed curves 
with finite total lengths on the plane, for boundary conditions given by 
integrable real functions. 

6. Integrable Real Functions on Non-Differentiable Curves 

In this section we will extend the existence theorem of the Dirichlet 
problem on the unit disk, given by Theorem 1 in Section 2, to regions 
bounded by simple closed curves bC  which are not differentiable at a 

finite set of points ,, ibz  for { }.,,1 Ni …∈  We will still use the conformal 

transformation known to exist between the open unit disk and the 
interior of any such curve, as well as its continuous extension to the 
respective boundaries, where the extension is also differentiable almost 
everywhere, with the exception of a finite set of singularities of the 
inverse conformal transformation, at the points ,, ibz  where the inverse 
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conformal transformation still exists but is not differentiable. Note that 
in Section 4 we established the existence of the conformal mapping ( )zγ  

for all simple closed curves bC  with finite total lengths, regardless of 

whether or not the curves are differentiable. 

The additional difficulty that appears in this case stems from the fact 
that, if the curve bC  is not differentiable at the points ,, ibz  then the 

derivative of the transformation ( )azγ  has isolated zeros at the 

corresponding points iaz ,  on the curve ,aC  and therefore the derivative 

of the inverse transformation ( )( )bz1−γ  has isolated hard singularities at 

the points ,, ibz  as was discussed in Section 4. This will require that we 

impose one additional limitation on the real functions giving the 
boundary conditions, namely that any integrable hard singularities 
where they diverge to infinity do not coincide with any of the points ., ibz  

The precise definition of the Dirichlet problem in this case is the 
same one given in Definition 3, in Section 5. We will start by establishing 
the following preliminary fact about the real function ( )θaf  defined from 

an integrable real function ( ).λbf  

Lemma 2. Given a real function ( )λbf  which is integrable on the 

simple closed curve bC  of finite total length, which is not differentiable at 

a finite set of points ,, ibz  for { },,,1 Ni …∈  and given that the integrable 

hard singularities of ( )λf  where it diverges to infinity are not located at 

any of the points ibz ,  where the curve is non-differentiable, it follows that 

the corresponding function ( )θaf  defined on the unit circle aC  by 

( ) ( )λ=θ ba ff  is integrable on that circle. 
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Given that ( )λbf  is integrable on ,bC  we must decide whether or not 

( )θaf  is also integrable, that is, whether it is integrable on .aC  Once 

again, given that ( )λbf  is integrable on bC  we have that the integral 

( )λλ b
bC

fd   (32) 

exists and is finite. We must now determine whether or not the integral 

( )θθ a
C

fd
a
   (33) 

exists and is finite, which is equivalent to the statement that ( )θaf  is 

integrable on .aC  Changing variables on this integral from θ  to λ  we 

obtain once again 

( ) ( ) .λ
λ
θλ=θθ b

bC
a

C
fd

ddfd
a

  (34) 

Since both the absolute value of the derivative shown and the function 
( )λbf  are integrable on ,bC  and since the integrable borderline hard 

singular points where either one of these two real functions diverges to 
infinity do not coincide, we have that the integrand of the integral on the 
right-hand side of this equation is also an integrable real function, and 
thus that the integral exists and is finite. We can see that the integrand 
is an integrable real function because around each integrable hard 
singular point of either one of the two real functions involved there is a 
neighbourhood where the other real function is limited. Since the product 
of a limited real function with an integrable real function is also an 
integrable real function, we may conclude that the integrand is locally 
integrable everywhere on ,bC  and therefore globally integrable there, so 

that the integral above exists and is finite. It thus follows that ( )θaf  is an 

integrable real function on .aC  
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This establishes Lemma 2. 

In this section, using again the results from the previous sections, we 
will establish the following theorem. 

Theorem 4. Given a simple closed curve C of finite total length on the 
complex plane ,yxz ı+=  which is non-differentiable at a given finite set 

of points ,iz  for { },,,1 Ni …∈  given the conformal transformation ( )zγ  

that maps it from the unit circle, whose derivative has zeros on the unit 
circle at the corresponding set of points, and given a real function ( )λf  on 

that curve, that satisfies the list of conditions described below, there is a 
solution ( )yxu ,  of the Dirichlet problem of the Laplace equation within 

the interior of that curve, that assumes the given values ( )λf  almost 

everywhere on the curve. 

Proof 4.1. Just as in the previous case, in Section 5, the proof 
consists of using the conformal transformation between the closed unit 
disk and the union of the curve C with its interior, which according to the 
analysis in Section 4 always exists, to map the given boundary condition 
on C onto a corresponding boundary condition on the unit circle, then 
using the proof of existence established before by Theorem 1 in Section 2 
for the closed unit disk to establish the existence of the solution of the 
corresponding Dirichlet problem on that disk, and finally using once 
more the conformal transformation to map the resulting solution back to 
C and its interior, thus obtaining the solution of the original Dirichlet 
problem. The list of conditions on the real functions is now the following. 

(1) The real function ( )λf  is integrable on C. 

(2) The number of hard singularities on the unit circle of the 
corresponding inner analytic function ( )zw  on the unit disk is finite. 

(3) The integrable hard singularities of ( )λf  where it diverges to 

infinity are not located at any of the points where the curve C is non-
differentiable. 
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The rest of the proof is identical to that of the previous case, in 
Section 5. Therefore, once again we may conclude that, due to the 
existence theorem of the Dirichlet problem on the unit disk of the plane 

,az  which was established by Theorem 1 in Section 2, we know that 

there is an inner analytic function ( )aa zw  such that its real part 

( )θρ,au  is harmonic within the open unit disk and satisfies ( ) =θ,1au  

( )θaf  almost everywhere at the boundary .aC  Just as in Section 5, we 

get on the bz  plane the complex function ( )bb zw  which is analytic in the 

interior of the curve .bC  Therefore, the real part ( )yxub ,  of ( )bb zw  is 

harmonic and thus satisfies 

( ) ,0,2 =∇ yxub   (35) 

in the interior of ,bC  while we also have that 

( ) ( ),, λ= bb fyxu   (36) 

almost everywhere on .bC  This establishes the existence, by 

construction, of the solution of the Dirichlet problem on the bz  plane, 

under our current hypotheses. 

This completes the proof of Theorem 4. 

In this way we have generalized the proof of existence of the Dirichlet 
problem from the unit circle to all simple closed curves with finite total 
lengths on the plane, that can be either differentiable or non-
differentiable on at most a finite set of points, still for boundary 
conditions given by integrable real functions. 
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7. Non-Integrable Real Functions on 
Differentiable Curves 

In this section we will show how one can generalize the proof of 
existence of the Dirichlet problem on the unit disk, given by Theorem 2 in 
Section 3, to the case in which we have, as the boundary condition, non-
integrable real functions ( )λbf  defined on boundaries given by 

differentiable curves bC  on the plane. We will be able to do this if the 

non-integrable real functions, despite being non-integrable over the 
whole curves ,bC  are however locally integrable almost everywhere on 

those curves, and if, in addition to this, the non-integrable hard 
singularities of the inner analytic functions involved have finite degrees 
of hardness. The definition of the concept of local integrability almost 
everywhere is similar to that given for the unit circle by Definition 2, in 
Section 3. In our case here the precise definition of local integrability 
almost everywhere is as follows. 

Definition 4. A real function ( )λf  is locally integrable almost 

everywhere on the curve C described by the arc-length parameter λ  if it 
is integrable on every closed interval [ ]⊕λλ ,  contained within that 

domain, that does not contain any of the points where the function has 
non-integrable hard singularities, of which there is a finite number. 

The proof will follow the general lines of the one given for integrable 
real functions in Section 5, with the difference that, since the real 
functions ( )λbf  are assumed to be non-integrable on ,bC  but locally 

integrable almost everywhere there, instead of showing that the 
corresponding functions ( )θaf  on the unit circle aC  are integrable there, 

we will show that they are locally integrable almost everywhere there. In 
addition to this, instead of using the result for integrable real function on 
the unit circle, which was given by Theorem 1 in Section 2, we will use 
the corresponding result for non-integrable real functions which are 
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locally integrable almost everywhere on the unit circle, which was given 
by Theorem 2 in Section 3. Since that result depends also on the non-
integrable hard singularities of the real functions having finite degrees of 
hardness, we will also show that the hypothesis that the functions ( )λbf  

have this property implies that the corresponding functions ( )θaf  have 

the same property as well. In order to do this we will use the technique of 
piecewise integration which was introduced and employed in [4], where it 
played a crucial role. 

We will start by showing the following preliminary fact about a real 
function ( )θaf  defined from a real function ( )λbf  which is locally 

integrable almost everywhere on ,bC  and which has non-integrable hard 

singularities at the finite set of points ,, jbz  for { }.,,1 Mj …∈  

Lemma 3. Given a real function ( )λbf  which is integrable on a given 

closed interval bI  on ,bC  it follows that the corresponding function ( )θaf  

defined on the unit circle aC  by ( ) ( )λ=θ ba ff  is integrable on the 

corresponding closed interval aI  on ,aC  which is mapped from bI  by the 

inverse conformal transformation ( )( ).1
bz−γ  

Since ( )λbf  is integrable on bI  we have that 

( )λλ∫ b
I

fd
b

  (37) 

exists and is finite. If we now consider the integral 

( ) ,θθ∫ a
I

fd
a

  (38) 

and transform variables from θ  to ,λ  recalling that ( ) ( ),λ=θ ba ff  we get 

( ) ( ) .λ
λ
θλ=θθ ∫∫ b

I
a

I
fd

ddfd
ba

 (39) 
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The absolute value of the derivative shown exists and is finite on ,bI  

given that 

( )( ) ,
1

b
b

dz
zd

d
d −γ

=
λ
θ  (40) 

where ( )( )bz1−γ  is analytic on bC  and therefore differentiable there. We 

also have that ( )λbf  is integrable on .bI  It follows that, since the 

integrand in the right-hand side of Equation (39) is the product of a 
limited real function with an integrable real function, and therefore is 
itself an integrable real function, the integral in Equation (39) exists and 
is finite, thus implying that ( )θaf  is integrable on the closed interval .aI  

This establishes Lemma 3. 

As an immediate consequence of this preliminary result, under the 
conditions that we have here, the hypothesis that ( )λbf  is locally 

integrable almost everywhere on ,bC  with the exclusion of the finite set 

of points ,, jbz  implies that ( )θaf  is locally integrable almost everywhere 

on ,aC  with the exclusion of the corresponding finite set of points ., jaz  

We must now discuss the issue of the degrees of hardness of the non-
integrable hard singularities of the function ( )θaf  on .aC  Since by 

hypothesis ( )λbf  has non-integrable hard singularities at the points ,, jbz  

it clearly follows that ( )θaf  also has hard singularities at the 

corresponding points ,, jaz  which may be non-integrable ones. In order to 

discuss their degrees of hardness we will use the technique of piecewise 
integration, that is, we will consider sectional integrals of ( )θaf  on closed 

intervals contained within a neighbourhood of the point jaz ,  where it 

has a single isolated hard singularity. Let us show the following 
preliminary fact about a real function ( )θaf  defined from a real function 
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( )λbf  which is locally integrable almost everywhere on ,bC  and which 

has non-integrable hard singularities with finite degrees of hardness at 
the finite set of points ., jbz  

Lemma 4. Given a real function ( )λbf  which has an isolated non-

integrable hard singularity with finite degree of hardness at a point jbz ,  

on ,bC  it follows that the corresponding function ( )θaf  defined on the unit 

circle aC  by ( ) ( )λ=θ ba ff  has an isolated non-integrable hard singularity 

with finite degree of hardness at the corresponding point jaz ,  on .aC  

Since the real functions must diverge to infinity at non-integrable 
hard singular points, the fact that ( )θaf  has an isolated hard singularity 

on jaz ,  is immediate. Since these singularities are all isolated from each 

other, there is on bC  a neighbourhood of the point jbz ,  within which 

there are no other non-integrable hard singularities of ( ).λbf  Since the 

conformal mapping is continuous, it follows that there is on aC  a 

neighbourhood of the corresponding point jaz ,  within which there are no 

other hard singularities of ( ).θaf  Given that the point jaz ,  corresponds 

to the angle ,jθ  let the closed interval [ ]jj ,, , ⊕θθ  contain the point jaz ,  

and be contained in this neighbourhood, so that we have 

,,, jjj ⊕θ<θ<θ   (41) 

where the sole hard singularity of ( )θaf  which is contained within this 

interval is the one at the point .jθ  Let us now consider a pair of closed 

intervals contained within this neighbourhood, one to the left and one to 
the right of the point ,jθ  so that we have 

[ ],, ,,, jjjjI  ε−θθ=  

[ ],, ,,, jjjjI ⊕⊕⊕ θε+θ=   (42) 
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where j,ε  and j,⊕ε  are two sufficiently small positive real numbers, so 

that we also have 

,,, jjj  ε−θ<θ  

.,, jjj ⊕⊕ θ<ε+θ   (43) 

Let us now consider sectional primitives of the real function ( )θaf  on 

these two intervals. Since the singularity of ( )θaf  at jθ  may not be 

integrable, we cannot integrate across the singularity, but we may 
integrate within these two lateral closed intervals, thus defining two 
sectional primitives of ( ),θaf  one to the left and another one to the right 

of ,jθ  

( ) ( ),
,,0

1
, 


θθ=θ ∫

θ

θ

′−
aa fdf

j
 

( ) ( ),
,,0

1
, ⊕⊕

θ

θ

′−
⊕ θθ=θ ∫

⊕
aa fdf

j
 (44) 

where ( )θ′−1
af  is the notation for a primitive of ( )θaf  with respect to ,θ  

where j,,0 θ  and j,,0 ⊕θ  are two arbitrary reference points, one within 

each of the two lateral closed intervals, and where we have 

,,, jjj  ε−θ≤θ≤θ  

,,,,0, jjjj  ε−θ≤θ≤θ  

,,, jjj ⊕⊕⊕ θ≤θ≤ε+θ  

.,,,0, jjjj ⊕⊕⊕ θ≤θ≤ε+θ  (45) 

If we change variables from θ  to λ  on the two sectional integrals in 
Equation (44), we get 
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( ) ( ) ( ),
,,0

1
, 


λλ

λ
θλ=θ ∫

λ

λ

′−
ba fd

ddf
j

 

( ) ( ) ( ),
,,0

1
, ⊕⊕⊕

λ

λ

′−
⊕ λλ

λ
θλ=θ ∫

⊕
ba fd

ddf
j

 (46) 

where j,,0 λ  and j,,0 ⊕λ  are the reference points on bC  corresponding, 

respectively to j,,0 θ  and .,,0 j⊕θ  Since the derivative λθ dd  which 

appears in these integrals is finite everywhere on ,bC  and therefore 

limited, due to the fact that the inverse conformal transformation 
( )( )bz1−γ  is analytic and hence differentiable on the curve ,bC  it follows 

that there are two real numbers mR  and MR  such that 

( ) Mm Rd
dR ≤λ
λ
θ≤   (47) 

everywhere on .bC  Note that, since the conformal transformation, 

besides being continuous and differentiable, is also invertible on ,bC  the 

derivative above cannot change sign and thus cannot be zero. Therefore, 
the two bounds mR  and MR  may be chosen to have the same sign. By 

exchanging the derivative by these extreme values we can obtain upper 
and lower bounds for the sectional integrals, and therefore we get for the 
sectional primitives in Equation (46), 

( ) ( ) ( ),
,,0,,0

1
, 


λλ≤θ≤λλ ∫∫

λ

λ

′−
λ

λ
bMabm fdRffdR

jj
 

( ) ( ) ( ).
,,0,,0

1
, ⊕⊕

λ

λ

′−
⊕⊕⊕

λ

λ
λλ≤θ≤λλ ∫∫

⊕⊕
bMabm fdRffdR

jj
 (48) 

We now recognize the integrals that appear in these expressions as the 
sectional primitives of the function ( ),λbf  so that we get 

( ) ( ) ( ),1
,

1
,

1
, λ≤θ≤λ ′−′−′−

 bMabm fRffR  

( ) ( ) ( ).1
,

1
,

1
, λ≤θ≤λ ′−

⊕
′−
⊕

′−
⊕ bMabm fRffR  (49) 
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These expressions are true so long as j,ε  and ,, j⊕ε  as well as the 

corresponding quantities j,δ  and j,⊕δ  on ,bC  are not zero, but since 

the singularities at jbz ,  are non-integrable hard ones, we cannot take the 

limit in which these quantities tend to zero. Note that, since mR  and 

MR  have the same sign, if the sectional primitives of the function ( )λbf  

diverge to infinity in this limit, then so do the sectional primitives of the 
function ( ).θaf  Therefore, we may conclude that the hard singularity of 

( )θaf  is also a non-integrable one. Since we may take further sectional 

integrals of these expressions, without affecting the inequalities, it is 
immediately apparent that, after a total of n successive piecewise 
integrations, we get for the n-th sectional primitives 

( ) ( ) ( ),,,, λ≤θ≤λ ′−′−′− n
bM

n
a

n
bm fRffR   

( ) ( ) ( ).,,, λ≤θ≤λ ′−
⊕

′−
⊕

′−
⊕

n
bM

n
a

n
bm fRffR  (50) 

Since the non-integrable hard singularity of ( )λbf  at the point jλ  which 

corresponds to jθ  has a finite degree of hardness, according to the 

definition of the degrees of hardness, which was given in [1] and 
discussed in detail for the case of real functions in [4], there is a value of 
n such that the limit in which 0, →δ j  and 0, →δ⊕ j  can be taken for 

the sectional primitives ( )λ′−n
bf ,  and ( ),, λ′−

⊕
n

bf  thus implying that the n-th 

piecewise primitive ( )λ′−n
bf  of ( )λbf  is an integrable real function on the 

whole interval [ ]jj ,, , ⊕λλ  that corresponds to [ ],, ,, jj ⊕θθ  with a 

borderline hard singularity, with degree of hardness zero, at the point 
.jλ  It follows from the inequalities, therefore, that the corresponding 

limit in which 0, →ε j  and 0, →ε⊕ j  can be taken for the functions 

( )θ′−n
af ,  and ( ),, θ′−

⊕
n

af  thus implying that the n-th piecewise primitive 
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( )θ′−n
af  of ( )θaf  is also an integrable real function on the whole interval 

[ ],, ,, jj ⊕θθ  with a borderline hard singularity, with degree of hardness 

zero, at .jθ  Therefore, the non-integrable hard singularity of ( )θaf  at jθ  

has a finite degree of hardness, to wit the same degree of hardness n of 
the corresponding non-integrable hard singularity of ( )λbf  at .jλ  

This establishes Lemma 4. 

We have therefore established that, so long as ( )λbf  is locally 

integrable almost everywhere on ,bC  and so long as its non-integrable 

hard singularities have finite degrees of hardness, these same two facts 
are true for ( )θaf  on .aC  Since we thus see that the necessary properties 

of the real functions are preserved by the conformal transformation, we 
are therefore in a position to use the result of Theorem 2 in Section 3 in 
order to extend the existence theorem of the Dirichlet problem to non-
integrable real functions which are, however, integrable almost 
everywhere on ,bC  still for the case of differentiable curves. 

In this section, using once again the results from the previous 
sections, we will establish the following theorem. 

Theorem 5. Given a differentiable simple closed curve C of finite total 
length on the complex plane ,yxz ı+=  given the invertible conformal 

transformation ( )zγ  whose derivative has no zeros on the closed unit disk, 

that maps it from the unit circle, and given a real function ( )λf  on that 

curve, that satisfies the list of conditions described below, there is a 
solution ( )yxu ,  of the Dirichlet problem of the Laplace equation within 

the interior of that curve, that assumes the given values ( )λf  almost 

everywhere at the curve. 

Proof 5.1. Similarly to what was done in the two previous cases, in 
Sections 5 and 6, the proof consists of using the conformal transformation 
between the closed unit disk and the union of the curve C with its 
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interior, which according to the analysis in Section 4 always exists, to 
map the given boundary condition on C onto a corresponding boundary 
condition on the unit circle, then using the proof of existence established 
before by Theorem 2 in Section 3 for the closed unit disk to establish the 
existence of the solution of the corresponding Dirichlet problem on that 
disk, and finally using once more the conformal transformation to map 
the resulting solution back to C and its interior, thus obtaining the 
solution of the original Dirichlet problem. The list of conditions on the 
real functions is now the following. 

(1) The real function ( )λf  is locally integrable almost everywhere on C, 

including the cases in which this function is globally integrable there. 

(2) The number of hard singularities on the unit circle of the 
corresponding inner analytic function ( )zw  on the unit disk is finite. 

(3) The hard singularities of the corresponding inner analytic 
function ( )zw  have finite degrees of hardness. 

The rest of the proof is identical to that of the two previous cases, in 
Sections 5 and 6. Therefore, once again we may conclude that, due to the 
existence theorem of the Dirichlet problem on the unit disk of the plane 

,az  which in this case was established by Theorem 2 in Section 3, we 

know that there is an inner analytic function ( )aa zw  such that its real 

part ( )θρ,au  is harmonic within the open unit disk and satisfies ( )θ,1au  

( )θ= af  almost everywhere at the boundary .aC  Just as before, we get on 

the bz  plane the complex function ( )bb zw  which is analytic in the 

interior of the curve .bC  Therefore, the real part ( )yxub ,  of ( )bb zw  is 

harmonic and thus satisfies 

( ) ,0,2 =∇ yxub   (51) 
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in the interior of ,bC  while we also have that 

( ) ( ),, λ= bb fyxu   (52) 

almost everywhere on .bC  This establishes the existence, by 

construction, of the solution of the Dirichlet problem on the bz  plane, 

under our current hypotheses. 

This completes the proof of Theorem 5. 

In this way we have generalized the proof of existence of the Dirichlet 
problem from the unit circle to all differentiable simple closed curves 
with finite total lengths on the plane, for boundary conditions given by 
non-integrable real functions which are locally integrable almost 
everywhere and have at most a finite set of hard singular points. 

8. Non-Integrable Functions on Non-Differentiable Curves 

In this section, we will show how one can generalize the proof of 
existence of the Dirichlet problem on the unit disk, given by Theorem 2 in 
Section 3, to the case in which we have, as the boundary condition, non-
integrable real functions ( )λbf  defined on boundaries given by non-

differentiable curves bC  on the plane. We will be able to do this if the 

non-integrable real functions, despite being non-integrable over the 
whole curves ,bC  are locally integrable almost everywhere on those 

curves, and if, in addition to this, the non-integrable hard singularities 
involved have finite degrees of hardness. The definition of the concept of 
local integrability almost everywhere is that given by Definition 4, in 
Section 7. The additional difficulty that appears in this case is the same 
which was discussed in Section 6, due to the fact that the curve bC  is not 

differentiable at the finite set of points ,, ibz  for { }.,,1 Ni …∈  Just as in 

that case, this will require that we impose one additional limitation on 
the real functions giving the boundary conditions, namely that any 
integrable hard singularities where they diverge to infinity do not 
coincide with any of the points ., ibz  
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The proof will follow the general lines of the one given for integrable 
real functions in Section 6, with the difference that, just as we did in 
Section 7, instead of showing that the corresponding functions ( )θaf  on 

the unit circle aC  are integrable there, we will show that they are locally 

integrable almost everywhere there. In addition to this, instead of using 
the existence theorem for integrable real function on the unit circle, 
which was given by Theorem 1 in Section 2, we will use the 
corresponding result for non-integrable real functions which are locally 
integrable almost everywhere on the unit circle, which was given by 
Theorem 2 in Section 3. Since that result depends also on the non-
integrable hard singularities of the real functions having finite degrees of 
hardness, we will also show that the hypothesis that the functions ( )λbf  

have this property implies that the corresponding functions ( )θaf  have 

the same property as well. In order to do this we will use once again the 
technique of piecewise integration which was introduced in [4]. 

The preliminary result given by Lemma 3 in Section 7 is still valid 
here. As a consequence of this we may conclude at once that, under the 
conditions that we have here, the hypothesis that ( )λbf  is locally 

integrable almost everywhere on ,bC  with the exclusion of the finite set 

of points ,, jbz  for { },,,1 Mj …∈  implies that ( )θaf  is locally integrable 

almost everywhere on the unit circle ,aC  with the exclusion of the 

corresponding finite set of points ( )( ).,
1

, jbja zz −γ=  

We must now discuss the issue of the degrees of hardness of the non-
integrable hard singularities of the function ( )θaf  on .aC  Since by 

hypothesis ( )λbf  has non-integrable hard singularities at the points ,, jbz  

it clearly follows that ( )θaf  also has hard singularities at the 

corresponding points ,, jaz  which may be non-integrable ones. In order to 

discuss their degrees of hardness we will use the technique of piecewise 
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integration, that is, we will consider sectional integrals of ( )θaf  on closed 

intervals contained within a neighbourhood of the point jaz ,  where it 

has a single isolated hard singularity. Let us show the following 
preliminary fact about a real function ( )θaf  defined from a real function 

( )λbf  which is locally integrable almost everywhere on ,bC  and which 

has non-integrable hard singularities at the finite set of points ., jbz  

Lemma 5. Given a real function ( )λbf  which has an isolated non-

integrable hard singularity with finite degree of hardness at a point jbz ,  

on ,bC  and which is such that the hard singularities where it diverges to 

infinity do not coincide with any of the points ibz ,  where bC  is non-

differentiable, it follows that the corresponding function ( )θaf  defined on 

the unit circle aC  by ( ) ( )λ=θ ba ff  has an isolated non-integrable hard 

singularity with finite degree of hardness at the corresponding point jaz ,  

on .aC  

Since the real functions must diverge to infinity at non-integrable 
hard singular points, the fact that ( )θaf  has an isolated hard singularity 

on jaz ,  is immediate. Since these singularities are all isolated from each 

other, and since they do not coincide with the points ibz ,  where bC  is 

non-differentiable, there is on bC  a neighbourhood of the point jbz ,  

within which bC  is differentiable and there are no other non-integrable 

hard singularities of ( ).λbf  Since the conformal mapping is continuous, it 

follows that there is on aC  a neighbourhood of the corresponding point 

jaz ,  within which there are no zeros of the derivative of ( )azγ  and no 

other hard singularities of ( ).θaf  The construction of the two sectional 

primitives of ( )θaf  by means of piecewise integration is the same as the 

one which was executed before for Lemma 4 in Section 7, resulting in 
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Equation (44). After we change variables from θ  to λ  on the two 
sectional integrals in that equation we get 

( ) ( ) ( ),
,,0

1
, 


λλ

λ
θλ=θ ∫

λ

λ

−
ba fd

dd'f
j

 

( ) ( ) ( ),
,,0

1
, ⊕⊕⊕

λ

λ

−
⊕ λλ

λ
θλ=θ ∫

⊕
ba fd

dd'f
j

 (53) 

where all the symbols involved are the same as before. Since the 
derivative λθ dd  which appears in these integrals is finite, and therefore 

limited, everywhere within the two lateral intervals involved, due to the 

fact that the inverse conformal transformation ( )( )bz1−γ  is analytic and 

therefore differentiable within these intervals, it follows that there are 
two pairs of real numbers mR ,  and ,, MR  as well as mR ,⊕  and ,, MR⊕  

such that 

( ) ,,, Mm Rd
dR  ≤λ
λ
θ≤  

( ) ,,, Mm Rd
dR ⊕⊕⊕ ≤λ
λ
θ≤  (54) 

everywhere within each interval. Note that, since the conformal 
transformation, besides being continuous and differentiable, is also 
invertible within each interval, the derivatives above cannot change sign 
and thus cannot be zero. Therefore, the pair of bounds mR ,  and MR ,  

may be chosen to have the same sign, and so may the pair of bounds 

mR ,⊕  and ., MR⊕  By exchanging the derivative by these extreme values 

we can obtain upper and lower bounds for the sectional integrals, and 
therefore we get for the sectional primitives in Equation (53), 
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( ) ( ) ( ),
,,0,,0

,
1
,, 


λλ≤θ≤λλ ∫∫

λ

λ

−
λ

λ
bMabm fdR'ffdR

jj
 

( ) ( ) ( ).
,,0,,0

,
1
,, ⊕⊕

λ

λ
⊕

−
⊕⊕⊕

λ

λ
⊕ λλ≤θ≤λλ ∫∫

⊕⊕
bMabm fdR'ffdR

jj
 (55) 

We now recognize the integrals that appear in these expressions as the 
sectional primitives of the function ( ),λbf  so that we get 

( ) ( ) ( ),1
,,

1
,

1
,, λ≤θ≤λ −−− 'fR'f'fR bMabm   

( ) ( ) ( ).1
,,

1
,

1
,, λ≤θ≤λ −

⊕⊕
−
⊕

−
⊕⊕ 'fR'f'fR bMabm  (56) 

These expressions are true so long as j,ε  and j,⊕ε  as well as the 

corresponding quantities j,δ  and j,⊕δ  on ,bC  are not zero, but since 

the singularities at jbz ,  are non-integrable hard ones, we cannot take the 

limit in which these quantities tend to zero. Note that, since mR ,  and 

MR ,  have the same sign, and also mR ,⊕  and MR ,⊕  have the same 

sign, if the sectional primitives of the function ( )λbf  diverge to infinity in 

this limit, then so do the sectional primitives of the function ( ).θaf  

Therefore, we may conclude that the hard singularity of ( )θaf  is also a 

non-integrable one. Since we may take further sectional integrals of these 
expressions, without affecting the inequalities, it is immediately 
apparent that, after a total of n successive piecewise integrations, we get 
for the     n-th sectional primitives 

( ) ( ) ( ),,,,,, λ≤θ≤λ −−− 'fR'f'fR n
bM

n
a

n
bm   

( ) ( ) ( ).,,,,, λ≤θ≤λ −
⊕⊕

−
⊕

−
⊕⊕ 'fR'f'fR n

bM
n

a
n

bm  (57) 

Since the non-integrable hard singularity of ( )λbf  at the point jλ  which 

corresponds to jθ  has a finite degree of hardness, according to the 
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definition of the degrees of hardness, which was given in [1] and 
discussed in detail for the case of real functions in [4], there is a value of 
n such that the limit in which 0, →δ j  and 0, →δ⊕ j  can be taken for 

the sectional primitives ( )λ− 'f n
b ,  and ( ),, λ−

⊕
'f n

b  thus implying that the n-th 

piecewise primitive ( )λ− 'f n
b  of ( )λbf  is an integrable real function on the 

whole interval [ ],, ,, jj ⊕λλ  with a borderline hard singularity, with 

degree of hardness zero, at the point .jλ  It follows from the inequalities, 

therefore, that the corresponding limit in which 0, →ε j  and 0, →ε⊕ j  

can be taken for the functions ( )θ− 'f n
a ,  and ( ),, θ−

⊕'f n
a  thus implying that 

the n-th piecewise primitive ( )θ− 'f n
a  of ( )θaf  is also an integrable real 

function on the whole interval [ ],, ,, jj ⊕θθ  with a borderline hard 

singularity, with degree of hardness zero, at .jθ  Therefore, the non-

integrable hard singularity of ( )θaf  at jθ  has a finite degree of hardness, 

to wit the same degree of hardness n of the corresponding non-integrable 
hard singularity of ( )λbf  at .jλ  

This establishes Lemma 5. 

We have therefore established that, under the hypothesis that the 
hard singularities where ( )λbf  diverges to infinity do not coincide with 

any of the points ibz ,  where bC  is non-differentiable, so long as ( )λbf  is 

locally integrable almost everywhere on ,bC  and so long as its non-

integrable hard singularities have finite degrees of hardness, these same 
two facts are true for ( )θaf  on .aC  Since we thus see that the necessary 

properties of the real functions are preserved by the conformal 
transformation, we are therefore in a position to use the result of 
Theorem 2 in Section 3 in order to extend the existence theorem of the 
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Dirichlet problem to non-integrable real functions which are, however, 
integrable almost everywhere on ,bC  this time for the case of non-

differentiable curves. 

In this section, using one more time the results from the previous 
sections, we will establish the following theorem. 

Theorem 6. Given a simple closed curve C of finite total length on the 
complex plane ,yxz ı+=  which is non-differentiable at a given finite set 

of points ,iz  for { },,,1 Ni …∈  given the conformal transformation ( )zγ  

that maps it from the unit circle, whose derivative has zeros on the unit 
circle at the corresponding set of points, and given a real function ( )λf  on 

that curve, that satisfies the list of conditions described below, there is a 
solution ( )yxu ,  of the Dirichlet problem of the Laplace equation within 

the interior of that curve, that assumes the given values ( )λf  almost 

everywhere at the curve. 

Proof 6.1. Similarly to what was done in the three previous sections, 
the proof consists of using the conformal transformation between the 
closed unit disk and the union of the curve C with its interior, which 
according to the analysis in Section 4 always exists, to map the given 
boundary condition on C onto a corresponding boundary condition on the 
unit circle, then using the proof of existence established before by 
Theorem 2 in Section 3 for the closed unit disk to establish the existence 
of the solution of the corresponding Dirichlet problem on that disk, and 
finally using once more the conformal transformation to map the 
resulting solution back to C and its interior, thus obtaining the solution 
of the original Dirichlet problem. The list of conditions on the real 
functions is now the following. 
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(1) The real function ( )λf  is locally integrable almost everywhere on C, 

including the cases in which this function is globally integrable there. 

(2) The number of hard singularities on the unit circle of the 
corresponding inner analytic function ( )zw  on the unit disk is finite. 

(3) The hard singularities of the corresponding inner analytic 
function ( )zw  have finite degrees of hardness. 

(4) The hard singularities of ( )λf  where it diverges to infinity are not 

located at any of the points where the curve C is non-differentiable. 

The rest of the proof is identical to that of the three previous cases. 
Therefore, once again we may conclude that, due to the existence 
theorem of the Dirichlet problem on the unit disk of the plane ,az  which 

in this case was established by Theorem 2 in Section 3, we know that 
there is an inner analytic function ( )aa zw  such that its real part 

( )θρ,au  is harmonic within the open unit disk and satisfies ( ) =θ,1au  

( )θaf  almost everywhere at the boundary .aC  Just as before, we get on 

the bz  plane the complex function ( )bb zw  which is analytic in the 

interior of the curve .bC  Therefore, the real part ( )yxub ,  of ( )bb zw  is 

harmonic and thus satisfies 

( ) ,0,2 =∇ yxub   (58) 

in the interior of ,bC  while we also have that 

( ) ( ),, λ= bb fyxu   (59) 

almost everywhere on .bC  This establishes the existence, by 

construction, of the solution of the Dirichlet problem on the bz  plane, 

under our current hypotheses. 
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This completes the proof of Theorem 6. 

In this way we have generalized the proof of existence of the Dirichlet 
problem from the unit circle to all simple closed curves with finite total 
lengths on the plane, that can be either differentiable or non-
differentiable on a finite set of points, but now for boundary conditions 
given by non-integrable real functions which are locally integrable almost 
everywhere and have at most a finite set of hard singular points. 

9. Conclusions and Outlook 

A very general proof of the existence of the solution of the Dirichlet 
boundary value problem of the Laplace equation on the plane was 
presented. The proof is valid not only for a very large class of real 
functions at the boundary, but also for a large class of boundary curves, 
with and without points of non-differentiability. The proof was presented 
in incremental steps, each generalizing the previous ones. The proofs for 
the unit circle are based on the complex-analytic structure within the 
unit disk presented and developed in previous papers [1-4]. The 
generalization for curves other than the unit circle uses the conformal 
mapping results associated to the famous Riemann mapping theorem. 
The most general statement of the theorem established here reads as 
follows. 

Given a real function ( )λf  that defines the boundary condition on a 

plane curve C parametrized by the real arc-length variable ,λ  so long as 
the real function is locally integrable almost everywhere on C, and is 
such that the corresponding inner analytic function has at most a finite 
number of hard singularities with finite degrees of hardness, so long as C 
is a simple closed curve with finite total length and at most a finite 
number of points of non-differentiability, and so long as the hard singular 
points of ( )λf  where it diverges to infinity do not coincide with the any of 

points where the curve is not differentiable, there exists a real function 

( )yxu ,  that satisfies ( ) 0,2 =∇ yxu  in the interior of C and that satisfies 

( ) ( )λ= fyxu ,  almost everywhere on C. 
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The proof is constructive, and consists of constructing from ( )λf  an 

analytic function in the interior of C, of which ( )yxu ,  is the real part. 

The theorem is quite general, including large classes of both boundary 
conditions and boundary curves. 

Further extensions of the theorem may be possible. For example, the 
proofs established in Sections 2 and 3 can be rather trivially extended to 
include as well the whole space of singular Schwartz distributions 
discussed in [2], that is, they can be extended to generalized real 
functions. This allows one to discuss some rather unusual Dirichlet 
problems in which the boundary condition is given by a singular real 
object such as the Dirac delta “function” or its derivatives. As mentioned 
in [1], a possible further extension would be to real functions with a 
countable infinity of hard singular points which have, however, a finite 
number of accumulation points. The requirement that the hard singular 
points of ( )λf  where it diverges to infinity do not coincide with the points 

where the curve C is non-differentiable seems to be a technical quirk, and 
probably can be eliminated. It is important to note that the proof is 
intrinsically limited to two-dimensional problems on the plane. 

It is interesting to observe that the uniqueness of the solution can 
also be discussed in this context, in terms of the fact that ( ) 0≡θf  

corresponds to the Fourier coefficients 0,00 =α=α k  and ,0=βk  for 

all ,k  and therefore to the complex Taylor coefficients 00 =c  and 

,0=kc  for all ,k  and therefore to the identically zero inner analytic 

function ( ) .0≡zw  Given an integrable real function ( )θf  and two 

corresponding solutions ( )zw1  and ( )zw2  of the Dirichlet problem, we 

simply consider ( ) ( ) ( ),12 zwzwzw −=  which is therefore a solution of the 

Dirichlet problem with ( ) ,0≡θf  and thus by construction is ( ) .0≡zw  It 

follows that ( ) ( ),12 zwzw ≡  so that the solution is unique, in the sense 

that ( ) ( )θρ=θρ ,, 12 uu  almost everywhere on the unit disk. We can say, 

in fact, that these two functions are equal at all points on the unit circle 
where they are well defined. 



JORGE L. DELYRA 228

With some more work towards its generalization, the result 
presented here points, perhaps, to an even more general result, according 
to which the solution of the Dirichlet problem of the Laplace equation in 
two dimensions, in essence, always exists, in the sense that it exists 
under all conceivable circumstances in which it makes any sense at all to 
pose the corresponding boundary value problem. Already, even with the 
result as it is now, this is almost the case in what concerns the 
applications to Physics. 
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