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Abstract 

In the context of the complex-analytic structure within the unit disk centered at 
the origin of the complex plane, that was presented in a previous paper, we show 
that the complete Fourier theory of integrable real functions is contained within 
that structure, that is, within the structure of the space of inner analytic 
functions on the open unit disk. We then extend the Fourier theory beyond the 
realm of integrable real functions, to include for example singular Schwartz 
distributions, and possibly other objects. 

1. Introduction 

In a previous paper [1], we introduced a certain complex-analytic 
structure within the unit disk of the complex plane, and showed that one 
can represent essentially all integrable real functions within that 
structure. The construction leading to this result started with the use of 
the Fourier coefficients kα  and kβ  of the integrable real function ( ),θf  
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from which we defined a set of complex Taylor coefficients ,kc  thus 

leading to the corresponding inner analytic function ( ).zw  It is therefore 

clearly apparent that there is a close relation between that complex-
analytic structure and the Fourier theory [2] of integrable real functions. 

In this paper we will make that relation explicit by showing, in 
Sections 2-5, that all the elements of the Fourier theory of integrable real 
functions are contained within the complex-analytic structure. What we 
mean by these elements is the set of mathematical objects including the 
Fourier basis of functions, the Fourier series, the scalar product for 
integrable real functions, the relations of orthogonality and norm of the 
basis elements, and the completeness of the Fourier basis, including its    
so-called completeness relation. 

The fact that one can recover the real functions from their Fourier 
coefficients almost everywhere, even when the corresponding Fourier 
series are divergent, as we showed in [1], leads to a powerful and very 
general summation rule for all Fourier series. Furthermore, we will show 
in Section 6 that the complex-analytic structure allows us to extend the 
Fourier theory beyond the realm of integrable real functions, to include 
the singular Schwartz distributions that we examined in detail in another 
previous paper [3], as well as at least some non-integrable real functions, 
and possibly other objects. 

For ease of reference, we include here a one-page synopsis of the 
complex-analytic structure introduced in [1]. It consists of certain 
elements within complex analysis [4], as well as of their main properties. 

Synopsis: The Complex-Analytic Structure 

An inner analytic function ( )zw  is simply a complex function which is 

analytic within the open unit disk. An inner analytic function that has the 
additional property that ( ) 00 =w  is a proper inner analytic function. The 

angular derivative of an inner analytic function is defined by 

( ) ( ) .dz
zdwzzw ı=•   (1) 
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By construction we have that ( ) ,00 =•w  for all ( ).zw  The angular 

primitive of an inner analytic function is defined by 

( ) ( ) ( ) .0
0

1
z

wzwzdzw
z

′
−′′−= ∫•− ı   (2) 

By construction we have that ( ) ,001 =•−w  for all ( ).zw  In terms of a 

system of polar coordinates ( )θρ,  on the complex plane, these two 

analytic operations are equivalent to differentiation and integration with 
respect to ,θ  taken at constant .ρ  These two operations stay within the 

space of inner analytic functions, they also stay within the space of proper 
inner analytic functions, and they are the inverses of one another. Using 
these operations, and starting from any proper inner analytic function 

( ),0 zw •  one constructs an infinite integral-differential chain of proper 

inner analytic functions, 

( ) ( ) ( ) ( ) ( ) ( ) ( ){ }.,,,,,,,, 3210123 …… zwzwzwzwzwzwzw •••••−•−•−  (3) 

Two different such integral-differential chains cannot ever intersect each 
other. There is a single integral-differential chain of proper inner analytic 
functions which is a constant chain, namely, the null chain, in which all 
members are the null function ( ) .0≡zw  

A general scheme for the classification of all possible singularities of 
inner analytic functions is established. A singularity of an inner analytic 
function ( )zw  at a point 1z  on the unit circle is a soft singularity if the 

limit of ( )zw  to that point exists and is finite. Otherwise, it is a hard 

singularity. Angular integration takes soft singularities to other soft 
singularities, and angular differentiation takes hard singularities to other 
hard singularities. 
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Gradations of softness and hardness are then established. A hard 
singularity that becomes a soft one by means of a single angular 
integration is a borderline hard singularity, with degree of hardness zero. 
The degree of softness of a soft singularity is the number of angular 
differentiations that result in a borderline hard singularity, and the degree 
of hardness of a hard singularity is the number of angular integrations 
that result in a borderline hard singularity. Singularities which are either 
soft or borderline hard are integrable ones. Hard singularities which are 
not borderline hard are non-integrable ones. 

Given an integrable real function ( )θf  on the unit circle, one can 

construct from it a unique corresponding inner analytic function ( ).zw  

Real functions are obtained through the ( )−→ρ 1  limit of the real and 

imaginary parts of each such inner analytic function and, in particular, 
the real function ( )θf  is obtained from the real part of ( )zw  in this limit. 

The pair of real functions obtained from the real and imaginary parts of 
one and the same inner analytic function are said to be mutually Fourier-
conjugate real functions. 

Singularities of real functions can be classified in a way which is 
analogous to the corresponding complex classification. Integrable real 
functions are typically associated with inner analytic functions that have 
singularities which are either soft or at most borderline hard. This ends 
our synopsis. 

When we discuss real functions in this paper, some properties will be 
globally assumed for these functions, just as was done in [1] and [3]. These 
are rather weak conditions to be imposed on these functions, that will be 
in force throughout this paper. It is to be understood, without any need for 
further comment, that these conditions are valid whenever real functions 
appear in the arguments. These weak conditions certainly hold for any 
integrable real functions that are obtained as restrictions of corresponding 
inner analytic functions to the unit circle. 
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The most basic condition is that the real functions must be measurable 
in the sense of Lebesgue, with the usual Lebesgue measure [5, 6]. The 
second global condition we will impose is that the functions have no 
removable singularities. The third and last global condition is that the 
number of hard singularities on the unit circle be finite, and hence that 
they be all isolated from one another. There will be no limitation on the 
number of soft singularities. 

The material contained in this paper is a development, reorganization 
and extension of some of the material found, sometimes still in rather 
rudimentary form, in the papers [7-11]. 

2. Fourier Series 

In [1] we showed that, given any integrable real function ( ),θf  one can 

construct a corresponding inner analytic function ( ) ( ) ( ),,, θρ+θρ= vuzw ı   

from the real part of which ( )θf  can be recovered almost everywhere on 

the unit circle, through the use of the ( )−→ρ 1  limit, where ( )θρ,  are 

polar coordinates on the complex plane. In that construction we started by 
calculating the Fourier coefficients [2] of the real function, which is always 
possible given that the function is integrable, using the usual integrals 
defining these coefficients, 

( ),1
0 θθ

π
=α ∫

π

π−
fd  

( ) ( ),cos1 θθθ
π

=α ∫
π

π−
fd kk  

( ) ( ),sin1 θθθ
π

=β ∫
π

π−
fd kk  (4) 
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for { }.,,3,2,1 ∞∈ …k  We then defined a set of complex Taylor 

coefficients 

,2
1

00 α=c  

,kkk β−α= ıc  (5) 

for { }.,,3,2,1 ∞∈ …k  Next we defined a complex variable z associated to 

,θ  using the positive real variable ,ρ  by ( ).exp θρ= ız  Using all these 

elements we then constructed the power series 

( ) ,
0

k
k

k
zczS ∑

∞

=

=  (6) 

which we showed to be convergent to an inner analytic function  
( ) ( )zSzw =  within the open unit disk. This power series is therefore the 

Taylor series of ( ).zw  We also proved that one recovers the real function 

( )θf  almost everywhere on the unit circle from the ( )−→ρ 1  limit of the 

real part ( )θρ,u  of ( ).zw  It is now very easy to show that the Fourier 

series of an integrable real function ( )θf  is simply given by the real part 

of this Taylor series, when restricted to the unit circle. Writing the series 
explicitly in terms of the polar coordinates ( )θρ,  of the complex plane, we 

get 

( ) ( ) ( ) ( )[ ]θ+θρβ−α+
α

= ∑
∞

=

kkk
kk

k
sincos2

1

0 ıızw  

( ) ( )[ ]θβ+θαρ+
α

= ∑
∞

=

kk kk
k

k
sincos2

1

0  

( ) ( )[ ],cossin
1

θβ−θαρ+ ∑
∞

=

kk kk
k

k
ı  (7) 
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where ( ) ( ) ( ).,, θρ+θρ= vuzw ı  Taking now the ( )−→ρ 1  limit we get 

( ) ( ) ( ) ( )[ ]θβ+θα+
α

=θ+θ ∑
∞

=

kk kk
k

sincos2,1,1
1

0vu ı  

( ) ( )[ ].cossin
1

θβ−θα+ ∑
∞

=

kk kk
k

ı  (8) 

It follows, therefore, that the real part of ( )zw  for 1=ρ  is the Fourier 

series of ( ),θf  

( ) ( ) ( )[ ],sincos2,1
1

0 θβ+θα+
α

=θ ∑
∞

=

kk kk
k

u  (9) 

and that the imaginary part of ( )zw  for 1=ρ  is the Fourier series of the 

real function which is the Fourier conjugate of ( ),θf  

( ) ( ) ( )[ ].cossin,1
1

θβ−θα=θ ∑
∞

=

kk kk
k

v   (10) 

Here we see that, with respect to the Fourier series of ( ),,1 θu  the 0=k  

term is missing, all the other coefficients are the same, while the ( )θkcos  

were exchanged for ( ),sin θk  and the ( )θksin  were exchanged for 

( ).cos θ− k  In [1] we proved that ( )θ,1u  is equal to ( )θf  almost 

everywhere, irrespective of the convergence or lack of convergence of the 
Fourier series, so that it now becomes clear that, when and where this 
trigonometric series converges at all, it converges to the original 
integrable real function, 

( ) ( ) ( )[ ].sincos2
1

0 θβ+θα+
α

=θ ∑
∞

=

kk kk
k

f  (11) 

The convergence of this Fourier series can be characterized in terms of the 
singularities of the inner analytic function ( )zw  on the unit disk. If there 
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are no singularities of ( )zw  on the unit circle, then the maximum 

convergence disk of its Taylor series is larger than the unit disk, and 
contains it. Therefore, in this case the Fourier series is always convergent, 
as well as absolutely and uniformly convergent. On the other hand, if 
there is at least one singularity of ( )zw  on the unit circle, then the unit 

disk is the maximum disk of convergence of the Taylor series, and in this 
case the Fourier series may or may not be convergent. In this case we see 
that, given any integrable real function, the issue of the convergence of its 
Fourier series is thus identified completely with the issue of the 
convergence of the Taylor series of the corresponding inner analytic 
function, at the border of its maximum convergence disk. 

From the expansion in Equation (7) we see that the recovery of ( )θf  

from its Fourier coefficients via the inner analytic function ( ),zw  as we 

discussed in [1], which works even when the Fourier series diverges 
almost everywhere, is equivalent to taking the ( )−→ρ 1  limit of the 

following modified or regulated Fourier series, 

( )
( )

( ) ( )[ ]












θβ+θαρ+
α

=θ ∑
∞

=
→ρ −

kk kk
k

k
sincos2lim

1

0
1

f  

( )
( ) ( )[ ],sincoslim2

1
1

0 θβ+θαρ+
α

= ∑
∞

=
→ρ −

kk kk
k

k

 (12) 

which of course is always convergent, so long as ,1<ρ  for all integrable 

real functions ( ),θf  given that it is the real part of the convergent Taylor 

series of ( ).zw  The limit indicated will exist when and where ( )θf  can be 

recovered from the real part of the corresponding inner analytic function. 
This holds for all the points on the unit circle where the inner analytic 
function ( )zw  is either analytic or has only soft singularities. This recipe 

constitutes, therefore, a very general summation rule for Fourier series. 
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3. Orthogonality Relations 

The Fourier series of an integrable real function can be understood as 
the expansion of that real function in the Fourier basis of functions, which 
consists of the set of functions 

{ ( ) ( ) { }}.,,3,2,1,sin,cos,1 ∞∈θθ …kkk  (13) 

Let us now show that this is an orthogonal basis. Of course this can be 
done using the standard form of the scalar product between two real 
functions on the unit circle, by simply calculating a set of easy integrals by 
elementary means. However, what we want to do here is to show that both 
the form of the scalar product and the relations of orthogonality and norm 
are contained within the structure of the inner analytic functions, and can 
be derived from that structure. In fact, we will show that these elements 

can be obtained from a particular set of functions, the powers ,kz  with 

,0≥k  and their multiplicative inverses .k−z  We start by noting that, if C 

is any circle centered at the origin, including the unit circle, then from the 
residues theorem we have that 

,2
1

0,
1

p
p

C
zdz δ=

π
−

ı
 (14) 

where p is an arbitrary integer, and where 0,pδ  is the Kronecker delta. 

This is so because the integral can be calculated by residues, and a 
function which is a simple power, either positive or negative, is its own 
Laurent series, which has only one term. Therefore, its residue at 0=z  is 
zero unless ,0=p  in which case it is equal to one. Using this result for 

the case ,kk ′−=p  where the integers k  and k ′  are in the set 

{ },,,3,2,1,0 ∞…  we have 

,2
1

,
1

kk
kk

′
−′− δ=

π
zdz

C

ı

  (15) 
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while using the same expression for ,kk ′+=p  with the limitation that 

,0>′+ kk  which means that k  and k ′  cannot both be zero, we have 

.02
1 1 =
π

−′+kkzdz
C

ı

  (16) 

This is also a consequence of the Cauchy-Goursat theorem, since in this 
case the integrand is analytic within the unit disk. Note that the power 
kz  with 0≥k  is itself an inner analytic function. Writing these two 

relations in terms of the integration variable θ we have 

,2
1

,kk
kkkk

′
θ′−θ

π

π−

′− δ=θρ
π ∫ ıı eed  

,02
1 =θρ
π

θ′θ
π

π−

′+ ∫ kkkk ıı eed  (17) 

since ( ),exp θρ= ız  where in the second equation we must have 

.0>′+ kk  So long as 0≠ρ  the powers of ρ  can be eliminated from the 

second equation, and since the right-hand term of the first equation is zero 
unless ,kk ′=  they can also be eliminated from the first equation, so that 

we have 

,2
1

,kk
kk

′
θ′−θ

π

π−
δ=θ

π ∫ ıı eed  

,02
1 =θ
π

θ′θ
π

π−∫
kk ıı eed  (18) 

where in the second equation we must have .0>′+ kk  Note that this is 
valid not only on the unit circle, but for all values of ρ  so long as .0≠ρ  

Expanding the complex exponentials, with the use of the Euler formula, 
and collecting real and imaginary parts, we have 
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( ) ( ) ( ) ( )[ ]θ′θ+θ′θθ
π ∫

π

π−
kkkk sinsincoscos1 d  

( ) ( ) ( ) ( )[ ] ,2sincoscossin1
,kkkkkk ′

π

π−
δ=θ′θ−θ′θθ

π
+ ∫ dı  

( ) ( ) ( ) ( )[ ]θ′θ−θ′θθ
π ∫

π

π−
kkkk sinsincoscos1 d  

( ) ( ) ( ) ( )[ ] ,0sincoscossin1 =θ′θ+θ′θθ
π

+ ∫
π

π−
kkkkdı  (19) 

where in the second equation we must have .0>′+ kk  Since the right-
hand sides are real, we have the four real equations 

( ) ( ) ( ) ( )[ ] ,2sinsincoscos1
,kkkkkk ′

π

π−
δ=θ′θ+θ′θθ

π ∫ d  

( ) ( ) ( ) ( )[ ] ,0sincoscossin1 =θ′θ−θ′θθ
π ∫

π

π−
kkkkd  

( ) ( ) ( ) ( )[ ] ,0sinsincoscos1 =θ′θ−θ′θθ
π ∫

π

π−
kkkkd  

( ) ( ) ( ) ( )[ ] ,0sincoscossin1 =θ′θ+θ′θθ
π ∫

π

π−
kkkkd  (20) 

where we must have 0>′+ kk  in the last two equations. In the case 
,0=′+ kk  which implies that 0=k  and ,0=′k  we obtain from the first 

equation the identity 

( ) ( ) ,20cos0cos1 =θ
π ∫

π

π−
d   (21) 

which is a part of the relations of orthogonality and norm of the Fourier 
basis, namely, the one giving the squared norm of the constant function 
which is equal to one for all .θ  The second equation is just a trivial 
identity when we have 0=k  and ,0=′k  which we may therefore ignore. 
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We may now assume that we have 0>′+ kk  for all the four equations. 
Adding and subtracting the first and third equations, we get 

( ) ( ) ,coscos1
,kkkk ′

π

π−
δ=θ′θθ

π ∫ d  

( ) ( ) ,sinsin1
,kkkk ′

π

π−
δ=θ′θθ

π ∫ d  (22) 

for ,0>′+ kk  while adding and subtracting the other two equations we 

get 

( ) ( ) ,0cossin1 =θ′θθ
π ∫

π

π−
kkd  

( ) ( ) ,0sincos1 =θ′θθ
π ∫

π

π−
kkd  (23) 

for ,0>′+ kk  which are just two copies of the same relation. We have 

therefore the complete set of orthogonality relations, which also includes 
those relations giving the norms of the basis functions, 

( ) ( ) ,coscos1
,kkkk ′

π

π−
δ=θ′θθ

π ∫ d  

( ) ( ) ,sinsin1
,kkkk ′

π

π−
δ=θ′θθ

π ∫ d  

( ) ( ) ,0cossin1 =θ′θθ
π ∫

π

π−
kkd  (24) 

where ,0>′+ kk  which includes all the relevant cases, that is, all the 

relevant pairs of elements of the basis in Equation (13), except for the 
single case for 0=k  and ,0=′k  which we examined separately before, 

leading to Equation (21). Note that this derivation included the 
determination of the form of the scalar product for the basis elements. 
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Given two integrable real functions ( )θf  and ( ),θg  their scalar product is 

given by 

( ) ( ) ( ),θθθ= ∫
π

π−
gfdgf   (25) 

which induces a positive-definite norm in the space of all integrable real 
functions defined on the periodic interval, which is thus seen to constitute 
a Hilbert space. We may therefore conclude that the whole structure of 
orthogonality and norm of the Fourier basis is contained in the structure 
of the inner analytic function within the unit disk of the complex plane. 

Note that, since all possible inner analytic functions are given by 
convergent power series within the open unit disk, and since these power 
series can be understood as infinite linear combinations of the particular 
set of inner analytic functions given by the non-negative powers 

{ }{ },,,3,2,1,0, ∞∈ …kkz  we may think that this set of functions forms a 

basis of the space of inner analytic functions, which we may call the 
Taylor basis. Since the orthogonality of the Fourier basis was obtained 
above from the properties of this set of non-negative powers, it becomes 
clear that the orthogonality of the Fourier basis is a consequence of 
similar properties that must hold for the Taylor basis. In fact, it is possible 
to define a complex scalar product within the space of inner analytic 
functions, according to which this Taylor basis is orthogonal. Since this 
constitutes a considerable detour from our main line of reasoning here, it 
will be presented as an Appendix. As one can see in Appendix A, this 
complex scalar product induces in the space of inner analytic functions a 
positive-definite norm. As was observed in [1], this space forms a vector 
space over the field of complex numbers, and we thus see that it 
constitutes in fact a complex Hilbert space. 
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4. Completeness Relation 

Let us now prove the completeness of the Fourier basis. In this context 
the concept of completeness is that of a basis within a vector space. We 
will first give a simple and direct proof of completeness, which is however 
subject to a slight limitation regarding the vector space for which the basis 
is shown to be complete, using the analytic structure within the open unit 
disk, and later establish the relation of the concept of completeness with 
the so-called completeness relation. The proof of completeness using the 
completeness relation is not subject to any such limitation. 

In this section we will prove the following completeness theorem. 

Theorem 1. The basis of real functions { ( ) ( ),sin,cos,1 θθ kk  

{ }},,,3,2,1 ∞∈ …k  is complete to represent the space of all integrable real 

functions defined on the unit circle. 

The proof consists of establishing that, given an arbitrary integrable 
real function ( )θ/v  on the unit circle, which is orthogonal to all the 

elements of the Fourier basis, according to the scalar product defined in 
Equation (25), it then follows that ( )θ/v  must be zero almost everywhere. 

Note that the orthogonality to the elements of the basis means that ( )θ/v  is 

such that all its Fourier coefficients, as defined in Equation (4), are zero. 

Proof 1.1.  

Let  ( )θ/v  be a real function on the unit circle which can be obtained as 

the ( )−→ρ 1  limit of an inner analytic function. We assume that it is 

orthogonal to all the elements of the basis, so that all its Fourier 
coefficients are zero, that is, we assume that for this function we have 

,0,00 =α=α k  and ,0=βk  for all { }.,,3,2,1 ∞∈ …k  Since we thus 

have all the Fourier coefficients of ( ),θ/v  we may use the construction 

presented in [1] in order to determine the corresponding inner analytic 
function. However, since all the Fourier coefficients are zero, it follows at 
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once from the step of that construction given in Equation (5) that for ( )θ/v  

the complex coefficients kc  are zero for all .k  Therefore, the power series 

( )zS  constructed in the next step of the process, given in Equation (6), is 

identically zero and thus converges trivially to the identically zero 
complex function ( ) 0≡/ zwv  on the whole complex plane. 

The analyticity region of ( )zwv/  includes the unit circle, and therefore 

the series converges to zero there. Since on the one hand the series 
converges to zero, and on the other hand we know that for 1=ρ  it 

necessarily converges to the restriction of ( )zwv/  to the unit circle, it 

follows that the restriction, including both real and imaginary parts, must 
be zero everywhere on the unit circle. Therefore, it follows that ( )θ/v  and 

the identically zero real function coincide everywhere on the unit circle, 
and therefore we conclude that ( ) 0=θ/v  everywhere on that circle. This 

establishes that the Fourier basis is complete for the space of all 
integrable real functions defined on the periodic interval, which can be 
obtained as the ( )−→ρ 1  limits of inner analytic functions. This completes 

the first version of the proof of Theorem 1, which is valid for the vector 
space of real functions just described. 

Note that, since all possible inner analytic functions are given by 
convergent power series within the open unit disk, and since these power 
series can be understood as expansions of those inner analytic functions in 
the Taylor basis of functions given by the non-negative powers 

{ }{ },,,3,2,1,0, ∞∈ …kkz  we may say that this Taylor basis is complete 

for the space of all inner analytic functions. Since the proof of the 
completeness of the Fourier basis given above was obtained from the 
complex-analytic structure within the open unit disk, it becomes clear that 
the completeness of the Fourier basis on the unit circle is a consequence of 
the completeness of the Taylor basis within the open unit disk. This adds 
to the relationship between the Fourier basis on the unit circle and the 
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Taylor basis on the unit disk, which was first established during the 
discussion involving the orthogonality of the Fourier basis, in Section 3. In 
addition to all this, within the spaces generated by either basis one may 
define scalar products that induce positive-definite norms, thus making 
them both Hilbert spaces, as is discussed in Appendix A. 

Let us now turn to the usual completeness relation. Let us first write 
it down and then exhibit its usefulness. The relation can be understood as 
the expression, as a Fourier series, of the Dirac delta “function” defined 
with respect to a point given by the angle 1θ  on the unit circle, which we 

examined in great detail in [3], and which we denote by ( ).1θ−θδ  As we 

have shown in [3], using the usual rules for the manipulation of the delta 
“function”, one finds that the corresponding Fourier coefficients are given by 

( )10
1 θ−θθδ
π

=α ∫
π

π−
d  

,1
π

=  

( ) ( )1cos1 θ−θδθθ
π

=α ∫
π

π−
kk d  

( ),cos1
1θπ

= k  

 ( ) ( )1sin1 θ−θδθθ
π

=β ∫
π

π−
kk d  

( ),sin1
1θπ

= k  (26) 

for { },,,3,2,1 ∞∈ …k  so that the completeness relation is given by the 

Fourier expansion, that turns out to be a bi-linear form on the elements of 
the Fourier basis, 

( ) ( ) ( ) ( ) ( )[ ],sinsincoscos1
2
1

11
1

1 θθ+θθ
π

+
π

=θ−θδ ∑
∞

=

kkkk
k

  (27) 
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which is manifestly divergent, but which can be made to converge for all 
values of ,θ  so that we may recover the delta “function” almost 

everywhere, in fact everywhere but at ,1θ  through the use of the 

summation rule given in Equation (12), 

( )
( )

( ) ( ) ( ) ( )[ ].sinsincoscoslim1
2
1

11
1

11 θθ+θθρ
π

+
π

=θ−θδ ∑
∞

=
→ρ −

kkkkk

k
 (28) 

This is equivalent to the definition of the delta “function” as the ( )−→ρ 1  

limit of the real part of the inner analytic function given by 

( ) ,1
2
1,

1
1 zz

zzzw
−π

−
π

=δ   (29) 

as was discussed in detail in [3]. One can use the expansion in Equation 
(27), possibly regulated as in Equation (28), to prove the completeness of 
the basis, while operating strictly in terms of real objects on or near the 
unit circle. Here is how this can be done.  

Proof 1.2. 

If we assume that an arbitrary integrable real function ( )θ/v  on the 

unit circle is given, which is such that its scalar products with all the 
elements of the basis are zero, then we have the infinite set of equations 

( ) ,0=θ/θ∫
π

π−
vd  

( ) ( ) ,0cos =θ/θθ∫
π

π−
vd k  

( ) ( ) ,0sin =θ/θθ∫
π

π−
vd k  (30) 

for all { }.,,3,2,1 ∞∈ …k  We may therefore construct an infinite linear 

combination of all these equations, with the coefficients carefully chosen 
as shown below, involving an arbitrary parameter 1θ  in the interval 
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[ ]ππ− ,  and an auxiliary strictly positive real variable ,1<ρ  where the 

right-hand side is still zero, 

( ) ( ) ( ) ( )θ/θθ



 θ

π
ρ+θ/θ




π ∫∑∫

π

π−

∞

=

π

π−
vdvd kkk

k

coscos1
2
1

1
1

 

( ) ( ) ( ) ⇒=θ/θθ



 θ

π
ρ+ ∫∑

π

π−

∞

=

0sinsin1
1

1
vd kkk

k
 

( ) ( ) ( ) ( )[ ] ( ) .0sinsincoscos1
2
1

11
1

=θ/












θθ+θθρ
π

+
π

θ ∑∫
∞

=

π

π−
vd kkkkk

k
 (31) 

Since the expression within curly brackets in this last integral is now seen 
to be the regulated expansion of ( )1θ−θδ  in the Fourier basis, shown in 
Equation (28), we may therefore take the ( )−→ρ 1  limit and write that 

( ) ( ) .01 =θ/θ−θθδ∫
π

π−
vd   (32) 

Finally, using the rules of manipulation of the delta “function”, when and 
where ( )θ/v  is continuous, which it therefore must be almost everywhere, 
we have 

( ) .01 =θ/v   (33) 

Since 1θ  is an arbitrary value of ,θ  we conclude that ( )θ/v  is zero 
everywhere. This completes the second version of the proof of Theorem 1, 
which is valid for the vector space of all integrable real functions defined 
on the unit circle, regardless of whether or not they can be obtained from 
an inner analytic function.  

Note that, in a sense, this method of proof of the completeness of the 
Fourier basis is a little more limited than the direct proof using the 
analytic structure within the open unit disk, because we must assume 
during the argument that  ( )θ/v  is continuous almost everywhere. 
However, since this hypothesis does get confirmed a posteriori by the 
result obtained, this is not a true limitation. 
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On the other hand, this second proof is less limited than the first one 
because in this case the vector space of functions for which one shows that 
the basis is complete is the space of integrable real functions without 
removable singularities defined on the interval [ ],, ππ−  with no reference 

to whether or not these functions can be obtained as the ( )−→ρ 1  limits of 

inner analytic functions. 

In fact, by establishing the completeness of the Fourier basis without 
any recourse to the ( )−→ρ 1  limit for the real functions, as a corollary of 

this second proof we have shown that there is no integrable real function 
on the unit circle, other that the identically zero real function, which 
corresponds to the identically zero inner analytic function. As a 
consequence of this, there is no integrable real function defined on the 
unit circle that cannot be represented by an unique inner analytic 
function. 

5. Notes on the Convergence Problem 

In this paper we have made the deliberate choice of not discussing the 
question of the convergence of Fourier series in any amount of detail, that 
is, we have not discussed any of the many existing so-called Fourier 
theorems. The reason for this is that we believe that this would constitute 
a rather long and complex discussion, best left for a separate paper. 
Instead, we have focused our attention on the summation rule given in 
Equation (12), according to which all Fourier series of integrable real 
functions, without any further restrictions, can be added up in such a way 
that one is able to recover the functions from their Fourier coefficients, 
even if the Fourier series themselves diverge. However, we may make a 
few comments about the issue of convergence, without going too far afield 
in that subject, in order to exhibit the relation between our complex 
analytic structure and the convergence problem. 
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First of all, let us recall that, as was shown in [1], the real function 
( )θf  is equal almost everywhere to the real part of the corresponding 

inner analytic function ( ),zw  taken in the ( )−→ρ 1  limit, and also that, as 

we have shown in Section 2 of this paper, the Fourier series of ( )θf  is 

given by the real part of the Taylor series ( )zS  of ( )zw  in that same limit. 

Therefore, it is clearly apparent that, as was already noted in Section 2, 
the problem of the convergence of real Fourier series is completely 
identified with the problem of the convergence of the corresponding 
complex power series on the unit circle, including the cases in which it is 
the rim of their maximum disks of convergence. Whatever is established 
for one type of series is also valid for the other. As was also noted in 
Section 2, the convergence properties on the unit circle will depend on the 
existence and nature of the singularities of ( )zw  on that circle. 

One way to discuss the issue of convergence is to observe that the 
summation rule given in Equation (12) involves two limits, one being the 
series summation limit and the other being the ( )−→ρ 1  limit from the 

interior of the unit disk to the unit circle. What has been shown so far in 
this series of papers is that if one takes the series summation limit first, 
and only after that the ( )−→ρ 1  limit, then it is always possible to recover 

the real function from its Fourier coefficients. It is therefore immediately 
apparent that the statement that the Fourier series converges over the 
unit circle is equivalent to the statement that the order of these two limits 
can be inverted. In fact, by first taking the ( )−→ρ 1  limit one obtains the 

usual Fourier series over the unit circle, and if one is then able to take the 
series summation limit, then that series converges to the corresponding 
real function. 

The general problem of deciding under what conditions the order of 
the two limits can be inverted is not a simple one. However, it is not too 
difficult to use our analytic structure to write the partial sums of the 
Fourier series in terms of real integrals which are similar to the Dirichlet 
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integrals usually involved in some of the Fourier theorems. This can then 
be used as the starting point for further discussions of the convergence 
problem, including in particular discussions establishing the connection of 
the analytic structure with specific Fourier theorems. In order to do this, 
let ( )θf  be an integrable real function on [ ]ππ− ,  and let the real numbers 

,,0 kαα  and ,kβ  for { },,,3,2,1 ∞∈ …k  be its Fourier coefficients. We 

may define the complex coefficients 0c  and kc  shown in Equation (5), and 

thus construct the corresponding inner analytic function ( )zw  within the 

open unit disk, using the power series ( )zS  given in Equation (6), which, 

as was shown in [1], always converges for .1<z  The partial sums of the 

first N terms of this series are given by 

( ) ,
1

0

k
k

k

zczS
N

N ∑
−

=

=   (34) 

a complex sequence which, for ,1<z  we already know to converge to 

( )zw  in the ∞→N  limit. Note however that, since ( )zSN  is in fact an 

analytic function over the whole complex plane, this expression itself can 
be consistently considered for all z, and in particular for z on the unit 
circle, where .1=z  Note also that the function ( )zw  may have 

singularities on the unit circle, but that these must be integrable ones, at 
least along that circle. In addition to this, the complex coefficients kc  may 

be written as integrals involving ( ),zw  with the use of the Cauchy integral 

formulas, 

( ) ,2
1

1+π
=

kk
z

zwdzc
C

ı

  (35) 

where C can be taken as a circle centered at the origin, with radius .1≤ρ  

The reason why we may include the case 1=ρ  here is that, as was shown 

in [1], as a function of ρ  the expression above for kc  is not only constant 

within the open unit disk, but also continuous from within at the unit 
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circle. In this way the coefficients kc  may be written back in terms of the 

inner analytic function ( ).zw  If we substitute this expression for kc  back 

in the partial sums of the series we get 

( ) ( )
1

1

1
1

1

0
2
1

+

−

=
π

= ∑ k
k

k z
zwdzzzS

C

N

N 
ı

 

( ) ,2
1

1

1

01
1

1
k

k








π
= ∑

−

=
z
z

z
zwdz

N

C

ı

 (36) 

where we must have .11 ≤z  The sum is now a finite geometric 

progression, so that we have 

( ) ( ) ( )
( )1

1
1
1

1 1
1

2
1

zz
zz

z
zwdzzS

N

CN −
−

π
= 

ı
 

( ) ( )
( )

.22
1

11

1
1

1
1

1
zzz

zwdzz
zz

zwdz NC

N

C −π
−

−π
= 

ıı
 (37) 

A careful discussion of this formula is now in order. There are two 
relevant cases to consider. In the first case we see that, if we have that 

,1 zz >  then in the first term above we obtain the expression of the 

Cauchy integral formula for ( ),zw  which then allows us to write an 

explicit expression for the remainder of the complex power series after one 
adds up its first N terms, 

( ) ( ) ( )zSzwzR NN −=  

( )
( )

,2 11

1
1

zzz
zwdzz

NC

N

−π
= 

ı
 (38) 

where .11 ≤< zz  This expression of the remainder in closed form, an 

expression which, as one can easily show, goes to zero in the ∞→N  
limit, is what makes it easy to discuss the convergence of complex power 
series. However, this expression does not give us an equivalent expression 
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for the remainder of the Fourier series, because this would require us to 
make ,11 == zz  which is not allowed by the strict inequality ,1zz <  a 

restriction which is due to the use of the Cauchy integral formulas. In the 
second case we observe that, if we have that ,1 zz <  then the first term 

in Equation (37) is simply zero, and therefore we get a modified expression 
for the partial sums of the series, 

( ) ( )
( )

,2 11

1
1

zzz
zwdzzzS NC

N
N

−π
−= 
ı

  (39) 

where .1zz >  Note that in this case we are unable to write an explicit 

expression in closed form for the remainder of the series, a fact which 
seems to be related to the remarkable difficulty in finding a necessary and 
sufficient condition for the convergence of Fourier series. Since z may have 
any complex value in this expression, we may now make ( )θρ= ıexpz  

with ,1=ρ  as well as ( ),exp 111 θρ= ız  and thus write the integral 

explicitly in terms of the variable 1θ  on the circle of radius ,1ρ  

( ) ( )
( )θθθ

θπ

π−

θ

−ρρ

θρ
ρθ

π
−=θ ∫ ııı

ı
ı

ı
ı eee

wedeS NN

N
N 11

1

11

11
11

,
2,1  

( ) ( )
( ) .,

2
1

1
1

1

11
11

1
θ−θ

θ−θπ

π−− −ρ

θρ
θ

πρ
−= ∫ ı

ı

e
wed N

N  (40) 

Making θ−θ=θ∆ 1  we have 

( ) ( ) .,
2

1,1
1

11
11

1
θ∆−

θ∆−
π

π−− −ρ

θρ
θ

πρ
−=θ ∫ ı

ı

e
wedS N

NN  (41) 

In order to be able to write explicitly the real and imaginary parts of the 
partial sums, we must now rationalize this expression, 
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( ) ( ) ( )
( ) ( )θ∆θ∆−

θ∆
θ∆−

π

π−− −ρ−ρ

−ρθρ
θ

πρ
−=θ ∫ ıı

ı
ı

ee
ewedS N
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111
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( ) ( ) θ∆−−
π

π−−
θρθ

πρ
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1111
1
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2

1 N
N ewd ı  

( )
.

cos21 1
2
1

2
1

2

θ∆ρ−ρ+

ρ−
×

θ∆−θ∆ ıı ee  (42) 

The expression can be somewhat simplified if we write most things in 
terms of ,2θ∆  as well as in terms of ,211 −= NN  

( ) ( ) ( )[ ]111111
1

,,
2

1,1 θρ+θρθ
πρ

=θ ∫
π

π−−
vudS NN ı  

( ) ( )[ ]θ∆−θ∆× 11 sincos NN ı   

( ) ( ) ( ) ( )
( ) ( )

.
2sin41

2sin12cos1
2

1
2

1

11
θ∆ρ+ρ−

θ∆ρ++θ∆ρ−
×

ı   (43) 

In this context, a Fourier theorem is one which states sufficient conditions 
on ( )θf  under which it follows that the real part of the corresponding 

sequence of partial sums ( )θ,1NS  converges in the ∞→N  limit, after 

one takes the 11 →ρ  limit, so that the integral is written over the unit 

circle. In any circumstances in which one managed to calculate these 
integrals explicitly in terms of ,1ρ  for ,11 <ρ  one would then be able to 

consider taking the 11 →ρ  limit of the resulting expression. However, 

despite the facts that ( ) ( )1,1 θ=θ uf  and that ( ) ( ),,1 1θ=θ vg  almost 

everywhere over the unit circle, as well as the fact that these are 
integrable real functions, we cannot simply take the 11 →ρ  limit of this 

expression as it stands, because it was derived under the hypothesis that 
,1zz >  and therefore that ,1ρ>ρ  which at this point implies the strict 

inequality .1 1ρ>  We may however put 11 =ρ  in the integrand simply in 
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order to simplify the integrals, so as to exhibit their structure more 
clearly. If one does that one obtains 

( ) ( )[ ] ( )[ ] ( )[ ]
( ) ,2sin

21cos21sin
111 θ∆

θ∆−+θ∆−
θ+θθ∫

π

π−

NNgfd ıı  (44) 

which clearly reduces to Dirichlet integrals and other similar integrals. A 
more complete discussion of the issue of convergence would require 
considerable development of the ideas and structures involved in these 
arguments. It is currently not entirely clear how useful the analytic 
structure within the open unit disk can be in regards to proving known 
Fourier theorems or discovering new ones. 

6. Extension of the Theory 

Up to this point we have been examining only the Fourier theory of 
integrable real functions. In addition to this, a small extension of the 
theory has already been considered when we wrote the Fourier expansion 
of the Dirac delta “function” in Equations (27) and (28) of Section 4, with 
the help of the summation rule given in Equation (12). This “function” has 
in common with the integrable real functions the fact that its Fourier 
coefficients kα  and kβ  are limited when we take the limit .∞→k  The 

same is true for the corresponding complex Taylor coefficients kc  in either 

case. However, the correspondence between real Fourier coefficients and 
complex Taylor coefficients given by the relations in Equation (5) can be 
generalized, independently of any concerns about the behaviour of these 
coefficients when ,∞→k  and independently of any concerns about the 

convergence of the corresponding series. 

We will now discuss the extension of the Fourier theory beyond the 
realm of integrable real functions. One way to look at this, which is 
probably the most general possible way, is to simply consider the set of all 
inner analytic functions. Given any inner analytic function ( )zw  and its 

complex Taylor series around the origin, which is therefore convergent 
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within the open unit disk, and irrespective of whether or not ( )zw  

corresponds to an integrable real function, one can define a corresponding 
real Fourier series on the unit circle. In all such cases, the issues of 
convergence of the resulting Fourier series are then completely identified 
with the corresponding issues for the Taylor series restricted to the unit 
circle, which is often the border of its maximum disk of convergence. 
Important examples which are not related to integrable real functions are 
the cases of the Dirac delta “function” and of its derivatives of all orders, 
which were discussed in detail in [3]. 

Another way to look at this issue is through the properties of the sets 
of complex coefficients kc  of the Taylor series. Given any set of complex 

coefficients ,kc  regardless of whether or not they follow from a known 

inner analytic function, one can construct both a complex power series 
( )zS  and the corresponding real coefficients kα  and ,kβ  using the 

relations in Equations (5) and (6). In many cases the Fourier series 
generated by these real coefficients will not converge, even if the complex 
power series converges to an inner analytic function within the open unit 
disk. However, if the complex power series is indeed convergent on that 
disk, then one can discuss whether or not a real object can be defined on 
the unit circle, through the ( )−→ρ 1  limit from the open unit disk, for 

example using the summation rule for Fourier series given in Equation 
(12). 

If we examine that summation rule, it is apparent that it will work for 
much more than just integrable real functions, which always have 
bounded Fourier coefficients. For example, one may have unbounded 
Fourier coefficients kα  and ,kβ  such as those of the n-th derivative of the 

delta “function”, which diverge to infinity as the power nk  when ,∞→k  

and still have a well-defined inner analytic function, as was shown in 
detail in [3]. In fact, one can show that the summation rule can be used for 
all sets of Fourier coefficients that do not diverge exponentially fast with 
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.k  In order to develop this idea, let us first define a very general condition 
on the sequences of complex coefficients that guarantees that the 
corresponding power series are convergent within the open unit disk, and 
thus converge to inner analytic functions. 

Definition 1 (Exponentially bounded coefficients). 

Given an arbitrary ordered set of complex coefficients ,ka  for 

{ },,,3,2,1,0 ∞∈ …k  if they satisfy the condition that 

,0lim =−
∞→

k
kk

Cea   (45) 

for all real ,0>C  then we say that the sequence of coefficients ka  is 

exponentially bounded. 

What this means is that ka  may or may not go to zero as ,∞→k  may 

approach a non-zero complex number, and may even diverge to infinity as 
,∞→k  so long as it does not do so exponentially fast. This includes 

therefore not only the sequences of complex Taylor coefficients 
corresponding to all possible convergent Fourier series, but many 
sequences that correspond to Fourier series that diverge almost 
everywhere. Also, it not only includes the sequences of complex Taylor 
coefficients corresponding to all possible integrable real functions, but 
many sequences of coefficients that cannot be obtained at all from a real 
function, such as those associated to the Dirac delta “function” and its 
derivatives of arbitrarily high orders, as was shown in [3]. We see 
therefore that this is a very weak condition on the complex sequence of 
coefficients .ka  

Before we proceed to the extension of the Fourier theory, let us 
establish a preliminary result, which can be understood as a property of 
the sequences of complex coefficients ka  which satisfy the condition stated 

in Definition 1. We will show that the condition expressed in Equation (45) 
implies an infinite collection of other similar conditions involving the 

∞→k  limit, that express modified bounds on these sequences of 
coefficients. 
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Property 1.1. If the sequence of complex coefficients ka  is 

exponentially bounded, then we also have that 

,0lim =−
∞→

k
kk
k Cpea   (46) 

for all real 0>C  and for all real powers .0>p  

This is just a formalization of the well-known fact that the negative-
exponent real exponential function of k  goes to zero faster than any 
positive real power of k  goes to infinity, as .∞→k  In order to prove this, 
we observe that for 0>k  we may write the function of k  on the left-hand 
side of Equation (46) as 

( ) .ln kk
k

k
k k

CpCp eeaea −− =   (47) 

Note that this is a positive real quantity. Recalling the properties of the 
real logarithm function, we now observe that, given an arbitrary real 
number ,0>A  there is always a sufficiently large finite value mk  of k  

above which ( ) .ln kk A<  Due to this we may write, for all ,mkk >  

,kk
k

k
k k

CpACp eeaea −− <   (48) 

since the exponential with a strictly positive real exponent is a 
monotonically increasing function. If we now choose ( ),2pCA =  which 

we may do because this value is positive and not zero, we get that, for all 
,mkk >  

kk
k

k
k k

CCCp eeaea −− < 2  

.2k
k

Cea −=   (49) 

According to our hypothesis about the coefficients ,ka  the ∞→k  limit of 

the expression in the right-hand side is zero for any strictly positive value 
of ,2CC =′  so that taking the ∞→k  limit we establish our preliminary 

result, 
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,0lim =−
∞→

k
kk
k Cpea   (50) 

for all real 0>C  and all real .0>p  Therefore, we have established this 

property. 

Let us now show that the condition that the sequence of complex 
coefficients kc  in Equation (5) is exponentially bounded is equivalent to 

the condition that the sequences of real coefficients kα  and kβ  are both 

exponentially bounded. First, if we assume that the sequences kα  and kβ  

are both exponentially bounded, and since from Equation (5) we have that 

,22
kkk β+α=c   (51) 

it follows at once that 

( ) ( )22limlim k
k

k
kk

k
kk

CCC eeec −−
∞→

−
∞→

β+α=  

 
22

limlim 




 β+





 α= −

∞→
−

∞→
k

kk
k

kk
CC ee  

 ,0=  (52) 

since both limits in the right-hand side are zero, thus establishing that the 
sequence kc  is exponentially bounded. Second, if we assume that the 

sequence kc  is exponentially bounded, and since from Equation (5) we 

have that 

  22
kkk β+α=c  

⇒α≥ k  

,kk
k

k
CC eec −− α≥  (53) 
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taking the ∞→k  limit and using the assumed property of the sequence 
of coefficients kc  it follows that 

⇒α≥ −
∞→

−
∞→

k
kk

k
kk

CC eec limlim  

⇒α≥ −
∞→

k
kk

Celim0  

,0lim =α −
∞→

k
kk

Ce  (54) 

thus establishing that the sequence kα  is exponentially bounded. Clearly, 

an identical argument can be made for the sequence .kβ  This establishes 

that the statement that the sequence of complex coefficients kc  is 

exponentially bounded is equivalent to the statement that the sequences 
of real coefficients kα  and kβ  are both exponentially bounded. 

Let us now prove the following theorem about the convergence of the 
power series constructed out of a given arbitrary sequence of complex 
coefficients .kc  

Theorem 2. If the sequence of complex coefficients ,kc  for 

{ },,,3,2,1,0 ∞∈ …k  is exponentially bounded, then the power series 

constructed from this sequence of coefficients converges within the open 
unit disk. 

Given the arbitrary sequence of complex coefficients ,kc  we may 

construct the complex power series in the complex z plane, just as we did 
in [1], 

( ) .
0

k
k

k

zczS ∑
∞

=

=  (55) 

We will first show that, if the sequence of coefficients kc  is exponentially 

bounded, then this series is absolutely convergent inside the open unit 
disk, which then implies that it is simply convergent there. 



COMPLEX ANALYSIS OF REAL FUNCTIONS … 133

Proof 2.1.  

In order to prove that ( )zS  is absolutely convergent, we consider the 

real power series ( )zS  of the absolute values of the terms of that series, 

which we write as 

( ) k
k

k

ρ= ∑
∞

=

czS
0

 

 ( ).ln

0

ρ
∞

=
∑= k

k
k

ec  (56) 

Since 1<ρ  inside the open unit disk, the logarithm shown is strictly 

negative, and we may put ( ) C−=ρln  with real .0>C  We can now see 

that, according to our hypothesis about the coefficients ,kc  the terms of 

this series go to zero as ,∞→k  

( ) ,
0

k
k

k

CeczS −
∞

=
∑=   (57) 

since C is real and strictly positive. In order to establish the convergence 
of this real series, we write 

( ) .2

2

1
0

k

k k
k

k

CecczS
−∞

=
∑+=   (58) 

According to the property expressed in Equation (46), with ,2=p  the 
numerator shown above goes to zero as ,∞→k  and therefore above a 
sufficiently large value mk  of k  it is less that one, so that we may write that 

( ) 2

2

10 k

k k
k

kk

k
k

k
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The first term on the right-hand side is a finite sum and therefore is finite, 
and the second term can be bounded from above by a convergent 
asymptotic integral on ,k  so that we have 

( ) 2
0

1
k
k

k

k
k

k

k

deczS
m

m
C ∫∑

∞
−

=

+<  

[∞−

=
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1

0
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k
k

k

k

k

+= −

=
∑  (60) 

This last expression is therefore a finite upper bound for all the partial 

sums of the series ( ).zS  It follows that ( ),zS  which is a real sum of 

positive terms, so that its partial sums form a monotonically increasing 
real sequence which is now found to be bounded from above, is therefore 
convergent. It then follows that ( )zS  is absolutely convergent and therefore 

convergent. Since this is valid for all ,1<ρ  we may conclude that ( )zS  

converges on the open unit disk. This completes the proof of Theorem 2. 

Since the series ( )zS  considered above is a convergent power series 

within the open unit disk, it converges to an analytic function ( )zw  in that 

domain, which is therefore an inner analytic function. We therefore 
conclude that, if the sequence of complex coefficients kc  in Equation (5) is 

exponentially bounded, then it is the set of Taylor coefficients of an inner 
analytic function. It now follows that, if the corresponding Fourier 
coefficients kα  and kβ  are both exponentially bounded, then the 

corresponding complex coefficients kc  are also exponentially bounded, and 

therefore the corresponding Fourier series can be regulated by the use of 
the summation rule in Equation (12). Unless the Fourier coefficients go to 
zero as ,∞→k  the Fourier series on the unit circle is sure to diverge 
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almost everywhere. One can then consider defining the corresponding real 
object on the unit circle using the ( )−→ρ 1  limit from the open unit disk, 

for example through the use of the summation rule for the Fourier series, 
given in Equation (12). 

In this way the Fourier theory of integrable real functions on the unit 
circle can be extended to a much larger set of real objects, including for 
example all the singular distributions discussed in [3], as well as the 
examples of non-integrable real functions mentioned in that paper. In fact, 
this extension of the Fourier theory includes a large class of non- 
integrable real functions, as will be shown in the fourth paper of this 
series. In this extended Fourier theory the real objects can be considered 
as representable directly by their sequences of Fourier coefficients, even 
when the corresponding Fourier series diverge. All operations involving 
these divergent Fourier series can be mapped to absolutely and uniformly 
convergent series and analytic operations within the open unit disk, 
whose results are then taken to the unit circle through the use of the 

( )−→ρ 1  limit. In many simple cases the mere values of the real objects 

on the unit circle will be recovered in this way, and in other more abstract 
cases global properties of the real objects may be obtained in this way, 
such as in the case of the Dirac delta “function” and its derivatives of all 
orders, as was discussed in detail in [3]. 

7. Conclusions and Outlook 

We have shown that the complex-analytic structure within the unit 
disk of the complex plane established in a previous paper [1], which leads 
to a close and deep relationship between integrable real functions on the 
unit circle and inner analytic functions within the unit disk centered at 
the origin of the complex plane, includes the whole structure of the 
Fourier theory of integrable real functions. This fact leads to the definition 
of a very general and powerful summation rule for Fourier series, which 
allows one to still use and manipulate in a consistent way divergent 
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Fourier series, even when they are explicitly and strongly divergent. The 
connection of the complex-analytic structure with the usual Fourier 
theorems was exhibited. 

The Fourier theory was then extended to include all the inner analytic 
functions associated to singular Schwartz distributions, which were 
discussed in detail in another previous paper [3], in which the discussion 
of the complex-analytic structure was generalized to include those 
singular distributions. In fact, the Fourier theory can be extended to 
essentially the whole space of inner analytic functions. This includes at 
least some non-integrable real functions, as was pointed out in [3]. The 
generalization to a much wider class of non-integrable real functions will 
be tackled in a future paper. 

As part of this process of extension, we introduced the concept of an 
exponentially bounded sequence of complex coefficients ,kc  and proved 

that any such sequence is the set of Taylor coefficients of some inner 
analytic function. As interesting open question is whether or not the 
reverse of this statement is true, that is, whether or not the criterion that 
the sequences of complex coefficients of the power series be exponentially 
bounded includes all possible inner analytic functions. At this time this 
seems rather unlikely, and in that case the problem poses itself of what 
more general condition on the coefficients could cover the whole space of 
inner analytic functions. 

We believe that the results presented here establish a new perspective 
for the study of the Fourier theory of real functions and related objects. It 
provides a simple and complete account of all the mathematical structures 
involved, as well as of all the main results of that theory, including in 
particular a simple and solid proof of the completeness of the basis. Due to 
this, it might also constitute a simpler and more efficient way to teach the 
subject. 
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Appendix A: Scalar Product for Inner Analytic Functions 

Given two inner analytic functions ( )zw1  and ( ),2 zw  we consider the 

complex contour integral over the circle 0C  of radius ,0ρ  with ,10 0 <ρ<  

given by 

( ) ( ) ( ).1
2
1

2121
0

zwzwzdzww
C

∗
π

= 
ı

 (61) 

Since the integrand in this expression is not analytic, the integral depends 
on the circuit, and therefore on .0ρ  Therefore, what we have here is in 

fact a one-parameter family of integrals. We will show that for each value 
of 0ρ  this integral defines a scalar product within the space of inner 

analytic functions, which induces in that space a positive-definite norm. If 
we write the integral in terms of the integration variable ,θ  with constant 

,0ρ  we get for this scalar product 

( ) ( ) ( ).,,2
1

020121 θρθρθ
π

= ∗
π

π−∫ wwdww  (62) 

If we now make both ( )zw1  and ( )zw2  equal to ( ) ( ) ( ),,, θρ+θρ= vuzw ı  

we get 

( ) 2www =  

 ( ) 2
0,2

1 θρθ
π

= ∫
π

π−
wd  

 [ ( ) ( )]θρ+θρθ
π

= ∫
π

π−
,,2

1
0

2
0

2 vud  

 ,0≥  (63) 

which is a manifestly real and positive quantity, that is zero if and only if 
( ) 0,0 =θρw  for all ,θ  which in turn is equivalent to ( ) 0, =θρw  for all θ  

and all ρ  within the open unit disk, because all zeros of an analytic 
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function must be isolated, unless it is the identically zero function. 
Therefore, for each value of the parameter 0ρ  the real quantity w  is a 

positive-definite norm on the space of all inner analytic functions which, 
as was observed in [1], forms a vector space over the field of complex 
numbers. That vector space is thus seen to constitute a complex Hilbert 
space, with this scalar product and the associated positive-definite norm. 

We can also see from the equation above that the scalar product and 
the norm reduce naturally to the corresponding definitions for the real 
functions ( )θ,1u  and ( )θ,1v  on the unit circle, when we take the 

( )−→ρ 10  limit, thus establishing a close correspondence between these 

two identical real Hilbert spaces on the unit circle and the complex Hilbert 
space on the unit disk. In addition to this, for any value of 0ρ  within the 

open interval ( )1,0  we also have a pair of identical real Hilbert spaces 

with the real functions ( )θρ ,0u  and ( )θρ ,0v  on the circle of radius .0ρ  

We may now show that the Taylor basis of functions around the origin, 
which is complete to generate the whole space of inner analytic functions, 
and which consists of the set of non-negative powers 

{ }{ },,,3,2,1,0, ∞∈ …kkz  (64) 

is in fact an orthogonal basis according to this definition of the scalar 

product. If we make ( ) ( ) 1
11

k
k zzwzw ==  and ( ) ( ) ,2

22
k

k zzwzw ==  we 

get 

( ) ( ) 21
21 2

1 kk
kk zzdww

∗π
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π
= ∫  

 .2
1 2121

0
θθ−π

π−

+ θ
π

ρ= ∫ kkkk ıı eed  (65) 

Using now the first result shown in Equation (18) we obtain the 
orthogonality relation for the Taylor basis, 
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( ) .21
21

21 ,0 kk
kk

kk δρ= +ww   (66) 

Since the integer powers are analytic on the whole complex plane, there is 
no obstruction to taking the ( )−→ρ 10  limit, and thus we see that in this 

case the Taylor basis is not only orthogonal, but also normalized, 

( ) ,2121 ,kkkk δ=ww   (67) 

with 1=kw  for all ,k  where the scalar product is now defined on the 

unit circle. If we write the inner analytic functions in terms of their Taylor 
series around the origin, 
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we obtain for the scalar product, since we may always integrate 
convergent power series term-by-term, 
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where we identified the scalar product ( )21 kk ww  and then used the 

orthogonality relations of the Taylor basis. So long as ,10 <ρ  and so long 

as k,1c  and k,2c  are exponentially bounded, this series converges 

exponentially fast. We may also write the corresponding expression for the 
norm, if we make kkk ccc == ,2,1  and ( ) ( ) ( ),21 zwzwzw ==  

( )www =2  

,22
0

0
k

k

k

cρ= ∑
∞

=

 (70) 

with the same conditions for the convergence of the series. In all this 
structure, if we take the ( )−→ρ 10  limit, the scalar product and the norm 

may in general diverge, unlike what happens in the case of the elements 
of the Taylor basis. However, so long as 10 <ρ  all the inner analytic 

functions have finite norms and finite scalar products with one another. In 
some cases, it may be possible to determine the values of these quantities 
on the unit circle using the ( )−→ρ 10  limit, even if the corresponding 

series expressions written directly on the unit circle diverge. 

Perhaps the best way to characterize this structure is as a one-
parameter family of pairs of identical real Hilbert spaces, one associated 
to the real parts and another associated to the imaginary parts of the 
inner analytic functions, where the parameter is the radius 0ρ  of each 

circle within the unit disk, which are connected to each other by a process 
of analytic continuation. For each value of 0ρ  within the open interval 

( ),1,0  there is a one-to-one mapping between the inner analytic functions 

on the open unit disk and the real functions obtained as the real parts of 
these inner analytic function restricted to the circle of radius .0ρ  This 

one-to-one mapping preserves the scalar product and the norm, as they 
are defined within each space. This fact is still true even in the ( )−→ρ 10  
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limit, although in that case not every real object at the unit circle, 
resulting from the limit, is a normal real function, and although in many 
cases the norms and scalar products may diverge in the limit. 

Note that the integral defining the scalar product of the inner analytic 
functions is a one-dimensional integral over the circle of radius ,0ρ  

despite the fact that each complex inner analytic function consist of a pair 
of real functions of two variables. However, this is a natural characteristic 
of the scalar product in this context, since it is a well-known fact that an 
analytic function is completely determined on a two-dimensional region of 
the complex plane by its values only at a one-dimensional boundary of 
that region. In this way, although only a one-dimensional restriction of the 
inner analytic function is explicitly taken into account in the integral over 
the circle of radius 0ρ  that defines the scalar product, that restriction still 

includes implicitly the whole structure of the inner analytic function 
within the corresponding disk of radius .0ρ  Therefore, it is perhaps 

arguable that the most natural definition of the scalar product is that 
associated to the choice ,10 =ρ  despite the convergence issues that this 

choice may involve. 


