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Abstract 

A complex-analytic structure within the unit disk of the complex plane is 
presented. It can be used to represent and analyze a large class of real 
functions. It is shown that any integrable real function can be obtained by 
means of the restriction of an analytic function to the unit circle, including 
functions which are non-differentiable, discontinuous or unbounded. An explicit 
construction of the analytic functions from the corresponding real functions is 
given. The complex-analytic structure can be understood as an universal 
regulator for analytic operations on real functions. 

1. Introduction 

In this paper, we will exhibit a mathematical structure, based on 
certain analytic functions within the unit circle of the complex plane, that 
can be used to represent and analyze a very wide class of real functions. 
These include analytic and non-analytic integrable real functions, as well 
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as unbounded integrable real functions. All these objects will be 
interpreted as parts of a larger complex-analytic structure, within which 
they can be treated and manipulated in a robust and unified way. 

In order to assemble the mathematical structure a set of 
mathematical objects must be introduced, and their properties 
established. This will be done in Section 2, in which all the eight 
necessary definitions will be given, and all the corresponding properties 
will be stated and proved. The objects to be defined are elements within 
complex analysis [1], and include a general scheme for the classification 
of all possible singularities of analytic functions, as well as the concept of 
infinite integral-differential chains of functions. 

As a first and important application of this complex-analytic 
structure, in Section 3 we will establish the relation between the 
complex-analytic structure and integrable real functions. There we will 
show that every integrable real function defined within a finite interval 
corresponds to an inner analytic function and can be obtained by means 
of the restriction of the real part of that analytic function to the unit 
circle of the complex plane. 

This is the first of a series of papers. The discussion of some parts 
and aspects of this line of work will be postponed to forthcoming papers, 
in order to keep each paper within a reasonable length. In the second 
paper of the series we will extend the complex-analytic structure 
presented in this paper, to include the whole space of singular Schwartz 
distributions, also known as generalized real functions. 

In the third paper of the series we will show that the whole Fourier 
theory of integrable real functions is contained within that same 
complex-analytic structure. We will show that this structure induces a 
very general and powerful summation rule for Fourier series, that can be 
used to add up Fourier series in a consistent way, even when they are 
explicitly and strongly divergent. The complex-analytic structure will 
then allow us to extend the Fourier theory beyond the realm of integrable 
real functions, with the use of that summation rule. 
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In the fourth paper of the series we will show that one can include in 
the same complex-analytic structure a large class of non-integrable real 
functions, among those that are locally integrable almost everywhere. We 
will see that the complex-analytic structure allows us to associate to each 
such function a definite set of Fourier coefficients, despite the fact that 
the functions are not integrable on the unit circle. There are also other 
applications of the structure discussed here, for example, in the two-
dimensional Dirichlet problem in partial differential equations, a 
discussion of which will be given in the fifth paper of the series. 

The material contained in this paper is a development, 
reorganization and extension of some of the material found, sometimes 
still in rather rudimentary form, in the papers [2-6]. 

2. Definitions and Properties 

Here we will introduce the definitions and basic properties of some 
objects and structures which are not usually discussed in complex 
analysis [1], and which we will use in the subsequent sections. Consider 
then the unit circle centered at the origin of the complex plane. Its 
interior is the open unit disk we will often refer to along the paper. Any 
reference to the unit disk or to the unit circle should always be 
understood to refer to those centered at the origin. 

Definition 1 (Inner analytic functions). 

A complex function ( )zw  which is analytic in the open unit disk will 

be named an inner analytic function. We will consider the set of all such 
functions. We will also consider the subset of such functions that have 
the additional property that ( ) ,00 =w  which we will name proper inner 

analytic functions. 

Note, in passing, that the set of all inner analytic functions forms a 
vector space over the field of complex numbers, and so does the subset of 
all proper inner analytic functions. 
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The focus of this study will be the set of real objects which are 
obtained from the real parts of these inner analytic functions when we 
take the limit from the open unit disk to its boundary, that is, to the unit 
circle. Specifically, if we describe the complex plane with polar 
coordinates ( ),, θρ  then an arbitrary inner analytic function can be 

written as 

( ) ( ) ( ),,, θρ+θρ= vuzw ı   (1) 

where ı  is the imaginary unit, and we consider the set of real objects 
( )θf  obtained from the set of all inner analytic functions as the limits of 

their real parts, from the open unit disk to the unit circle, 

( )
( )

( ),,lim
1

θρ=θ
−→ρ

uf   (2) 

when and where such limits exist, or at least can be defined in a 
consistent way. 

Note that an inner analytic function may have any number of 
singularities on the unit circle, as well as in the region outside the unit 
circle. The concept of a singularity is the usual one in complex analysis, 
namely that a singular point is simply a point where the function fails to 
be analytic. The singularities on the unit circle will play a particularly 
important role in the complex-analytic structure to be presented in this 
paper. If any of these singularities turn out to be branch points, then we 
assume that the corresponding branch cuts extend outward from the unit 
circle, either out to infinity or connecting to some other singularity that 
may exist outside the open unit disk. 

Note also that the imaginary parts of the inner analytic functions do 
not generate an independent set of real objects, since the imaginary part 
( )θρ,v  of the inner analytic function ( )zw  is also the real part of the 

inner analytic function ( )zw  given by 

( ) ( ).zwzw ı−=   (3) 
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We thus see, however, that the inner analytic functions do organize the 
real functions in matched pairs, those originating from the real and 
imaginary parts of each inner analytic function. The two real functions 
forming such a pair may be described as mutually Fourier conjugate 
functions. Finally, we will assume that, at all singular points where the 
functions ( )zw  can still be defined by continuity, they have been so 

defined. 

In addition to establishing this correspondence between complex 
functions on the unit disk and real function of the unit circle, we will find 
it necessary to define analytic operations on the complex functions that 
correspond to the ordinary operations of differentiation and integration 
on the real functions. As will be shown in what follows, the next two 
definitions accomplish this. 

Definition 2 (Angular differentiation). 

Given an arbitrary inner analytic function ( ),zw  its angular 

derivative is defined by 

( ) ( ) .dz
zdwzzw ı=•   (4) 

The angular derivative of ( )zw  will be denoted by the shifted dot, as 

shown. The second angular derivative will be denoted by ( ),2 zw •  and so 

on. 

Note that this definition has been tailored in order for the following 
property to hold. 

Property 2.1. In terms of the variables ( ),, θρ  angular differentiation 

is equivalent to partial differentiation with respect to ,θ  taken at 

constant .ρ  
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Writing ( ),exp θρ= ız  and considering the partial derivative of z with 

respect to ,θ  we have 

( ) ( )
θ∂

∂

ρ
ρ=

θ
θ• zw

e
ezw

ı
ı

ı
ı 1  

  ( ) ( ) ,,,
θ∂
θρ∂

+
θ∂
θρ∂

=
vu ı  (5) 

which establishes this property. 

Note that by construction we always have that ( ) ,00 =•w  so that we 

may say that the operation of angular differentiation projects the space of 
inner analytic functions onto the space of proper inner analytic functions. 
We may now prove an important property of the angular derivative. 

Property 2.2. The angular derivative of an inner analytic function is 
also an inner analytic function. 

Let us recall that the derivative of an analytic function always exists 
and is also analytic, in the same domain of analyticity of the original 
function. Since the constant function ( ) ı≡zw  and the identity function 

( ) zzw ≡  are analytic in the whole complex plane, and since the product 

of analytic functions is also an analytic function, in their common domain 
of analyticity, it follows at once that the angular derivative of an inner 
analytic function is an inner analytic function as well, which establishes 
this property. 

In the other words, the operation of angular differentiation stays 

within the space of inner analytic functions. Note that, since ( ) ,00 =•w  

angular differentiation always results in proper inner analytic functions, 
and therefore that this operation also stays within the space of proper 
inner analytic functions. 
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Definition 3 (Angular integration). 

Given an arbitrary inner analytic function ( ),zw  its angular 

primitive is defined by 

( ) ( ) ( ) ,0
0

1
z

wzwzdzw
z

′
−′′−= ∫•− ı   (6) 

where the integral is taken along any simple curve from 0 to z contained 
within the open unit disk. Since the integrand is analytic inside the open 
unit disk, including at the origin, as we will see shortly while proving 
Property 3.2, due to the Cauchy-Goursat theorem the integral does not 
depend on the curve along which it is taken. The angular primitive will 
also be denoted by a shifted dot, this time preceded by a negative integer, 
as indicated above. 

Let us prove that the apparent singularity of the integrand at 0=z  
is in fact a removable singularity, so that the integrand can be defined at 
the origin by continuity, thus producing a function which is continuous 
and well defined there. If we simply take the 0→z  limit of the 
integrand we get 

( ) ( ) ( ),00lim
0 dz

dw
z

wzw
z

=−
→

 (7) 

since this limit is the very definition of the derivative of ( )zw  at .0=z  

Since ( )zw  is an inner analytic function, and is thus analytic in the open 

unit disk, it is differentiable at the origin, so that this limit exists and is 
finite. Therefore, the integrand can be defined at the origin to have this 
particular value, so that it is continuous there. We assume that the 
integrand is so defined at ,0=z  as part of the definition of the angular 

primitive. 

Note that this definition has been tailored in order for the following 
property to hold. 
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Property 3.1. In terms of the variables ( ),, θρ  angular integration 

can be understood as integration with respect to ,θ  taken at constant ,ρ  

up to an integration constant. 

Given any point z in the open unit disk, and considering that we are 
free to choose the path of integration from 0 to z, we now choose to go 
first from the origin along the positive real axis, until we reach the radius 

,ρ  and then to go along an arc of circle of radius ,ρ  until we reach the 

angle ,θ  thus separating the integral in two. In the first integral, the 

variations of z are given by ,ρ= ddz  and in the second one they are given 

by ( ) .exp θθρ= ddz ıı  Note that as the integrand in Equation (6) we have 

the proper inner analytic function given by 

( ) ( ) ( )0wzwzwp −=  

 ( ) ( ),,, θρ+θρ= pp vu ı   (8) 

where ( ) .00 =pw  The integral in Equation (6) can therefore be written 

as 

( )
( ) ( )

θ′
θ′

θρ•−

ρ

θ′ρ
ρθ′−

ρ′
ρ′

ρ′−= ∫∫ ı
ıııı

e
w

d
w

dzw pp ,
e

0,
00

1  

 ( ) ( ) ( ),,,
00

θ′ρθ′+θ′ρθ′+ρ= ∫∫
θθ

pp vdudC ı  (9) 

where, in relation to the variable ,θ  the integral on ρ′  becomes the 

complex function ( ),ρC  which depends only on ρ  and not on ,θ  while the 

integral on θ′  determines primitives with respect to θ  of the real and 
imaginary parts of ( ),zwp  which thus establishes this property. 
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Note that by construction we always have that ( ) ,001 =•−w  so that 

we may say that the operation of angular integration projects the space of 
inner analytic functions onto the space of proper inner analytic functions. 
We may now establish an important property of the angular primitive. 

Property 3.2. The angular primitive of an inner analytic function is 
also an inner analytic function. 

In order to prove that ( )zw •−1  is an inner analytic function, we use 

the power-series representation of the inner analytic function ( ).zw  Since 

this function is analytic within the open unit disk, its Taylor series 
around ,0=z  which is given by 

( ) ( ) ,0
1

k
k

k
zcwzw ∑

∞

=

+=   (10) 

where ( ) !0 kk
k

′= wc  are the Taylor coefficients of ( )zw  with respect to 

the origin and where ( )zwk ′  is the k-th derivative of ( ),zw  converges 

within that disk. We therefore have for the integrand in Equation (6) the 
power-series representation 

( ) ( ) 1

1

0 −
∞

=
∑=− k

k
k

zcz
wzw  

.1
0

k
k

k
zc +

∞

=
∑=  (11) 

Since this series has the same set of coefficients as the convergent series 
of ( ),zw  it is equally convergent, as is implied, for example, by the ratio 

test. Note that this shows, in particular, that the integrand is analytic at 
.0=z  Being a convergent power series, this series can be integrated 

term by term, resulting in an equally convergent power series, so that we 
have for the angular primitive 
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( ) ( )kk
k

zczdzw
z

′′−= +

∞

=

•− ∑∫ 1
00

1 ı  

11

0
1

++
∞

=
+

−= ∑ kk

k
k

zc
ı  

.
1

kk

k
k

zc∑
∞

=

−= ı  (12) 

Due to the factors of ,1 k  when ∞→k  the coefficients of this series go to 

zero faster than those of the convergent Taylor series of ( ),zw  and thus it 

is also convergent, in the same domain of convergence of the Taylor series 
of ( ).zw  This confirms that this series is convergent within the open unit 

disk. Being a convergent power series, it converges to an analytic 

function, thus proving that ( )zw •−1  is analytic within the open unit disk. 

We may conclude therefore that the angular primitive of an inner 
analytic function is an inner analytic function as well, which establishes 
this property. 

In the other words, the operation of angular integration stays within 

the space of inner analytic functions. Note that, since ( ) ,001 =•−w  

angular integration always results in proper inner analytic functions, and 
therefore that this operation also stays within the space of proper inner 
analytic functions. 

Let us now prove that the operations of angular differentiation and of 
angular integration are inverse operations to one another. Strictly 
speaking, this is true within the subset of inner analytic functions that 
have the additional property that ( ) ,00 =w  that is, for proper inner 

analytic functions. Since any inner analytic function can be obtained 
from a proper inner analytic function by the mere addition of a constant, 
this is a very weak limitation. Let us consider then the space of proper 
inner analytic functions. 
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Property 3.3. The angular primitive of the angular derivative of a 
proper inner analytic function is that same proper inner analytic 
function. 

We simply compose the two operations in the required order, and 
calculate in a straightforward manner, merely using the fundamental 
theorem of the calculus, to get 

( ) ( ) ( )zzd
dwzdzd

dwzzd
dwzzzd

zz
′

′
′=





′
−′

′
′

′
′− ∫∫ 00

001 ııı  

( ) ( ),0wzw −=  (13) 

which is the original inner analytic function ( )zw  so long as ( ) ,00 =w  

that is, for proper inner analytic functions, thus establishing this 
property. 

Property 3.4. The angular derivative of the angular primitive of a 
proper inner analytic function is that same proper inner analytic 
function. 

We simply compose the two operations in the required order, and 
calculate in a straightforward manner, using this time the power-series 
representation of the inner analytic function ( ).zw  First integrating term 

by term and then differentiating term by term, both of which are allowed 
operations for convergent power series, we get 

( ) ( ) ( ) ( ) 1

100

0 −
∞

=

′′=
′
−′

′− ∑∫∫ k
k

k
zczddz

dzz
wzwzddz

dz
zz

ıı  

kk

k
k

zc
dz
dz ∑

∞

=

=
1

 

k
k

k
zc∑

∞

=

=
1

 

( ) ( ),0wzw −=  (14) 
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which is the original inner analytic function ( )zw  so long as ( ) ,00 =w  

that is, for proper inner analytic functions, thus establishing this 
property. 

With the use of the operations of angular differentiation and angular 
integration the space of proper inner analytic functions can now be 
organized as a collection of infinite discrete chains of functions, so that 
within each chain the functions are related to each other by either 
angular integrations or angular differentiations. This leads to the 
definition that follows. 

Definition 4 (Integral-differential chains). 

Starting from an arbitrary proper inner analytic function ( ),zw  also 

denoted as ( ),0 zw •  one proceeds in the differentiation direction to the 

functions ( ) ( ) ( ),,, 321 zwzwzw •••  etc., and in the integration direction to 

the functions ( ) ( ) ( ),,, 321 zwzwzw •−•−•−  etc. One thus produces an 

infinite chain of proper inner analytic functions such as 

( ) ( ) ( ) ( ) ( ) ( ) ( ){ },,,,,,,,, 3210123 …… zwzwzwzwzwzwzw •••••−•−•−   (15) 

in which angular differentiation takes one to the right and angular 
integration takes one to the left. We name such a structure an integral-
differential chain of proper inner analytic functions. We may refer to the 
proper inner analytic functions forming the chain as links in that chain. 

Note that all the functions in such a chain have exactly the same set 
of singular points on the unit circle, although the character of these 
singularities will change from function to function along the chain. Note 
also that each such integral-differential chain induces, by means of the 
real parts of their inner analytic functions, a corresponding chain of real 
objects over the unit circle, when and where the limits from the open unit 
disk to the unit circle exist, or can be consistently defined. Finally note 
that, given a singularity at a certain point on the unit circle, the integral-
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differential chain also induces a corresponding chain of singularities at 
that point. Let us now prove an important property of these chains, 
namely that they do not intersect each other. 

Property 4.1. Two different integral-differential chains of proper 
inner analytic functions cannot have a member-function in common. 

In order to prove this, we start by proving that, if two proper inner 
analytic functions have the same angular derivative, then they must be 
equal. If we have two such proper inner analytic functions ( )zw1  and 

( ),2 zw  the statement that they have the same angular derivative is 

expressed as 

( ) ( ) ⇒=− 012 zwdz
dzzwdz

dz ıı  

( ) ( )[ ] ⇒=− 012 zwzwdz
d  

( ) ( ) ,12 Czwzw =−  (16) 

where C is some complex constant, for all z within the open unit disk, 
including the case ,0=z  as one can see if one takes the limit 0→z  of 

the last equation above. However, since at 0=z  we have that ( ) 001 =w  

and ( ) ,002 =w  it then follows that ,0=C  so that we may conclude that 

( ) ( ),12 zwzw ≡   (17) 

thus proving the point. A similar result is valid for two proper inner 
analytic functions that have the same angular primitive. Since we have 
already shown that angular integration and angular differentiation are 
inverse operations to each other, we can prove this by simply noting the 
trivial fact that the operation of angular differentiation cannot produce 
two different results for the same function. Therefore, there cannot exist 
two different proper inner analytic functions whose angular primitives 
are one and the same function. 
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We may now conclude that two different integral-differential chains 
of proper inner analytic functions can never have a member-function in 
common, because this would mean that two different proper inner 
analytic functions would have either the same angular derivative or the 
same angular primitive, neither of which is possible. It follows that each 
proper inner analytic function appears in one and only one of these 
integral-differential chains, which establishes this property. 

Note, for future use, that there is a single integral-differential chain 
of proper inner analytic functions which is a constant chain, in the sense 
that all member-functions of the chain are equal, namely, the null chain, 
in which all members are the null function ( ) .0≡zw  It is easy to verify 

that the differential equation ( ) ( )zwzw =•  has no other inner analytic 

function as a solution. Note also that one may consider all the non-proper 
inner analytic functions ( )zw  which are related to a given proper inner 

analytic function ( )zwp  to also belong to the same link of the 

corresponding integral-differential chain. Since all such functions have 
the form 

( ) ( ),zwCzw p+=   (18) 

where C is a complex constant, this has the effect of associating to each 
link of the integral-differential chain of ( )zwp  a complex plane of 

constants C in which each point corresponds to a function ( ).zw  In 

particular, all constant functions are associated to the null function, and 
therefore to a complex plane of constants at each link of the null chain. 

We will now establish a general scheme for the classification of all 
possible singularities of inner analytic functions. This can be done for 
analytic functions in general, but we will do it here in a way that is 
particularly suited for our inner analytic functions. 
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Definition 5 (Classification of singularities: soft and hard). 

Let 1z  be a point on the unit circle. A singularity of an inner analytic 

function ( )zw  at 1z  is a soft singularity if the limit of ( )zw  to that point 

exists and is finite. Otherwise, it is a hard singularity. 

This is a complete classification of all possible singularities because, 
given a point of singularity, either the limit of the function to that point 
from within the open unit disk exists, or it does not. There is no third 
alternative, and therefore every singularity is either soft or hard. We 
may now establish the following important property of soft singularities. 

Property 5.1. A soft singularity of an inner analytic function ( )zw  at 

a point 1z  of the unit circle is necessarily an integrable one. 

In order to prove this first note that, since the singularity at 1z  is 

soft, the function ( )zw  is defined by continuity there, being therefore 

continuous at .1z  Consider now a curve contained within the open unit 

disk, that connects to 1z  along some direction, that has a finite length, 

and which is an otherwise arbitrary curve. We have at once that ( )zw  is 

analytic at all points on this curve except .1z  It follows that ( )zw  is 

continuous, and thus that ( )zw  is continuous, everywhere on this curve, 

including at .1z  Hence, the limits of ( )zw  to all points on this curve 

exist and are finite positive real numbers. 

We now note that this set of finite real numbers must be bounded, 
because otherwise there would be a hard singularity of ( )zw  somewhere 

within the open unit disk, where this function is in fact analytic. We 
conclude therefore that over the curve the function ( )zw  is a bounded 

continuous functions on a finite-length domain, which implies that ( )zw  

is integrable in that domain. Therefore, we may state that ( )zw  is 

integrable along arbitrary curves reaching the point 1z  from strictly 

within the open unit disk, which thus establishes this property. 
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We will now prove a couple of important further properties of the 
singularity classification, one for soft singularities and one for hard 
singularities. For this purpose, let 1z  be a point on the unit circle. Let us 

discuss first a property of soft singularities, which is related to angular 
integration. 

Property 5.2. If an inner analytic function ( )zw  has a soft 

singularity at ,1z  then the angular primitive of ( )zw  also has a soft 

singularity at that point. 

In order to prove this we use the fact that a soft singularity is 
necessarily an integrable one. We already know that if ( )zw  has a 

singularity at ,1z  then so does its angular primitive ( ).1 zw •−  If we now 

consider the angular primitive of ( )zw  at ,1zz =  we have 

( ) ( ) ( ) ,01

0
1

1
z

wzwdzzw
z −−= ∫•− ı   (19) 

where the integral can be taken over any simple curve within the open 
unit disk. We already know that the integrand is regular at the origin. 
Since the singularity of ( )zw  at 1z  is soft, that singularity is integrable 

along any simple curve within the open unit disk that goes from 0=z  to 
.1zz =  Therefore, it follows that this integral exists and is finite, and 

thus that ( )1
1 zw •−  exists and is finite. Since the function ( )zw •−1  is thus 

well defined at ,1z  as well as analytic around that point, it follows that 

the singularity of ( )zw •−1  at 1z  is also soft, which thus establishes this 

property. 

Let us discuss now a property of hard singularities, which is related 
to angular differentiation. 
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Property 5.3. If an inner analytic function ( )zw  has a hard 

singularity at ,1z  then the angular derivative of ( )zw  also has a hard 

singularity at that point. 

If ( )zw  has a hard singularity at ,1z  then it is not well defined there, 

implying that it is not continuous there, and therefore that it is also not 
differentiable there. This clearly implies that the angular derivative 

( )zw•  of ( ),zw  which we already know to also have a singularity at ,1z  is 

not well defined there as well. This in turn implies that the singularity of 

( )zw•  at 1z  must be a hard one. 

However, the simplest way to prove this property is to note that it 
follows from the previous one, that is, from Property 5.2. We can prove it 
by reductio ad absurdum, using the fact that, as we have already shown, 
the operations of angular differentiation and angular integration are 
inverse operations to each other. If we assume that ( )zw  has a hard 

singularity at 1z  and that ( )zw•  has a soft singularity at that point, then 

we have an inner analytic function, namely, ( ),zw•  that has a soft 

singularity at ,1z  while its angular primitive, namely, ( )zw  has a hard 

singularity at that point. However, according to Property 5.2, this is 
impossible, since angular integration always takes a soft singularity to 
another soft singularity. This establishes, therefore, that this property 
holds. 

The use of the operations of angular differentiation and of angular 
integration now leads to a refinement of our general classification of 
singularities. We will use them to assign to each singularity a degree of 
softness or a degree of hardness. Let ( )zw  be an inner analytic function 

and 1z  a point on the unit circle, and consider the following two 

definitions. 
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Definition 6 (Classification of singularities: gradation of soft 
singularities). 

Let us assume that ( )zw  has a soft singularity at .1z  If an arbitrarily 

large number of successive angular differentiations of ( )zw  always 

results in a singularity at 1z  which is still soft, then we say that the 

singularity of ( )zw  at 1z  is an infinitely soft singularity. Otherwise, if sn  

is the minimum number of angular differentiations that have to be 
applied to ( )zw  in order for the singularity at 1z  to become a hard one, 

then we define sn  as the degree of softness of the original singularity        

of ( )zw  at .1z  Therefore, a degree of softness is an integer 

{ }.,,3,2,1 ∞∈ …sn  

Definition 7 (Classification of singularities: gradation of hard 
singularities). 

Let us assume that ( )zw  has a hard singularity at .1z  If an 

arbitrarily large number of successive angular integrations of ( )zw  

always results in a singularity at 1z  which is still hard, then we say that 

the singularity of ( )zw  at 1z  is an infinitely hard singularity. Otherwise, 

if 1+hn  is the minimum number of angular integrations that have to be 

applied to ( )zw  in order for the singularity at 1z  to become a soft one, 

then we define hn  as the degree of hardness of the original singularity    

of ( )zw  at .1z  Therefore, a degree of hardness is an integer  

{ }.,,3,2,1,0 ∞∈ …hn  

In order to see that this establishes a complete classification of all 
possible singularities, let us examine all the possible outcomes when we 
apply angular differentiations and angular integrations to inner analytic 
functions. We already saw that, if we apply a angular integration to a 
soft singularity, then the result is always another soft singularity. 
Similarly we saw that, if we apply a angular differentiation to a hard 
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singularity, then the result is always another hard singularity. The two 
remaining alternatives are the application of a angular integration to a 
hard singularity, and the application of a angular differentiation to a soft 
singularity. In these two cases, the resulting singularity may be either 
soft or hard, and the remaining possibilities were dealt with in 
Definitions 6 and 7. Since this applies to all singularities in all integral-
differential chains, it applies to all possible singularities of all inner analytic 
functions. 

In some cases examples of this classification are well known. For 
instance, a simple example of an infinitely hard singularity is any 
essential singularity. Examples of infinitely soft singularities are harder 
to come by, and they are related to integrable real functions which are 
infinitely differentiable but not analytic. A simple example of a hard 
singularity with degree of hardness 1≥n  is a pole of order n. Examples 
of soft singularities are the square root, and products of strictly positive 
powers with the logarithm. 

If a singularity at a given singular point 1z  on the unit circle is either 

infinitely soft or infinitely hard, then the corresponding integral-
differential chain of singularities contains either only soft singularities or 
only hard singularities. If the singularity is neither infinitely soft nor 
infinitely hard, then at some point along the corresponding integral-
differential chain the character of the singularity changes, and from that 
point on the soft or hard character remains constant at the new value 
throughout the rest of the integral-differential chain in that direction. 
Therefore, in each integral-differential chain that does not consist of 
either only soft singularities or only hard singularities, there is a single 
transition between two functions on the chain where the character of the 
singularity changes. 

Let us examine in more detail the important intermediary case in 
which we assign to the singularity the degree of hardness zero, which we 
will also describe as that of a borderline hard singularity. 
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Definition 8 (Classification of singularities: borderline hard 
singularities). 

Given an inner analytic function ( )zw  and a point 1z  on the unit 

circle where it has a hard singularity, if a single angular integration of 

( )zw  results in a function ( )zw •−1  which has at 1z  a soft singularity, 

then we say that the original function ( )zw  has at 1z  a borderline hard 

singularity, that is, a hard singularity with degree of hardness zero. 

We establish now the following important property of borderline hard 
singularities. 

Property 8.1. A borderline hard singularity of an inner analytic 
function ( )zw  at 1z  must be an integrable one. 

This is so because the angular integration of ( )zw  produces an inner 

analytic function ( )zw •−1  which has at 1z  a soft singularity, and 

therefore is well defined at that point. Since the value of ( )zw •−1  at 1z  is 

given by an integral of ( )zw  along a curve reaching that point, that 

integral must therefore exist and result in a finite complex number. 
Therefore, the singularity of ( )zw  at 1z  must be an integrable one. We 

may thus conclude that all borderline hard singularities are integrable 
ones, which establishes this property. 

The transition between a borderline hard singularity and a soft 
singularity is therefore the single point of transition of the soft or hard 
character of the singularities along the corresponding integral-
differential chain. Starting from a borderline hard singularity, sn  

angular integrations produce a soft singularity with degree of softness 
,sn  and hn  angular differentiations produce a hard singularity with 

degree or hardness .hn  Note that a strictly positive degree of softness 

given by n can be identified with a negative degree of hardness given by 
−n, and vice-versa. A simple example of a borderline hard singularity is a 
logarithmic singularity. 
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Let us end this section with one more important property of hard 
singularities. 

Property 8.2. The borderline hard singularities are the only hard 
singularities that are integrable. 

If a hard singularity of ( )zw  at 1z  has a degree of hardness of one or 

larger, then by angular integration it is mapped to another hard 

singularity, the hard singularity of ( )zw •−1  at .1z  If the hard singularity 

of ( )zw  were integrable, then ( )zw •−1  would be well defined at ,1z  and 

therefore its singularity would be soft rather than hard. Since we know 

that the singularity of ( )zw •−1  is hard, it follows that the singularity of 

( )zw  cannot be integrable. In the other words, all hard singularities with 

strictly positive degrees of hardness are necessarily non-integrable 
singularities, which establishes this property. 

Note that the structure of the integral-differential chains establishes 
within the space of proper inner analytic functions what may be 
described as a structure of discrete fibers, in which the whole space is 
decomposed as a set of non-intersecting discrete linear structures. The 
same is then true for the corresponding real objects on the unit circle. 
One can then reconstruct the space of all inner analytic functions by 
associating to each link of each integral-differential chain a complex 
plane of constants to be added to the proper inner analytic function of 
that link, in order to get all the non-proper inner analytic functions 
associated to it. In terms of the corresponding real functions, this 
corresponds to the association to each link of a real line of real constants. 

3. Representation of Integrable Real Functions 

In this section, we will establish the relation between integrable real 
functions and inner analytic functions. When we discuss real functions in 
this paper, some properties will be globally assumed for these functions. 
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These are rather weak conditions to be imposed on these functions, that 
will be in force throughout this paper. It is to be understood, without any 
need for further comment, that these conditions are valid whenever real 
functions appear in the arguments. These weak conditions certainly hold 
for any integrable real functions that are obtained as restrictions of 
corresponding inner analytic functions to the unit circle. The most basic 
condition is that the real functions must be measurable in the sense of 
Lebesgue, with the usual Lebesgue measure [7, 8]. In essence, this is 
basic infrastructure to allow the functions to be integrable. 

In order to discuss the other global conditions, we must first discuss 
the classification of singularities of a real function. The concept of a 
singularity itself is the same as that for a complex function, namely, a 
point where the function is not analytic. The concept of a removable 
singularity is well-known for analytic functions in the complex plane. 
What we mean by a removable singularity in the case of real functions on 
the unit circle is a singular point such that both lateral limits of the 
function to that point exist and result in the same real value, but where 
the function has been arbitrarily defined to have some other real value. 
This is therefore a point were the function can be redefined by continuity, 
resulting in a continuous function at that point. The concepts of soft and 
hard singularities are carried in a straightforward way from the case of 
complex functions, discussed in Section 2, to that of real functions. The 
only difference is that the concept of the limit of the function to the point 
is now taken to be the real one, along the unit circle. 

The second global condition we will impose is that the functions have 
no removable singularities. Since they can be easily eliminated, these are 
trivial singularities, which we will simply rule out of our discussions in 
this paper. Although the presence of even a denumerably infinite set of 
such trivial singularities does not significantly affect the results to be 
presented here, their elimination does significantly simplify the 
arguments to be presented. It is for this reason, that is, for the sake of 
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simplicity, that we rule out such irrelevant singularities. In addition to 
this we will require, as our third an last global condition, that the 
number of hard singularities be finite, and hence that they be all isolated 
from one another. There will be no limitation on the number of soft 
singularities. In terms of the more immediate characteristics of the real 
functions, the relevant requirement is that the number of singular points 
where a given real function diverges to infinity be finite. 

In this section, we will prove the following theorem: 

Theorem 1. Every integrable real function defined on a finite interval 
can be represented by an inner analytic function, and can be recovered 
almost everywhere by means of the limit to the unit circle of the real part 
of that inner analytic function. 

Given an arbitrary real function defined within an arbitrary finite 
closed interval, it can always be mapped to a real function within the 
periodic interval [ ],, ππ−  by a simple linear change of variables, so it 

suffices for our purposes here to examine only the set of real functions 
( )θf  defined in this standard interval. The interval is then mapped onto 

the unit circle of the complex z plane. What happens to the values of the 
function at the two ends of the interval when one does this is irrelevant 
for our purposes here, but for definiteness we may think that one 
attributes to the function at the point 1−=z  the arithmetic average of 
the values of the function at the two ends of the periodic interval. The 
further requirements to be imposed on these functions are still quite 
weak, namely no more than that they be Lebesgue-integrable in the 
periodic interval, so that one can attribute to them a set of Fourier 
coefficients [9]. 

Since for Lebesgue-measurable functions defined within a compact 
interval plain integrability and absolute integrability are equivalent 
requirements [7, 8], we may assume that the functions are absolutely 
integrable, without loss of generality. Note that the functions do not have 
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to be differentiable or even continuous. They may also be unlimited, 
possibly diverging to infinity at some singular points, so long as they are 
absolutely integrable. This means, of course, that any hard singularities 
that they may have at isolated points must be integrable singularities, 
which we may thus characterize as borderline hard singularities, in a 
real sense of the term. This means, in turn, that although the functions 
may diverge to infinity at isolated points, their pairs of asymptotic 
integrals around these points must still exist and be finite real numbers. 

This in turn means that these borderline hard singularities must be 
surrounded by open intervals where there are no other borderline hard 
singularities, so that the asymptotic integrals around the singular points 
can be well defined and finite. It follows that any existing borderline hard 
singularities must be isolated from any other borderline hard 
singularities. Note that they do not really have to be isolated 
singularities in the usual, strict sense of complex analysis, which would 
require that they be isolated from all other singularities. All that is 
required is that the borderline hard singularities be isolated from each 
other. Hence the requirement that the number of hard singularities be 
finite. Note also that one can have any number of soft singularities, even 
an infinite number of them. As we pointed out before, in terms of the 
properties of the real functions ( ),θf  the important requirement is that 

the number of singular points on the unit circle where a given real 
function diverges to infinity be finite. 

Proof 1.1. 

With all these preliminaries stated, the first thing that we must do 
here is, given an arbitrary integrable real function ( )θf  defined within 

the periodic interval [ ],, ππ−  to build from it an analytic function ( )zw  

within the open unit disk of the complex plane. For this purpose, we will 
use the Fourier coefficients of the given real function. The Fourier 
coefficients [9] are defined by 
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( ),1
0 θθ

π
=α ∫

π

π−
fd  

( ) ( ),cos1 θθθ
π

=α ∫
π

π−
fd kk  

( ) ( ),sin1 θθθ
π

=β ∫
π

π−
fd kk  (20) 

where the set of functions ( ) ( ) { }{ },,,3,2,1,sin,cos,1 ∞∈θθ …kkk  

constitutes the Fourier basis of functions. Since ( )θf  is absolutely 

integrable, we have that 

( ) ,2 Mfd π=θθ∫
π

π−
  (21) 

where M is a positive and finite real number, namely, the average value, 
on the periodic interval [ ],, ππ−  of the absolute value of the function. If 

we use the triangle inequalities, it follows therefore that 0α  exists and 

that it satisfies 

( )θθ
π

≤α ∫
π

π−
fd1

0   (22) 

 ,2M≤  

that is, it is limited by 2M. Since the elements of the Fourier basis are all 
limited smooth functions, and using again the triangle inequalities, it 
now follows that all other Fourier coefficients also exist, and are also all 
limited by 2M, 

( ) ( )θθθ
π

≤α ∫
π

π−
fd kk cos1  

( )θθ
π

≤ ∫
π

π−
fd1  
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,2M≤  

 ( ) ( )θθθ
π

≤β ∫
π

π−
fd kk sin1  

( )θθ
π

≤ ∫
π

π−
fd1  

,2M≤  (23) 

for all ,k  since the absolute values of the sines and cosines are limited by 

one. Given that we have the coefficients kα  and ,kβ  the construction of 

the corresponding inner analytic function is now straightforward. We 
simply define the set of complex coefficients 

,2
1

00 α=c  

  ,kkk β−α= ıc  (24) 

for { }.,,3,2,1 ∞∈ …k  Note that these coefficients are all limited by 4M, 

since, using once more the triangle inequalities, we have 

00 2
1 α=c  

,M≤  

kkk β+α≤c  

.4M≤  (25) 

We now define a complex variable z associated to ,θ  using an auxiliary 

positive real variable ,0≥ρ  

,θρ= ıez   (26) 

where ( )θρ,  are polar coordinates in the complex z plane. We then 

construct the following power series around the origin ,0=z  
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( ) .
0

k
k

k
zczS ∑

∞

=

=   (27) 

According to the theorems of complex analysis [1], where this power 
series converges in the complex z plane, it converges absolutely and 
uniformly to an analytic function ( ).zw  It then follows that ( )zS  is in 

fact the Taylor series of ( )zw  around .0=z  We must now establish that 

this series converges within the open unit disk, whatever the values of 
the Fourier coefficients, given only that they are all limited by 4M. In 
order to do this we will first prove that the series ( )zS  is absolutely 

convergent, that is, we will establish the convergence of the 
corresponding series of absolute values 

( ) .
0

k
k

k
ρ= ∑

∞

=

czS   (28) 

Let us now consider the partial sums of this real series, and replace the 
absolute values of the coefficients by their common upper bound, 

( ) k
k

k
ρ= ∑

=

czS
n

n
0

 

,4
0

k

k
ρ≤ ∑

=

n
M  (29) 

where { }.,,3,2,1,0 ∞∈ …n  This is now the sum of a geometric 

progression, so that we have 

( ) .1
14

1

ρ−
ρ−≤

+n
n MzS   (30) 

For ,1<ρ  we may now take the ∞→n  limit of the right-hand side, 

without violating the inequality, so that we get the sum of a geometric 
series, 
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( ) .1
4

ρ−
≤ MzSn   (31) 

For ,1<ρ  the right-hand side is now a positive upper bound for all the 

partial sums of the series of absolute values. Therefore, since the 

sequence ( )zSn  of partial sums is a monotonically increasing sequence of 

real numbers which is bounded from above, it now follows that this real 
sequence is necessarily a convergent one. 

Therefore, the series of absolute values ( )zS  is convergent on the 

open unit disk ,1<ρ  which in turn implies that the original series ( )zS  

is absolutely convergent on that same disk. This then implies that the 
series ( )zS  is simply convergent on that same disk. Since ( )zS  is a 

convergent power series, it converges to an analytic function on the open 
unit disk, which we may now name ( ).zw  Since this is an analytic 

function within the open unit disk, it is an inner analytic function, the 
one that corresponds to the real function ( )θf  on the unit circle, 

( ) ( ).zwf →θ   (32) 

The coefficients kc  are now recognized as the Taylor coefficients of the 

inner analytic function ( )zw  with respect to the origin. We have therefore 

established that from any integrable real function ( )θf  one can define a 

unique corresponding inner analytic function ( ).zw  This completes the 

first part of the proof of Theorem 1. 

Proof 1.2. 

Next we must establish that ( )θf  can be recovered as the limit 

( ),1 −→ρ  from the open unit disk to the unit circle, of the real part of 

( ),zw  so that we can establish the complete correspondence between the 

integrable real function and the inner analytic function, 

( ) ( ).zwf ↔θ   (33) 
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We start by writing the coefficients kc  in terms of ( )zw  and discussing 

their dependence on .ρ  Since the complex coefficients kc  are the 

coefficients of the Taylor series of ( )zw  around ,0=z  the Cauchy 

integral formulas of complex analysis, for the function ( )zw  and its 

derivatives, written at 0=z  for the k-th derivative of ( ),zw  tell us that 

we have 

( ) ,2
1

1+π
=

kk
z

zwdzic
C
   (34) 

for all ,k  where C is any simple closed curve within the open unit disk 

that contains the origin, which we may now take as a circle centered at 
0=z  with radius ( ).1,0∈ρ  We now note that, since ( )zw  is analytic in 

the open unit disk, so that the explicit singularity at 0=z  is the only 
singularity of the integrand on that disk, by the Cauchy-Goursat theorem 
the integral is independent of ρ  within the open unit disk, and therefore 

so are the complex coefficients .kc  

It thus follows that the coefficients kc  are continuous functions of ρ  

inside the open unit disk, and therefore that their ( )−→ρ 1  limits exist 

and have those same constant values. Since we have the relations in 
Equation (24), the same is true for the Fourier coefficients kα  and .kβ  

On the other hand, by construction these are the same coefficients that 
were obtained from the real function ( )θf  on the unit circle, and we may 

thus conclude that the coefficients ,, kk αc  and ,kβ  for all ,k  are all 

constant with ρ  and therefore continuous functions of ρ  in the whole 

closed unit disk. This means that, at least in the case of the coefficients, 
the ( )−→ρ 1  limit can be taken trivially. 
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Let us now establish the fact that ( )θf  and the real part ( )θ,1u  of 

( )zw  at 1=ρ  have exactly the same set of Fourier coefficients. We 

consider first the case of the coefficient .0α  If we write the Cauchy 

integral formula in Equation (34) for the case ,0=k  we get 

( ) .2
1

0 z
zwdzic

C


π
=   (35) 

Recalling that 200 α=c  and writing the integral on the circle of radius 

ρ  using the integration variable ,θ  we get 

( ) ( )[ ].,,2
1

2
0 θρ+θρθ

π
=

α
∫
π

π−
vud ı  (36) 

Since 0α  is real, we conclude that the imaginary part in the right-hand 

side must be zero, and thus obtain 

( ),,1
0 θρθ

π
=α ∫

π

π−
ud   (37) 

thus proving that ,0α  which is the 0=k  Fourier coefficient of ( ),θf  is 

also the 0=k  Fourier coefficient of ( ),, θρu  for any value of ,ρ  and thus 

is, in particular, the 0=k  Fourier coefficient of ( ).,1 θu  This is so 

because, since the ( )−→ρ 1  limit of the coefficient 0α  can be taken, so 

can the limit of the integral in the right-hand side. Note that this shows, 
in particular, that ( )θ,1u  is an integrable real function. In order to 

extend the analysis of the coefficients to the case 0>k  we must first 
derive some preliminary relations. Consider therefore the following 
integral, on the same circuit C we used in Equation (34), 

( ) ,01 =−kzzdzw
C
   (38) 

with .0>k  The integral is zero by the Cauchy-Goursat theorem, since 
for 1≥k  the integrand is analytic on the whole open unit disk. As before 
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we write the integral on the circle of radius ρ  using the integration 

variable ,θ  to get 

( ) ( ) ( ) ( )[ ]θθρ−θθρθ∫
π

π−
kk sin,cos, vud  

( ) ( ) ( ) ( )[ ] .0cos,sin, =θθρ+θθρθ+ ∫
π

π−
kk vudı  (39) 

We are therefore left with the two identities involving ( )θρ,u  and 

( ),, θρv  

( ) ( ) ( ) ( ),sin,cos, θθρθ=θθρθ ∫∫
π

π−

π

π−
kk vdud  

( ) ( ) ( ) ( ),cos,sin, θθρθ−=θθρθ ∫∫
π

π−

π

π−
kk vdud  (40) 

which are valid for all 0>k  and for all ( ).1,0∈ρ  If we now write the 

integrals of the Cauchy integral formulas in Equation (34) explicitly as 
integrals on ,θ  we get 

( ) ( ) ( ) ( )[ ]




θθρ+θθρθ
π

ρ= ∫
π

π−

−
kk

k

k sin,cos,2 vudc  

( ) ( ) ( ) ( )[ ] .cos,sin,




θθρ+θθρ−θ+ ∫
π

π−
kk vudı  (41) 

Using the identities in Equation (40) in order to eliminate ( )θρ,v  in favor 

of ( )θρ,u  and recalling that ,kkk β−α= ıc  we get 

( ) ( ) ( ) ( )[ ],sin,cos, θθρ−θθρθ
π
ρ=β−α ∫

π

π−

−
kk

k

kk uud ıı  (42) 
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so that we have the relations for the Fourier coefficients, 

( ) ( ),cos, θθρθ
π
ρ=α ∫

π

π−

−
k

k

k ud  

( ) ( ).sin, θθρθ
π
ρ=β ∫

π

π−

−
k

k

k ud  (43) 

Since the ( )−→ρ 1  limits of the coefficients in the left-hand sides can be 

taken, so can the ( )−→ρ 1  limits of the integrals in the right-hand sides. 

Therefore, taking the limit we have for the Fourier coefficients, 

( ) ( ),cos,11 θθθ
π

=α ∫
π

π−
kk ud  

( ) ( ),sin,11 θθθ
π

=β ∫
π

π−
kk ud  (44) 

thus completing the proof that the real functions ( )θ,1u  and ( )θf  have 
exactly the same set of Fourier coefficients. Note, in passing, that due to 
the identities in Equation (40) these same coefficients can also be written 
in terms of ( ),,1 θv  

( ) ( ),sin,11 θθθ
π

=α ∫
π

π−
kk vd  

( ) ( ),cos,11 θθθ
π

−=β ∫
π

π−
kk vd  (45) 

in which the ( )θkcos  was exchanged for ( )θksin  and the ( )θksin  was 
exchanged for ( ).cos θ− k  In fact, this is one way to state that ( )θ,1u  and 
( )θ,1v  are two mutually Fourier-conjugate real functions. 

Let us now examine the limit ( )−→ρ 1  that allows us to recover from 

the real part ( )θρ,u  of the inner analytic function ( )zw  the original real 
function ( ).θf  We want to establish that we may state that 

( )
( )

( )θρ=θ
−→ρ

,lim
1

uf   (46) 
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almost everywhere. Let us prove that ( )θ,1u  and ( )θf  must coincide 

almost everywhere. Simply consider the real function ( )θg  given by 

( ) ( ) ( ),,1 θ−θ=θ fug   (47) 

where 

( )
( )

( ).,lim,1
1

θρ=θ
−→ρ

uu  (48) 

Since it is the difference of two integrable real functions, ( )θg  is itself an 

integrable real function. However, since the expression of the Fourier 
coefficients is linear on the functions, and since ( )θ,1u  and ( )θf  have 

exactly the same set of Fourier coefficients, it is clear that all the Fourier 
coefficients of ( )θg  are zero. Therefore, for the integrable real function 

( )θg  we have that 0=kc  for all ,k  and thus the inner analytic function 

that corresponds to ( )θg  is the identically null complex function 

( ) .0≡γ zw  This is an inner analytic function which is, in fact, analytic 

over the whole complex plane, and which, in particular, is zero over the 
unit circle, so that we have ( ) .0≡θg  Note, in particular, that the 

( )−→ρ 1  limits exist at all points of the unit circle in the case of the 

inner analytic function associated to ( ).θg  Since our argument is based 

on the Fourier coefficients kα  and ,kβ  which in turn are given by 

integrals involving these functions, we can only conclude that 

( )
( )

( ),,lim
1

θρ=θ
−→ρ

uf   (49) 

is valid almost everywhere over the unit circle. Therefore, we have 
concluded that the ( )−→ρ 1  limit of ( )zw  exists and that the limit of its 

real part ( )θρ,u  results in the values of ( )θf  almost everywhere. This 

concludes the proof of Theorem 1. 



JORGE L. DELYRA 48

Regarding the fact that the proof above is valid only almost 
everywhere, it is possible to characterize, up to a certain point, the set of 
points where the recovery of the real function ( )θf  may fail, using the 

character of the possible singularities of the corresponding inner analytic 
function ( ).zw  Wherever ( )zw  is either analytic or has only soft 

singularities on the unit circle, the ( )−→ρ 1  limit exists, and therefore 

the values of ( )θf  can be recovered. At points on the unit circle where 

( )θf  has hard singularities, ( )zw  necessarily also has hard singularities, 

and therefore the limit does not exist and thus the values of ( )θf  cannot 

be recovered. However, in this case this fact is irrelevant, since ( )θf  is 

not well defined at these points to begin with. In any case, by hypothesis 
there can be at most a finite number of such points, which therefore form 
a zero-measure set. 

Therefore, the only points where ( )θf  may exist but not be 

recoverable from the real part of ( )zw  are those singular points on the 

unit circle where ( )θf  has a soft singularity, in the real sense of the term, 

while ( )zw  has a hard singularity, in the complex sense of the term. In 

principle this is possible because the requirement for a singularity to be 
soft in the complex case is more restrictive than the corresponding 
requirement in the real case. For a singularity to be soft in the real case, 
it suffices that the limits of the function to the point exist and be the 
same only along two directions, coming from either side along the unit 
circle, but for the singularity to be soft in the complex case the limits 
must exist and be the same along all directions. 

It is indeed possible for a hard complex singularity on the unit circle 
to be so oriented that the limit exists along the two particular directions 
along the unit circle, but does not exist along other directions. For 
example, consider the rather pathological real function 
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( ) ,sin
2









θ
πθ=θf   (50) 

for 0<θ≤π−  and .0 π≤θ<  It is well-known that this function has an 
essential singularity at 0=θ  in the complex θ  plane, which is an 
infinitely hard singularity. However, if defined by continuity at 0=θ  the 
function is continuous there, and therefore the singularity at 0=θ  is a 
soft one in the real sense of the term. The function is also continuous at 
all other points on the unit circle. We now observe that, despite having 
an infinitely hard complex singularity at ,0=θ  this is a limited real 

function on a finite domain and therefore an integrable real function, 
which means that we may still construct an inner analytic function that 
corresponds to it. Presumably, this inner analytic function also has an 
essential singularity at the point ,1=z  which corresponds to 0=θ  on 

the unit circle. This fact would then prevent us from obtaining the value 
of the function at 0=θ  as the ( )−→ρ 1  limit of the real part of that 

inner analytic function. 

The mere fact that one can establish that there is a well defined inner 
analytic function for such a pathological real function is in itself rather 
unexpected and surprising. Furthermore, one can easily see that this is 
not the only example. One can also consider the related example, this 
time one in which the singularity is not soft in the real sense of the term, 

( ) ,sin
2









θ
π=θf   (51) 

which is still a limited real function on a finite domain and therefore an 
integrable real function, which again means that we may still construct 
an inner analytic function that corresponds to it. Many other variations 
of these examples can be constructed without too much difficulty. 
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Excluding all such exceptional cases, we may consider that the 
recovery of the real function ( )θf  as the ( )−→ρ 1  limit of the real part of 

the inner analytic function holds everywhere in the domain of definition 
of ( ),θf  that is, wherever it is well defined. In order to exclude all such 

exceptional cases, all we have to do is to exchange the condition that 
there be at most a finite number of hard singularities, in the real sense of 
the term, of the integrable real function ( ),θf  for the condition that there 

be at most a finite number of hard singularities with finite degrees of 
hardness, in the complex sense of the term, of the corresponding inner 
analytic function ( ).zw  

Once we have the inner analytic function that corresponds to a given 
integrable real function, we may consider the integral-differential chain 
to which it belongs. There are two particular cases that deserve mention 
here. One is that in which the inner analytic functions in the chain do not 
have any singularities at all on the unit circle, in which case the 
corresponding real functions are all analytic functions of θ  in the real 
sense of the term. The other is that in which the inner analytic functions 
in the chain have only infinitely soft singularities on the unit circle, in 
which case the corresponding real functions are all infinitely 
differentiable functions of ,θ  although they are not analytic. In this case, 

one can go indefinitely along the chain in either direction without any 
change in the soft character of the singularities. 

If, on the other hand, one does have borderline hard singularities or 
soft singularities with finite degrees of softness, then at some point along 
the chain there will be a transition to one or more hard singularities with 
strictly positive degrees of hardness, which do not necessarily correspond 
to integrable real functions. It can be shown that most of these 
singularities are instead associated to either singular distributions or 
non-integrable real functions. Their discussion will be postponed to the 
aforementioned forthcoming papers. 
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4. Behavior Under Analytic Operations 

Let us now discuss how the correspondence between inner analytic 
functions and integrable real functions behaves under the respective 
operations of differentiation and integration, that take us along the 
corresponding integral-differential chain. There are two issues here, one 
being the existence of the ( )−→ρ 1  limit at each point on the unit circle, 

the other being whether or not the correspondence between the real 
function ( )θf  and the inner analytic function ( ),zw  established by the 

construction of the inner analytic function from the integrable real 
function, and by the ( )−→ρ 1  limit of the real part of the inner analytic 

function, survives the operation unscathed. 

The existence of the limit ( )−→ρ 1  hinges on whether the point at 

issue is a singular point or not, and then on whether the singularity at 
the point is either soft or hard. If a point on the unit circle is not a 
singularity of the inner analytic function ( ),zw  then the ( )−→ρ 1  limit 

always exists at that point, no matter how many angular integrations or 
angular differentiations are performed on the inner analytic function, 
that is, the limit exists throughout the corresponding integral-differential 
chain. The same is true if the point is an infinitely soft singularity of 
( ).zw  On the other hand, if it is an infinitely hard singularity of ( ),zw  

then the limit at that point never exists, in the complex sense, 
throughout the integral-differential chain. Note, however, that in some 
cases the limit may still exist, in the real sense, along the unit circle. 

If the point on the unit circle is a soft singularity of ( )zw  with a finite 

degree of softness ,sn  then the ( )−→ρ 1  limit exists no matter how many 

angular integrations are performed, since the operation of angular 
integration takes soft singularities to other soft singularities. However, 
since the operation of angular differentiation may take soft singularities 
to hard singularities, the limit will only exist up to a certain number of 
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angular differentiations, which is given by .1−sn  Again, we note that in 

some cases the limit may still exist beyond this point, in the real sense, 
even if it does not exist in the complex sense. 

If the point on the unit circle is a hard singularity of ( )zw  with a 

finite degree of hardness ,hn  including zero, then the ( )−→ρ 1  limit does 

not exist in the complex sense, and will also fail to exist in that sense for 
any of the angular derivatives of ( ),zw  since the operation of angular 

differentiation takes hard singularities to other hard singularities. Once 
more we note that in some cases the limit may still exist in the real 
sense, even if it does not exist in the complex sense. However, since the 
operation of angular integration may take hard singularities to soft 
singularities, the limit will in fact exist after a certain number of angular 
integrations of ( ),zw  which is given by .1+hn  

Whatever the situation may be, if after a given set of analytic 
operations is performed there is at most a finite number of hard 
singularities, then the ( )−→ρ 1  limit exists almost everywhere, and 

therefore the corresponding real function can be recovered at almost all 
points on the unit circle. Note, by the way, that the same is true if there 
is a denumerably infinite number of hard singularities, so long as they 
are not densely distributed on the unit circle or any part of it, so that 
almost all of then can be isolated. 

The next question is whether or not the relation between the real 
function ( )θf  and the inner analytic function ( )zw  implies the 

corresponding relation between the corresponding functions after an 
operation of integration or differentiation is applied. This is always true 
from a strictly local point of view, since we have shown in Section 2 that 
the operation of angular differentiation on the open unit disk reduces to 
the operation of differentiation with respect to θ  on the unit circle, and 
that the operation of angular integration on the open unit disk reduces to 
the operation of integration with respect to θ  on the unit circle, up to an 
integration constant. 
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There are, however, some global concerns over the unit circle, since 
the operations of angular integration and of angular differentiation 
always result in proper inner analytic functions, and there is no 
corresponding property of the operations of integration and 
differentiation with respect to θ  on the unit circle. Note that the 
condition ( ) ,00 =w  which holds for a proper inner analytic function, is 

translated, on the unit circle, to the global condition that the 
corresponding real function ( )θf  have zero average value over that unit 

circle. This is so because ( ) 00 =w  is equivalent to ,00 =c  and therefore 

to .00 =α  However, according to the definition of the Fourier coefficients 

in Equation (20), the coefficient 20α  is equal to that average value. 

One way to examine this issue is to use the correspondence between 
the Taylor coefficients kc  of the inner analytic function ( )zw  and the 

Fourier coefficients kα  and kβ  of the integrable real function ( ),θf  which 

according to our construction of ( )zw  are related by the relations in 

Equation (24). Since we have that 

( ) ,
0

k
k

k

zczw ∑
∞

=

=   (52) 

it follows from the definition of angular differentiation that under that 
operation the coefficients kc  transform as 

,00 →c   

,kk kcc ı→   (53) 

for { },,,3,2,1 ∞∈ …k  and it also follows that from the definition of 

angular integration that under that operation they transform as 

,00 →c  

,kk k
cc ı−→  (54) 
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for { }.,,3,2,1 ∞∈ …k  If we now look at the Fourier coefficients, 

considering their definition in Equation (20), in the case ,0=k  we have 

that under differentiation 0α  transforms as 

( )θ′θ
π

→α ∫
π

π−
fd1

0  

( ),1 θ
π

= ∫
π

π−
df  (55) 

which is zero so long as ( )θf  is a continuous function, since we are 

integrating on a circle. Note that, if ( )θf  is not continuous, then ( )θ′f  is 

not even a well defined integrable real function, and we therefore cannot 
even write the integral, with what we know so far. In the case ,0>k  we 

have that under differentiation the Fourier coefficients transform as 

( ) ( )θθ′θ
π

→α ∫
π

π−
kk cos1 fd  

( ) ( )θθθ
π

= ∫
π

π−
kk sinfd  

,kk β=  

( ) ( )θθ′θ
π

→β ∫
π

π−
kk sin1 fd  

( ) ( )θθθ
π

−= ∫
π

π−
kk cosfd  

,kk α−=  (56) 

where we have integrated by parts, noting that the integrated terms are 
zero because we are integrating on a circle. We therefore have, so long as 
( )θf  is a continuous function, that 
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,00 →α  

( ),kkkk k β−α→β−α ııı   (57) 

for { },,,3,2,1 ∞∈ …k  which are, therefore, the same transformations 

undergone by .kc  In the case of integration operations, the change in 0α  

is indeterminate due to the presence of an arbitrary integration constant 
on θ  and, considering once more the definition of the Fourier coefficients 
in Equation (20), we have that for 0>k  the Fourier coefficients 
transform under integration as 

( ) ( )θθθ
π

→α ′−
π

π−∫ kk cos1 1fd  

( ) ( )θθθ
π

−= ∫
π

π−
k

k
sin1 fd  

,
k
kβ−=  

( ) ( )θθθ
π

→β ′−
π

π−∫ kk sin1 1fd  

( ) ( )θθθ
π

= ∫
π

π−
k

k
cos1 fd  

,
k
kα=  (58) 

where we have again integrated by parts, noting once more that the 
integrated terms are zero because we are integrating on a circle. We 
therefore have, so long as ( )θf  is an integrable function, and so long as 

one chooses the integration constant of the integration on θ  leading to 

( )θ′−1f  so that 0α  is mapped to zero, that 
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,00 →α  

( ),kkkk k
β−α−→β−α ııı   (59) 

for { },,,3,2,1 ∞∈ …k  which are, once more, the same transformations 

undergone by .kc  We therefore see that, from the point of view of the 

respective coefficients, the correspondence between the real function ( )θf  

and the inner analytic function ( )zw  survives the respective analytic 

operations, so long as the operations produce integrable real functions on 
the unit circle, and so long as one chooses appropriately the integration 
constant on .θ  

Let us discuss the situation in a little more detail, starting with the 
operation of integration. As we saw in Property 3.1 of Section 2, angular 
integration is translated, up to an integration constant, to integration 
with respect to θ  on the unit circle, when we take the ( )−→ρ 1  limit. In 

addition to this, angular integration never produces new hard 

singularities out of soft ones, so that the ( )−→ρ 1  limit giving ( )θ′−1f  

exists at all points where those giving ( )θf  exist. We see therefore that, 

so long as the integration constant is chosen so as to satisfy the condition 

that the function ( )θ′−1f  have zero average value over the unit circle, it 

follows that the correspondence between the real function ( )θf  and the 

inner analytic function ( )zw  implies the correspondence between the real 

function ( )θ′−1f  and the inner analytic function ( ) ,1•−zw  

( ) ( ) ⇒↔θ zwf  

( ) ( ).11 zwf •−′− ↔θ   (60) 

This is valid so long as ( )θf  is an integrable real function. Let us now 

discuss the case of the operation of differentiation. As we saw in Property 



COMPLEX ANALYSIS OF REAL FUNCTIONS … 57

2.1 of Section 2, angular differentiation corresponds to differentiation 
with respect to θ  on the unit circle, when we take the ( )−→ρ 1  limit. 

However, angular differentiation can produce new hard singularities out 
of soft ones, and can also produce non-integrable hard singularities out of 
borderline hard ones. Therefore, we may conclude only that, if all the 
singularities of ( )zw  are soft, which implies that ( )θf  is continuous, then 

the correspondence between the real function ( )θf  and the inner analytic 

function ( )zw  does imply the correspondence between the real function 

( )θ′f  and the inner analytic function ( ),zw•  

( ) ( ) ⇒↔θ zwf  

( ) ( ),zwf •↔θ′   (61) 

with the exception of the points where ( )θ′f  has hard singularities 

produced out of soft singularities of ( ).θf  Note, however, that this 

statement is true even if ( )zw•  has borderline hard singularities and 

therefore ( )θ′f  is not continuous. 

On the other hand, if ( )θf  is discontinuous at a finite set of 

borderline hard singularities of ( ),zw  then ( )θ′f  is not even well defined 

everywhere, by the usual definition of the derivative of a real function. In 

fact, if ( )zw  has borderline hard singularities then ( )zw•  has hard 

singularities with degrees of hardness equal to one, which are non-
integrable singularities, so that ( )θ′f  is not necessarily an integrable real 

function. The same is true if the inner analytic function ( )zw  has hard 

singularities with strictly positive degrees of hardness. The discussion of 
cases such as these will be given in the aforementioned forthcoming 
papers. 
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Given any inner analytic function that has at most a finite number of 
borderline hard singular points and no singularities harder than that, 
and the corresponding integral-differential chain, the results obtained 
here allow us to travel freely along the integration side of the chain, 
without damaging the correspondence between each inner analytic 
function and the corresponding real function. The part of the chain where 
this is valid is the part to the integration side starting from the link 
where all the singularities are either soft or at most borderline hard. 
What happens when one travels in the other direction along the chain, 
starting from this link, will be discussed in the aforementioned 
forthcoming papers. 

5. Conclusions and Outlook 

We have shown that there is a close and deep relationship between 
real functions and complex analytic functions in the unit disk centered at 
the origin of the complex plane. This close relation between real functions 
and complex analytic functions allows one to use the powerful and 
extremely well-known machinery of complex analysis to deal with the 
real functions in a very robust way, even if the real functions are very far 
from being analytic. For example, the ( )−→ρ 1  limit can be used to 

define the values of the functions or the values of their derivatives, at 
points where these quantities cannot be defined by purely real means. 
The concept of inner analytic functions played a central role in the 
analysis presented. The integral-differential chains of inner analytic 
functions, as well as the classification of singularities of these functions, 
which we introduced here, also played a significant role. 

One does not usually associate non-differentiable, discontinuous and 
unbounded real functions with single analytic functions. Therefore, it 
may come as a bit of a surprise that all integrable real functions are 
given by the real parts of certain inner analytic functions on the open 
unit disk when one approaches the unit circle. Note, however, that there 
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are many more inner analytic functions within the open unit disk than 
those that were examined here, generated by integrable real functions. 
This leads to extensions of the relationship between inner analytic 
functions and real functions or related objects on the unit circle, which 
will be tackled in the aforementioned forthcoming papers. 

One important limitation in the arguments presented here is that 
requiring that there be only a finite number of borderline hard 
singularities. It may be possible, perhaps, to lift this limitation, allowing 
for a denumerably infinite set of such integrable singularities. It is 
probably not possible, however, to allow for a densely distributed set of 
such singularities. Possibly, the limitation that the number of borderline 
hard singularities be finite may be exchanged for the limitation that the 
number of accumulation points of a denumerably infinite set of singular 
points with borderline hard singularities be finite. 

It is quite apparent that the complex-analytic structure presented 
here can be used to discuss the Fourier series of real functions, as well as 
other aspects of the structure of the Fourier theory of real functions. The 
study of the convergence of Fourier series was, in fact, the way in which 
this structure was first unveiled. Parts of the arguments that were 
presented can be seen to connect to the Fourier theory, such as the role 
played by the Fourier coefficients, and the sufficiency of these Fourier 
coefficients to represent the functions, which relates to the question of 
the completeness of the Fourier basis of functions. This is a rather 
extensive discussion, which will be presented in a forthcoming paper. 

It is interesting to note that the structure presented here may go 
some way towards explaining the rather remarkable fact that physicists 
usually operate with singular objects and divergent series in what may 
seem, from a mathematical perspective, a rather careless way, while very 
rarely getting into serious trouble while doing this. The fact that there is 
a robust underlying complex-analytic structure, that in fact explains how 
many such murky operations can in fact be rigorously justified, helps one 
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to understand the unexpected success of this way to operate within the 
mathematics used in physics applications. In the parlance of physics, one 
may say that the complex-analytic structure within the unit disk 
functions as a universal regulator for all real functions, and related 
singular objects, which are of interest in physics applications. 

We believe that the results presented here establish a new 
perspective for the analysis of real functions. The use of the theory of 
complex analytic functions makes it a rather deep and powerful point of 
view. Since complex analysis and analytic functions constitute such a 
powerful tool, with so many applications in almost all areas of 
mathematics and physics, it is to be hoped that other applications of the 
ideas explored here will in due time present themselves. 
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