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Abstract 

In the context of the complex-analytic structure within the unit disk centered at 
the origin of the complex plane, that was presented in a previous paper, we 
show that singular Schwartz distributions can be represented within that same 
structure, so long as one defines the limits involved in an appropriate way. In 
that previous paper, it was shown that essentially all integrable real functions 
can be represented within the complex-analytic structure. The infinite collection 
of singular objects which we analyze here can thus be represented side by side 
with those real functions, thus allowing all these objects to be treated in a 
unified way. 

1. Introduction 

In a previous paper [1], we introduced a certain complex-analytic 
structure within the unit disk of the complex plane, and showed that one 
can represent essentially all integrable real functions within that 
structure. In this paper, we will show that one can represent within the 
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same structure the singular objects known as distributions, loosely in the 
sense of the Schwartz theory of distributions [2, 3], which are also known 
as generalized real functions. All these objects will be interpreted as 
parts of this larger complex-analytic structure, within which they can be 
treated and manipulated in a robust and unified way. 

In Sections 2 and 3 we will establish the relation between the 
complex-analytic structure and the singular distributions. There we will 
show that one obtains these objects through the properties of certain 
limits to the unit circle, involving a particular set of inner analytic 
functions, which will be presented explicitly. Following what was shown 
in [1] for integrable real functions, each singular distribution will be 
associated to a corresponding inner analytic function. In fact, we will 
show that the entire space of all singular Schwartz distributions defined 
within a compact domain is contained within this complex-analytic 
structure. In Section 4 we will analyze a certain collection of integrable 
real functions which are closely related to the singular distributions, 
through the concept of infinite integral-differential chains of functions. 

For ease of reference, we include here a one-page synopsis of the 
complex-analytic structure introduced in [1]. It consists of certain 
elements within complex analysis [4], as well as of their main properties. 

Synopsis: The Complex-Analytic Structure 

An inner analytic function ( )zw  is simply a complex function which is 

analytic within the open unit disk. An inner analytic function that has 
the additional property that ( ) 00 =w  is a proper inner analytic function. 

The angular derivative of an inner analytic function is defined by 

( ) ( ) .dz
zdwzzw ı=•   (1) 
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By construction we have that ( ) ,00 =•w  for all ( ).zw  The angular 

primitive of an inner analytic function is defined by 

( ) ( ) ( ) .0
0

1
z

wzwzdzw
z

′
−′′−= ∫•− ı   (2) 

By construction we have that ( ) ,001 =
•−w  for all ( ).zw  In terms of a 

system of polar coordinates ( )θρ,  on the complex plane, these two 

analytic operations are equivalent to differentiation and integration with 
respect to ,θ  taken at constant .ρ  These two operations stay within the 

space of inner analytic functions, they also stay within the space of 
proper inner analytic functions, and they are the inverses of one another. 
Using these operations, and starting from any proper inner analytic 

function ( ),0 zw •  one constructs an infinite integral-differential chain of 

proper inner analytic functions, 

( ) ( ) ( ) ( ) ( ) ( ) ( ){ }.,,,,,,,, 3210123 "" zwzwzwzwzwzwzw •••••−•−•−   (3) 

Two different such integral-differential chains cannot ever intersect each 
other. There is a single integral-differential chain of proper inner analytic 
functions which is a constant chain, namely, the null chain, in which all 
members are the null function ( ) .0≡zw  

A general scheme for the classification of all possible singularities of 
inner analytic functions is established. A singularity of an inner analytic 
function ( )zw  at a point 1z  on the unit circle is a soft singularity if the 

limit of ( )zw  to that point exists and is finite. Otherwise, it is a hard 

singularity. Angular integration takes soft singularities to other soft 
singularities, and angular differentiation takes hard singularities to 
other hard singularities. 
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Gradations of softness and hardness are then established. A hard 
singularity that becomes a soft one by means of a single angular 
integration is a borderline hard singularity, with degree of hardness zero. 
The degree of softness of a soft singularity is the number of angular 
differentiations that result in a borderline hard singularity, and the 
degree of hardness of a hard singularity is the number of angular 
integrations that result in a borderline hard singularity. Singularities 
which are either soft or borderline hard are integrable ones. Hard 
singularities which are not borderline hard are non-integrable ones. 

Given an integrable real function ( )θf  on the unit circle, one can 

construct from it a unique corresponding inner analytic function ( ).zw  

Real functions are obtained through the ( )−→ρ 1  limit of the real and 

imaginary parts of each such inner analytic function and, in particular, 
the real function ( )θf  is obtained from the real part of ( )zw  in this limit. 

The pair of real functions obtained from the real and imaginary parts of 
one and the same inner analytic function are said to be mutually Fourier-
conjugate real functions. 

Singularities of real functions can be classified in a way which is 
analogous to the corresponding complex classification. Integrable real 
functions are typically associated with inner analytic functions that have 
singularities which are either soft or at most borderline hard. This ends 
our synopsis. 

When we discuss real functions in this paper, some properties will be 
globally assumed for these functions, just as was done in [1]. These are 
rather weak conditions to be imposed on these functions, that will be in 
force throughout this paper. It is to be understood, without any need for 
further comment, that these conditions are valid whenever real functions 
appear in the arguments. These weak conditions certainly hold for any 
integrable real functions that are obtained as restrictions of 
corresponding inner analytic functions to the unit circle. 
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The most basic condition is that the real functions must be 
measurable in the sense of Lebesgue, with the usual Lebesgue measure 
[5, 6]. The second global condition we will impose is that the functions 
have no removable singularities. The third and last global condition is 
that the number of hard singularities on the unit circle be finite, and 
hence that they be all isolated from one another. There will be no 
limitation on the number of soft singularities. 

The material contained in this paper is a development, 
reorganization and extension of some of the material found, sometimes 
still in rather rudimentary form, in the papers [7-11]. 

2. The Dirac Delta “Function” 

This is where we begin the discussion of inner analytic functions that 
have hard singularities with strictly positive degrees of hardness. Let us 
start by simply introducing a certain particular inner analytic function of 
z. If 1z  is a point on the unit circle, this function is defined as a very 

simple rational function of z, 

( ) .1
2
1,

1
1 zz

zzzw
−π

−
π

=δ  (4) 

This inner analytic function has a single point of singularity, which is a 
simple pole at .1z  This is a hard singularity with degree of hardness 

equal to one. Our objective here is to examine the properties of the real 
part ( )1,, θθρδu  of this inner analytic function, 

( ) ( ) ( ).,,,,, 111 θθρ+θθρ= δδδ vuzzw ı   (5) 

We will prove that in the ( )−→ρ 1  limit ( )1,, θθρδu  can be interpreted 

as a Schwartz distribution [2,3], namely, as the singular object known as 
the Dirac delta “function”, which we will denote by ( ).1θ−θδ  This object 

is also known as a generalized real function, since it is not really a real 
function in the usual sense of the term. In the Schwartz theory of 
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distributions this object plays the role of an integration kernel for a 
certain distribution. Note that ( )1, zzwδ  can, in fact, be written explicitly 

as a function of ρ  and .1θ−θ  Since we have that ( )θρ= ıexpz  and that 

( ),exp 11 θ= ız  we have at once that 

( )
( )

( ) .
1

1
2
1,

1

1
1

−ρ

ρ
π

−
π

=
θ−θ

θ−θ

δ ı

ı

e
ezzw  (6) 

The definition of the Dirac delta “function” is that it is a symbol for a 
limiting process, which satisfies certain conditions. In our case here the 
limiting process will be the limit ( )−→ρ 1  from the open unit disk to the 

unit circle. The limit of ( )1,, θθρδu  represents the delta “function” in the 

sense that it satisfies the conditions that follow. 

(1) The defining limit of ( )1θ−θδ  tends to zero when one takes the 

( )−→ρ 1  limit while keeping .1θ≠θ  

(2) The defining limit of ( )1θ−θδ  diverges to positive infinity when 

one takes the ( )−→ρ 1  limit, with .1θ=θ  

(3) In the ( )−→ρ 1  limit the integral 

( ) 11 =θ−θθδ∫ d
b

a
  (7) 

has the value shown, for any open interval ( )ba,  which contains the 

point .1θ  

(4) Given any continuous integrable function ( ),θg  in the ( )−→ρ 1  

limit, the integral 

( ) ( ) ( )11 θ=θ−θδθθ∫ ggd
b

a
  (8) 

has the value shown, for any open interval ( )ba,  which contains the 

point .1θ  
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This is the usual form of this condition, when it is formulated in 
strictly real terms. However, we will impose a slight additional 
restriction on the real functions ( ),θg  by assuming that the limit to the 

point 1z  on the unit circle that corresponds to ,1θ  of the corresponding 

inner analytic function ( ),zwγ  exists and is finite. This implies that 

( )zwγ  may have at 1z  a soft singularity, but not a hard singularity. 

Note that, although it is customary to list both separately, the third 
condition is in fact just a particular case of the fourth condition. It is also 
arguable that the second condition is not really necessary, because it is a 
consequence of the others. We may therefore consider that the only really 
essential conditions are the first and the fourth ones. 

The functions ( )θg  are sometimes named test functions within the 

Schwartz theory of distributions [2, 3]. The additional part of the fourth 
condition, that the limit to the point 1z  of the corresponding inner 

analytic function ( )zwγ  must exist and be finite, consists of a weak 

limitation on these test functions, and does not affect the definition of the 
singular distribution itself. This is certainly the case for our definition 
here, since we define this object through a definite and unique inner 
analytic function. 

In this section we will prove the following theorem. 

Theorem 1. The ( )−→ρ 1  limit of the real part of the inner analytic 

function ( )1, zzwδ  converges to the generalized function ( ).1θ−θδ  

Before we attempt to prove this theorem, our first task is to write 
explicitly the real and imaginary parts of ( )., 1zzwδ  In order to do this 

we must now rationalize it, 

( ) ( )
( ) ( )∗∗

∗∗

δ
−−

−
π

−
π

=
11

1
1

1
2
1,

zzzz
zzzzzw  

( ) ( )
( )

,
1cos2

sincos1
2
1

2

2

+θ∆ρ−ρ

θ∆ρ−θ∆ρ−ρ
π

−
π

=
ı  (9) 
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where .1θ−θ=θ∆  We must examine the real part of this function, 

( ) ( )[ ]
( ) ( )

.
cos21

cos1
2
1,, 21

θ∆ρ−+ρ

θ∆−ρρ
π

−
π

=θθρδu   (10) 

We are now ready to prove the theorem, which we will do by simply 
verifying all the properties of the Dirac delta “function”. 

Proof 1.1. If we take the limit ( ),1 −→ρ  under the assumption that 

,0≠θ∆  we get 

( )
( ) ( )

( )θ∆−
θ∆−

π
−

π
=θθρδ→ρ − cos22

cos11
2
1,,lim 11

u  

  ,0=  (11) 

which is the correct value for the case of the Dirac delta “function”. Thus 
we see that the first condition is satisfied. 

If, on the other hand, we calculate ( )1,, θθρδu  for 0=θ∆  and 1<ρ  

we obtain 

( ) ( )
( )2

11
1

11
2
1,,

−ρ

−ρρ
π

−
π

=θθρδu  

,1
1

2
1

−ρ
ρ

π
−

π
=  (12) 

which diverges to positive infinity as ( ),1 −→ρ  as it should in order to 

represent the singular Dirac delta “function”. This establishes that the 
second condition is satisfied. 
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We now calculate the real integral of ( )1,, θθρδu  over the circle of 
radius ,1<ρ  which is given by 

( ) ( )[ ]
( ) ( )








θ∆ρ−+ρ

θ∆−ρρ
−θρ

π
=θθρθρ ∫∫

π

π−
δ

π

π− cos21
cos212

1,, 21 dud  

( ) ( )
( ) ( )θ∆ρ−+ρ

ρ−
θ∆

π
ρ= ∫

π

π− cos21
1

2 2

2
d  

( ) ( )
[( ) ( )] ( )

,
cos21

1
4

1
2

2

θ∆−ρ+ρ
θ∆

π
ρ−

= ∫
π

π−
d  (13) 

since ( ) .θ=θ∆ dd  This real integral over θ∆  can be calculated by 
residues. We introduce an auxiliary complex variable ( ),exp θ∆λ=ξ ı  
which becomes simply ( )θ∆ıexp  on the unit circle .1=λ  We have 

( ),θ∆ξ=ξ dd ı  and so we may write the integral on the right-hand side as 

( )
[( ) ( )] ( ) [( ) ] ξ−ξ−ρρ+ξ

ξ=
θ∆−ρρ+

θ∆∫
π

π− 11
21

cos21
1

22 ı
dd

C
  

[( ) ]
,

11
12 22 ξ+ξρρ+−

ξ= d
C
ı  (14) 

where the integral is now over the unit circle C in the complex ξ  plane. 
The two roots of the quadratic polynomial on ξ  in the denominator are 
given by 

( ) ,1 ρ=ξ +  

( ) .ρ=ξ −   (15) 

Since ,1<ρ  only the simple pole corresponding to ( )−ξ  lies inside the 

integration contour, so we get for the integral 

[( ) ( )] ( )
( )

ρ−ξ
π=

θ∆−ρρ+
θ

ρ→ξ

π

π−∫ 1
1lim22

cos21
1

2 ııd  

( )
.

1
4 2ρ−

ρπ=  (16) 
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It follows that we have for the real integral in Equation (13) 

( ) ( )
( )2

2
1

1
44

1,,
ρ−

ρπ
π
ρ−

=θθρθρ δ
π

π−∫ ud  

,ρ=  (17) 

and thus we have that the integral is equal to 1 in the ( )−→ρ 1  limit. 

Once we have this result, and since according to the first condition the 
integrand goes to zero everywhere on the unit circle except at ,0=θ∆  
which is the same as ,1θ=θ  the integral can be changed to one over any 

open interval ( )ba,  on the unit circle containing the point ,1θ  without 

any change in its limiting value. This establishes that the third condition 
is satisfied. 

In order to establish the validity of the fourth and last condition, we 
consider an essentially arbitrary integrable real function ( ),θg  with the 

additional restriction that it be continuous at the point .1z  As was 

established in [1], it corresponds to an inner analytic function 

( ) ( ) ( ),,, θρ+θρ= γγγ vuzw ı   (18) 

where we also assume that ( )θg  is such that ( )zwγ  may have at 1z  a soft 

singularity, but not a hard singularity, so that its limit to 1z  exists. We 

now consider the following real integral over the circle of radius ,1<ρ  

( ) ( ) ( ) ( )[ ]
( ) ( )








θ∆ρ−+ρ

θ∆−ρρ−θρθρ
π

=θθρθρθρ γ
π

π−
δγ

π

π− ∫∫ cos21
cos21,2

1,,, 21 uduud  

( ) ( ) ( )
( ) ( )θ∆ρ−+ρ

ρ−
θρθ∆

π
ρ= γ

π

π−∫ cos21
1,2 2

2
ud  

( ) ( )
( )

[( ) ( )] ( )
,

cos21
,

4
1

2

2

θ∆−ρ+ρ

θρ
θ∆

π
ρ−

= γπ

π−∫
u

d  

 (19) 
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since ( ) .θ=θ∆ dd  This real integral over θ∆  can be calculated by 

residues, exactly like the one in Equation (13) which appeared before in 
the case of the third condition. The calculation is exactly the same except 
for the extra factor of ( )θργ ,u  to be taken into consideration when 

calculating the residue, so that we may write directly that 

( )
( )

[( ) ( )] ( )
( )

( )
ρ−ξ
θρ

π=
θ∆−ρ+ρ

θρ
θ∆ γ

ρ→ξ

γπ

π−∫ 1
,

lim22
cos21

,
2

uu
d ıı  

 
( )

( ).,lim
1

4 2 θρ
ρ−

ρπ= γρ→ξ
u  (20) 

Note now that since ( ),exp θ∆λ=ξ ı  and since we must take the limit 

,ρ→ξ  we in fact have that in that limit 

,ρ=λ θ∆ıe   (21) 

which implies that ρ=λ  and that ,0=θ∆  and therefore that .1θ=θ  

We must therefore write ( )θργ ,u  at the point given by ρ  and ,1θ  thus 

obtaining 

( )
( )

[( ) ( )] ( ) ( )
( ).,

1
4

cos21
,

122 θρ
ρ−

ρπ=
θ∆−ρ+ρ

θρ
θ∆ γ

γπ

π−∫ u
u

d  (22) 

It follows that we have for the real integral in Equation (19) 

( ) ( ) ( )
( )

( )12

2
1 ,

1
44

1,,, θρ
ρ−

ρπ
π
ρ−

=θθρθρθρ γδγ
π

π−∫ uuud  

( )., 1θρρ= γu  (23) 
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Finally, we may now take the ( )−→ρ 1  limit, since ( )zwγ  and thus 

( )θργ ,u  are well defined at 1z  in that limit, and thus obtain 

( )
( ) ( ) ( )111

,1,,,lim θ=θθρθρθρ γδγ
π

π−→ρ ∫−
uuud  

( )
( )

( ) ( )111
,1,,lim,1 θ=








θθρθθ⇒ γδ→ργ

π

π− −∫ uuud  

( )
( )

( ) ( ),,,lim 111
θ=








θθρθθ⇒ δ→ρ

π

π− −∫ gugd  (24) 

since ( )θργ ,u  converges to ( ),θg  in the ( )−→ρ 1  limit, almost 

everywhere on the unit circle. Just as before, once we have this result, 
and since according to the first condition the integrand goes to zero 
everywhere on the unit circle except at ,0=θ∆  which is the same as 

,1θ=θ  the integral can be changed to one over any open interval on the 

unit circle containing the point ,1θ  without any change in its value. This 

establishes that the fourth and last condition is satisfied. 

Having established all the properties, we may now write symbolically 
that 

( )
( )

( ).,,lim 111 θθρ=θ−θδ δ→ρ −
u   (25) 

This concludes the proof of Theorem 1. 

It is important to note that, when we adopt as the definition of the 
Dirac delta “function” the ( )−→ρ 1  limit of the real part of the inner 

analytic function ( ),, 1zzwδ  the limitations imposed on the test functions 

( )θg  and on the corresponding inner analytic functions ( )zwγ  become 

irrelevant. In fact, this definitions stands by itself, and is independent of 
any set of test functions. Given any integrable real function ( )θf  and the 
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corresponding inner analytic function ( )zw  with real part ( ),, θρu  we 

may always assemble the real integral over a circle of radius 1<ρ  

( ) ( ),,,, 1θθρθρθρ δ
π

π−∫ uud   (26) 

which is always well defined within the open unit disk. It then remains to 
be verified only whether or not the ( )−→ρ 1  limit of this integral exists, 

in order to define the corresponding integral 

( ) ( ).1θ−θδθθ∫
π

π−
fd   (27) 

This limit may exist for functions that do not satisfy the conditions 
imposed on the test functions. In fact, one can do this for the real part of 
any inner analytic function, regardless of whether or not it corresponds to 
an integrable inner analytic function, so long as the ( )−→ρ 1  limit of 

( )θρ,u  exists almost everywhere. Whenever the ( )−→ρ 1  limit of the 

integral exists, it defines the action of the delta “function” on that 
particular real object. 

It is also interesting to observe that the Dirac delta “function”, 
although it is not simply a conventional integrable real function, is in 
effect an integrable real object, even if it corresponds to an inner analytic 
functions that has a simple pole at ,1z  which is a non-integrable hard 

singularity, with degree of hardness equal to one. This apparent 
contradiction is explained by the orientation of the pole at .1zz =  If we 

consider the real part ( )θρδ ,u  of the inner analytic function ( ),zwδ  

although it is not integrable along curves arriving at the singular point 
from most directions, there is one direction, that of the unit circle, along 
which one can approach the singular point so that ( )θρδ ,u  is identically 

zero during the approach, which allows us to define its integral using the 

( )−→ρ 1  limit. The same is not true, for example, for the imaginary part 
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( )θρδ ,v  of the same inner analytic function, which generates the Fourier-

conjugate function to the delta “function”, and that diverges to infinity as 

11 zz −  when one approaches the singular point along the unit circle, 

thus generating a non-integrable real function in the ( )−→ρ 1  limit. 

In the development presented in [1] the real functions were 
represented by their Fourier coefficients, and the inner analytic functions 
by their Taylor coefficients. We can easily do the same here, if we observe 
that the inner analytic function ( )1, zzwδ  in Equation (4) is the sum of a 

geometric series, 

( )
1

1
1 1

1
2
1, zz

zzzzw
−π

+
π

=δ  

k

k








π
+

π
= ∑

∞

= 11

1
2
1

z
z  

[ ( ) ( )] .sincos1
2
1

11
1

k

k

kk zθ−θ
π

+
π

= ∑
∞

=

ı  (28) 

This power series is the Taylor series of ( )zwδ  around the origin, and 

therefore it follows that the Taylor coefficients of this inner analytic 
function are given by 

,2
1

0 π
=c  

  ( ) ( ) ,sincos 11
π
θ

−
π
θ

=
kk

k ıc  (29) 

where { }.,,3,2,1 ∞∈ …k  Since according to the construction presented 

in [1] we have that 200 α=c  and that ,kkkc β−α= ı  we have for the 

Fourier coefficients of the delta “function” 

 



COMPLEX ANALYSIS OF REAL FUNCTIONS … 77

,1
0 π
=α  

  ( ) ,cos 1
π
θ

=α
k

k  

  ( ) ,sin 1
π
θ

=β
k

k  (30) 

where { }.,,3,2,1 ∞∈ …k  Note that these are in fact the results one 

obtains via the integrals defining the Fourier coefficients [12], 

( ) ( ),cos1
1θ−θδθθ

π
=α ∫

π

π−
kk d  

( ) ( ),sin1
1θ−θδθθ

π
=β ∫

π

π−
kk d  (31) 

by simply using the fundamental property of the delta “function”. 

Having established the representation of the Dirac delta “function” 
within the structure of the inner analytic functions, in sequence we will 
show that the Dirac delta “function” is not the only singular distribution 
that can be represented by an inner analytic function. As we will see, one 
can do the same for its first derivative, and in fact for its derivatives of 
any order. This is an inevitable consequence of the fact that the proper 

inner analytic function ( )1
0 , zzw •
δ  associated to ( )1, zzwδ  is a member of 

an integral-differential chain. 

3. Derivatives of the Delta “Function” 

The derivatives of the Dirac delta “function” are defined in a way 
which is similar to that of the delta “function” itself. The first condition is 
the same, and the second and third conditions are not really required. 
The crucial difference is that the fourth condition in the definition of the 
Dirac delta “function” is replaced by the second condition in the list that 
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follows. The “function” ( )1θ−θδ 'n  is the n-th derivative of ( )1θ−θδ  with 

respect to θ  if its defining limit ( )−→ρ 1  satisfies the two conditions that 

follow. 

(1) The defining limit of ( )1θ−θδ 'n  tends to zero when one takes the 

( )−→ρ 1  limit while keeping .1θ≠θ  

(2) Given any integrable real function ( )θg  which is differentiable to 
the n-th order, in the ( )−→ρ 1  limit the integral 

( ) ( ) ( ) ( )11 1 θ−=θ−θδθθ∫ '' nnnb

a
ggd   (32) 

has the value shown, for any open interval ( )ba,  which contains the 

point ,1θ  where ( )θ'ng  is the n-th derivative of ( )θg  with respect to .θ  

This is the usual form of this condition, when it is formulated in 
strictly real terms. However, we will impose a slight additional 
restriction on the real functions ( ),θg  by assuming that the limit to the 

point 1z  on the unit circle that corresponds to ,1θ  of the n-th angular 

derivative of the corresponding inner analytic function ( ),zwγ  exists and 

is finite. Since these proper inner analytic functions are all in the same 
integral-differential chain, this implies that the limits to 1z  of all the 

inner analytic functions ( )zwm•
γ  exist, for all .0 nm ≤≤  

The second condition above is, in fact, the fundamental property of 
each derivative of the delta “function”, including the “function” itself in 
the case .0=n  Just as in the case of the delta “function” itself, the 
additional part of the second condition, involving the inner analytic 
function ( ),zwγ  consists of a weak limitation on the test functions ( ),θg  

and does not affect the definition of the singular distributions 
themselves. This is certainly the case for our definitions here, since we 
define each one of these objects through a definite and unique inner 
analytic function. 
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In this section we will prove the following theorem. 

Theorem 2. For every strictly positive integer n, there exists an inner 
analytic function ( )1, zzw n'δ

 whose real part, in the ( )−→ρ 1  limit, 

converges to ( ).1θ−θδ 'n  

Before we attempt to prove this theorem, let us note that the proof 
relies on a property of angular differentiation, which was established in 
[1], namely that angular differentiation is equivalent to partial 
differentiation with respect to ,θ  at constant .ρ  When we take the 

( )−→ρ 1  limit, this translates to the fact that taking the angular 

derivative of the inner analytic function ( )zw  within the open unit disk 

corresponds to taking the derivative with respect to ,θ  on the unit circle, 

of the corresponding real object. 

If this derivative cannot be taken directly on the unit circle, then one 
can define it by taking the angular derivative of the corresponding inner 
analytic function and then considering the ( )−→ρ 1  limit of the real part 

of the resulting function. Since analytic functions can be differentiated 
any number of times, the procedure can then be iterated in order to 
define all the higher-order derivatives with respect to θ  on the unit 
circle. Equivalently, one can just consider travelling along the integral-
differential chain indefinitely in the differentiation direction. 

Consider therefore the integral-differential chain of proper inner 
analytic functions that is obtained from the proper inner analytic 
function associated to ( ),, 1zzwδ  that is, the unique integral-differential 

chain to which the proper inner analytic function 

( ) ( )
π

−= δ
•

δ 2
1,, 11

0 zzwzzw  

1

1
zz

z
−π

−=  (33) 
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belongs. Consider in particular the set of proper inner analytic functions 

which is obtained from ( )1
0 , zzw •
δ  in the differentiation direction along 

this chain, for which we have 

( ) ( ) ( )111 ,,,,, θθρ+θθρ= δδ
•

δ '' nnn vuzzw ı  

( ) ( ),,,,, 11 θθρ
θ∂

∂+θθρ
θ∂

∂= δδ vu n

n

n

n
ı  (34) 

for all strictly positive n, where we recall that 

( ) ( ) ( ).,,,,, 111 θθρ+θθρ= δδδ vuzzw ı   (35) 

We will now prove that in the ( )−→ρ 1  limit we have 

( )
( )

( ),,,lim 111 θθρ=θ−θδ δ→ρ −

'' nn u  (36) 

for { },,,3,2,1 ∞∈ …n  or, equivalently, that we have for the inner 

analytic function ( )1, zzw n'δ
 associated to the derivative ( )1θ−θδ 'n  

( ) ( ),,, 11 zzwzzw n
n

•
δδ

='   (37) 

for { }.,,3,2,1 ∞∈ …n  We are now ready to prove the theorem, as stated 

in Equation (36). Let us first prove, however, that the first condition 
holds for all the derivatives of the delta “function”. 

Proof 2.1. Since ( )1, zzwδ  has a single singular point at ,1z  the 

same is true for all its angular derivatives. Therefore, the ( )−→ρ 1  limit 

of all the angular derivatives exists everywhere within the open interval 
of the unit circle that excludes the point .1θ  Since ( )1,,1 θθδu  is 

identically zero within this interval, and since angular differentiation 
within the open unit disk corresponds to differentiation with respect to θ  
on the unit circle, so that we have 

( ) ( ),,,1,,1 11 θθ
θ∂

∂=θθ δδ uu n

n
n'  (38) 
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for { },,,3,2,1 ∞∈ …n  it follows at once that 

( ) ⇒=θθδ 0,,1 1'nu  

( )
( ) ,0,,lim 11

=θθρδ→ρ −

'nu  (39) 

for { },,,3,2,1 ∞∈ …n  everywhere but at the singular point ,1θ  for all 

values of n. This establishes that the first condition holds. 

Let us now prove that the second condition, which relates directly to 
the singular point, holds, leading to the result as stated in Equation (36). 

Proof 2.2. In order to do this, we start with the case ,1=n  and 

consider the following real integral on the circle of radius ,1<ρ  which 

we integrate by parts, noting that the integrated term is zero because we 
are integrating on a circle, 

( ) ( ) ( ) ( ),,,,,,, 11 θθρ



 θρ
θ∂
∂θ−=



 θθρ
θ∂
∂θρθ δγ

π

π−
δγ

π

π− ∫∫ uuduud  (40) 

where ( ) ( ) ( )θρ+θρ= γγγ ,, vuzw ı  is the inner analytic function 

associated to ( ).θg  Note that the partial derivatives involved certainly 

exist, since both ( )1,, θθρδu  and ( )θργ ,u  are the real parts of inner 

analytic functions. If we now take the ( )−→ρ 1  limit, on the right-hand 

side we recover the Dirac delta “function” on the unit circle, and therefore 
we have 

( )
( )

( ) ( ) ( )111
,,lim θ−θδ



 θ
θ

θ−=







θθρ

θ∂
∂θθ ∫∫

π

π−
δ→ρ

π

π− −
gd

ddugd  

  ( ) ( ),1 1θ′−= g  (41) 

so long as ( )θg  is differentiable, were we used the fundamental property 

of the Dirac delta “function”. We thus obtain the relation for the 
derivative of the delta “function”, 
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( ) ( ) ( ) ( ),1 11 θ′−=θ−θδ′θθ∫
π

π−
ggd   (42) 

where 

( )
( )

( ).,,lim 111 θθρ
θ∂
∂=θ−θδ′ δ→ρ −

u   (43) 

We may therefore write that 

( )
( )

( ).,,lim 111 θθρ′=θ−θδ′ δ→ρ −
u   (44) 

In this way, we have obtained the result for ( )1θ−θδ′  by using the 

known result for ( ).1θ−θδ  We may now repeat this procedure to obtain 

the result for ( )1
2 θ−θδ '  from the result for ( ),1θ−θδ′  and therefore 

from the result for ( ).1θ−θδ  We simply consider the following real 

integral on the circle of radius ,1<ρ  which we again integrate by parts, 

recalling that the integrated term is zero because we are integrating on a 
circle, 

( ) ( ) ( ) ( ).,,,,,, 11 θθρ′



 θρ
θ∂
∂θ−=



 θθρ′
θ∂
∂θρθ δγ

π

π−
δγ

π

π− ∫∫ uuduud  (45) 

If we now take the ( )−→ρ 1  limit, on the right-hand side we recover the 

first derivative of the Dirac delta “function” on the unit circle, and 
therefore we have 

( )
( )

( ) ( ) ( )111
,,lim θ−θδ′



 θ
θ

θ−=







θθρ′

θ∂
∂θθ ∫∫

π

π−
δ→ρ

π

π− −
gd

ddugd  

( ) ( ),1 1
22 θ−= 'g  (46) 

so long as ( )θg  is differentiable to second order, were we used the 

fundamental property of the first derivative of the Dirac delta “function”. 
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We thus obtain the relation for the second derivative of the delta 
“function”, 

( ) ( ) ( ) ( ),1 1
22

1
2 θ−=θ−θδθθ∫

π

π−
'' ggd   (47) 

where 

( )
( )

( ).,,lim 12

2

11
2 θθρ

θ∂

∂=θ−θδ δ→ρ −
u'   (48) 

We may therefore write that 

( )
( )

( ).,,lim 1
2

11
2 θθρ=θ−θδ δ→ρ −

'' u   (49) 

Clearly, this procedure can be iterated n times, thus resulting in the 
relation 

( )
( )

( ),,,lim 111 θθρ=θ−θδ δ→ρ −

'' nn u   (50) 

for { }.,,3,2,1 ∞∈ …n  Note that all the derivatives with respect to θ  

involved in the argument exist, for arbitrarily high orders, since both 
( )1,, θθρδu  and ( )θργ ,u  are the real parts of inner analytic functions, 

and thus are infinitely differentiable on both arguments. 

We may now formalize the proof using finite induction. We thus 
assume the results for the case ,1−n  

( ) ( )
( )

( ) ( ),,,lim 1
1

11
1 θθρ=θ−θδ −

δ→ρ
−

−

'' nn u  

( ) ( ) ( ) ( ) ( ) ( ),1 1
11

1
1 θ−=θ−θδθθ −−−∫ '' nnnb

a
ggd  (51) 

and proceed to examine the next case. We consider therefore the 
following real integral on the circle of radius ,1<ρ  which we integrate 
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by parts, recalling once more that the integrated term is zero because we 
are integrating on a circle, 

( ) ( ) ( ) ( ) ( ) ( ).,,,,,, 1
1

1
1 θθρ



 θρ
θ∂
∂θ−=



 θθρ
θ∂
∂θρθ −

δγ
π

π−

−
δγ

π

π− ∫∫ '' nn uuduud  

(52) 

If we now take the ( )−→ρ 1  limit, on the right-hand side we recover the 

( ) th-1−n  derivative of the Dirac delta “function” on the unit circle, and 

therefore we have 

( )
( )

( ) ( ) ( ) ( ) ( )1
1

1
1

1
,,lim θ−θδ



 θ
θ

θ−=







θθρ

θ∂
∂θθ −

π

π−

−
δ→ρ

π

π− ∫∫ −

'' nn gd
ddugd  

( ) ( ),1 1θ−= 'nn g  (53) 

so long as ( )θg  is differentiable to order n, were we used the fundamental 

property of the ( ) th-1−n  derivative of the Dirac delta “function”. We 

thus obtain the relation for the n-th derivative of the delta “function”, 

( ) ( ) ( ) ( ),1 11 θ−=θ−θδθθ∫
π

π−
'' nnn ggd   (54) 

where 

( )
( )

( ).,,lim 111 θθρ
θ∂

∂=θ−θδ δ→ρ −
un

n
n'   (55) 

We may therefore write that, by finite induction, 

( )
( )

( ).,,lim 111 θθρ=θ−θδ δ→ρ −

'' nn u   (56) 

for { }.,,3,2,1 ∞∈ …n  We have therefore completed the proof of 

Theorem 2. 
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It is important to note that, just as in the case of the Dirac delta 
“function”, when we adopt as the definition of the n-th derivative of the 
delta “function” the ( )−→ρ 1  limit of the real part of the inner analytic 

function ( ),zwn•
δ  for { },,,3,2,1 ∞∈ …n  the limitations imposed on the 

test functions ( )θg  and on the corresponding inner analytic functions 

( )zwγ  become irrelevant. In fact, these definitions stand by themselves, 

and are independent of any set of test functions. Not only one can use 
them for any inner analytic functions derived from integrable real 
functions, but one can do this for any inner analytic function ( ),zw  

regardless of whether or not it corresponds to an integrable real function, 
so long as the ( )−→ρ 1  limit of the corresponding real part ( )θρ,u  exists 

almost everywhere. Just as in the case of the Dirac delta “function”, 
whenever the ( )−→ρ 1  limit of the real integral 

( ) ( ),,,, 1θθρθρθρ δ
π

π−∫ 'nuud   (57) 

exists, it defines the action of the n-th derivative of the delta “function” 
on that particular real object. 

It is also interesting to observe that, just as in the case of the Dirac 
delta “function”, it is true that its derivatives of all orders, although they 
are not simply integrable real functions, are in fact integrable real 
objects, even if they are related to inner analytic functions with non-
integrable hard singularities. Just as is the case for the inner analytic 
function associated to the delta “function” itself, the poles of the proper 
inner analytic functions associated to the derivatives are always oriented 
in such a way that one can approach the singularities along the unit 
circle while keeping the real parts of the functions equal to zero, a fact 
that allows one to define the integrals on θ  of the real parts via the 

( )−→ρ 1  limit. Just as in the case of the delta “function”, the Fourier-

conjugate functions of the derivatives are simply non-integrable real 
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functions. This fact provides the first hint that there must be some 
relation of such non-integrable real functions with corresponding inner 
analytic functions. 

In the development presented in [1] the real functions were 
represented by their Fourier coefficients, and the inner analytic functions 
by their Taylor coefficients. The same can be done in our case here. 

Starting from the power series for ( )zw •
δ
0  given in Equation (28), we can 

see that the definition of the angular derivative implies that we have for 
the inner analytic functions associated to the derivatives of the delta 
“function”, 

( ) ( ) ( )[ ] ,sincos1, 11
1

1
k

k
kkk zzzw nnn θ−θ

π
= ∑

∞

=

•
δ ıı  (58) 

for { },,,3,2,1 ∞∈ …n  so that the corresponding Taylor coefficients are 

given by ( ) 00 =nc  and 

( ) ( ) ( )[ ],sincos 11 θ−θ
π

= kkk
k ıı nnnc   (59) 

for { },,,3,2,1 ∞∈ …n  and where { }.,,3,2,1 ∞∈ …k  The identification of 

the Fourier coefficients ( )n
kα  and ( )n

kβ  will now depend on the parity of n. 

Once we have the Dirac delta “function” and all its derivatives, both 
as inner analytic functions and as the corresponding real objects, we may 
consider collections of such singular objects, with their singularities 
located at all the possible points of the periodic interval [ ],, ππ−  as well 

as arbitrary linear combinations of some or all of them. There is a well-
known theorem of the Schwartz theory of distributions [2, 3] which states 
that any distribution which is singular at a given point 1θ  can be 

expressed as a linear combination of the Dirac delta “function” ( )1θ−θδ  

and its derivatives of arbitrarily high orders ( ).1θ−θδ 'n  
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Since, as was observed in [1], the set of all inner analytic functions 
forms a vector space over the field of complex numbers, it is immediately 
apparent that we may assemble such linear combinations within the 
space of inner analytic functions. Therefore, the set of distributions 
formed by the delta “functions” and all their derivatives, as defined here, 
with their singularities located at all possible points of the unit circle, 
constitutes a complete basis that spans the space of all possible singular 
Schwartz distributions defined in a compact domain. We may conclude 
therefore that the whole space of Schwartz distributions in a compact 
domain is contained within the set of inner analytic functions. 

It is interesting to note that, since we have the inner analytic 
function that corresponds to the delta “function” in explicit form, we are 
in a position to perform simple calculations in order to obtain in explicit 
form the inner analytic functions that correspond to the first few 
derivatives of the delta “function”. For example, a few simple and 
straightforward calculations lead to the following proper inner analytic 
functions, 

( )
( )

,1, 2
1

1
111 zz

zzzzw
−π

−=
δ ı'  

( ) ( )
( )

,1, 3
1

11
212 zz

zzzzzzw
−

+

π
−=

δ ı'  

( ) ( )
( )

.41, 4
1

1
2
11

2

313 zz
zzzzzzzzw

−

++

π
−=

δ ı'  (60) 

These proper inner analytic functions are all very simple rational 
functions of the complex variable z, which can be written as functions of 
only ,1zz  and hence as functions of only ρ  and .1θ−θ  Note that we can 

induce from these examples that the n-th derivative of the delta 
“function” is indeed represented by an inner analytic function with a pole 
of order 1+n  on the unit circle, which is thus a hard singularity with 
degree of hardness ,1+n  as one would expect from the structure of the 
corresponding integral-differential chain. 
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4. Piecewise Polynomial Functions 

It is important to note that the Dirac delta “function” and all its 
derivatives, with their singularities located at a given point 1z  on the 

unit circle, are all contained within a single integral-differential chain, 
making up, in fact, only a part of that chain, the semi-infinite chain 
starting from the delta “function” and propagating indefinitely in the 
differentiation direction along the chain. However, the chain propagates 
to infinity in both directions. In order to complete its analysis, we must 
now determine what is the character of the real objects in the remaining 
part of that chain, in the integration direction. In fact, they are just 
integrable real functions, although they do have a specific character. 
They consist of sections of polynomials wrapped around the unit circle, of 
progressively higher orders, and progressively smoother across the 
singular point, as functions of ,θ  as one goes along the integral-

differential chain in the integration direction. 

Let us illustrate this fact with a few simple examples. Instead of 
performing angular integrations of the inner analytic functions, we will 
do this by performing integrations on the unit circle. As was established 
in [1], one can determine these functions by simple integration on ,θ  so 

long as one remembers two things: first, to make sure that the real 
functions or related objects to be integrated on θ  have zero average over 
the unit circle, and second, to choose the integration constant so that the 
resulting real functions also have zero average over the unit circle. For 
example, the integral of the zero-average delta “function” 

( ) ( ) ,2
1

11
0

π
−θ−θδ=θ−θδ '   (61) 

which is obtained from the real part of the proper inner analytic function 
in Equation (33), can be integrated by means of the simple use of the 
fundamental property of the delta “function”, thus yielding 



COMPLEX ANALYSIS OF REAL FUNCTIONS … 89

( ) ,0for22
11 >θ∆

π
θ∆−=θ∆δ− '  

( ) ,0for22
11 <θ∆

π
θ∆−−=θ∆δ− '  (62) 

where .1θ−θ=θ∆  This is a sectionally linear function, with a single 

section consisting of the intervals [ )0,π−  and ( ],,0 π  thus excluding the 

point 0=θ∆  where the singularity lies, and with a unit-height step 
discontinuity at that point. Note that it is an odd function of .θ∆  The 
next case can now be calculated by straightforward integration, which 
yields 

( ) ,0for426
2

2 >θ∆
π
θ∆−θ∆+π−=θ∆δ− '  

( ) .0for426
2

2 <θ∆
π
θ∆−θ∆−π−=θ∆δ− '  (63) 

This is a sectionally quadratic function, this time a continuous function, 
again with the same single section excluding the point ,0=θ∆  but now 

with a point of non-differentiability there. Note that it is an even function 
of .θ∆  The next case yields, once more by straightforward integration, 

( ) ,0for1246
32

3 >θ∆
π
θ∆−θ∆+θ∆π−=θ∆δ− '  

( ) .0for1246
32

3 <θ∆
π
θ∆−θ∆−θ∆π−=θ∆δ− '  (64) 

This is a sectionally cubic continuous and differentiable function, again 
with the same single section excluding the point .0=θ∆  Note that it is 
an odd function of .θ∆  The trend is now quite clear. All the real functions 
in the chain, in the integration direction starting from the delta 
“function”, are what we may call piecewise polynomials, even if we have 
just a single piece within a single section of the unit circle, as is the case 
here. The n-th integral is a piecewise polynomial of order n, which has 
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zero average over the unit circle, and which becomes progressively 
smoother across the singular point as one goes along the integral-
differential chain in the integration direction. 

In order to generalize this analysis, we must now consider linear 
superpositions of delta “functions” and derivatives of delta “functions”, 
with their singularities situated at various points on the unit circle. A 
simple example of such a superposition, which we may use to illustrate 
what happens when we make one, is that of two delta “functions”, with 
singularities at 0=θ  and at ,π±=θ  added together with opposite signs, 

( ) ( ) ( ),π−θδ−θδ=θf   (65) 

that corresponds to the following inner analytic function, which this time 
is already a proper inner analytic function, with two simple poles at 

,1±=z  

( ) 1
1

1
1

+π
+

−π
−= z

z
z

zzw  

.
1

2
2 −π

−=
z

z  (66) 

Since we have now two singular points, one at 1=z  and another at 
,1−=z  corresponding respectively to 0=θ  and ,π±=θ  we have now 

two sections, one in ( )0,π−  and another in ( ).,0 π  The inner analytic 

functions at the integration side of the integral-differential chain to 
which this function belongs are obtained by simply adding the 
corresponding inner analytic functions at the integration sides of the 
integral-differential chains of the two functions that are superposed. The 
same is true for the corresponding real objects within each section of the 
unit circle. Since the real functions corresponding to each one of the two 
delta “functions” that were superposed are zero-average piecewise 
polynomials, so are the real functions corresponding to the superposition. 
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For example, it is not difficult to show that the first integral is the 
familiar square wave, with amplitude ,21  

( ) ,0for2
11 >θ=θ− 'f  

( ) ,0for2
11 <θ−=θ− 'f  (67) 

which is a piecewise linear function with two sections, having unit-height 
step discontinuities with opposite signs at the two singular points 0=θ  
and .π±=θ  

We want to determine what is the character of the real functions, in 
the integration side of the resulting integral-differential chain, in the 
most general case, when we consider arbitrary linear superpositions of a 
finite number of delta “functions” and derivatives of delta “functions”, 
with their singularities situated at various points on the unit circle. From 
the examples we see that, when we superpose several singular 
distributions with their singularities at various points, the complete set 
of all the singular points defines a new set of sections. Given one of these 
singular points, since at least one of the distributions being superposed is 
singular at that point, in general so is the superposition. Let there be 

1≥N  singular points { }Nθθ ,,1 …  in the superposition. It follows that 

in general we end up with a set of N contiguous sections, consisting of 
open intervals between singular points, that can be represented as the 
sequence 

( ) ( ) ( ) ( ){ },,,,,,,,,, 11121 θθθθθθθθ +− Niiii ……   (68) 

where we see that the sequence goes around the unit circle, and where 
we adopt the convention that each section ( )1, +θθ ii  is numbered after 

the singular point iθ  at its left end. In addition to this, since for each one 

of the distributions being superposed the real functions on the 
integration side of the integral-differential chain of the corresponding 
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delta “function” are piecewise polynomials, and since the sum of any 
finite number of polynomials is also a polynomial, so are the real 
functions of the integral-differential chain to which the superposition 
belongs, if we are at a point in that integral-differential chain where all 
singular distributions have already been integrated out. Let us establish 
a general notation for these piecewise polynomial real functions, as well 
as a formal definition for them. 

Definition 1 (Piecewise polynomial real functions). 

Given a real function ( )( )θnf  that is defined in a piecewise fashion by 

polynomials in 1≥N  sections of the unit circle, with the exclusion of a 
finite set of N singular points ,iθ  with { },,,1 Ni …∈  so that the 

polynomial ( )( )θin
iP  at the i-th section has order in  we denote the 

function by 

( )( ) ( )( ) { }{ },,,1, NiPf in
in …∈θ=θ   (69) 

where n is the largest order among all the N orders .in  We say that 

( )( )θnf  is a piecewise polynomial real function of order n. 

Note that, being made out of finite sections of polynomials, the real 
function ( )( )θnf  is always an integrable real function. In fact, it is also 

analytic within each section, so that the N singularities described above 
are the only singularities involved. Since ( )( )θnf  is an integrable real 

function, let ( )zw  be the inner analytic function that corresponds to this 

integrable real function, as constructed in [1]. The ( ) th-1+n  angular 

derivative of ( )zw  is the inner analytic function ( ) ( ),1 zw n •+  which 

corresponds therefore to the ( ) th-1+n  derivative of ( )( )θnf  with respect 

to ,θ  that we denote by ( )
( ) ( ).1 θ+ 'n
nf  
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In this section we will prove the following theorem. 

Theorem 3. If the real function ( )( )θnf  is a non-zero piecewise 

polynomial function of order n, defined in 1≥N  sections of the unit 
circle, with the exclusion of a finite non-empty set of N singular points ,iθ  

then and only then the derivative ( )
( ) ( )θ+ '1n
nf  is the superposition of a non-

empty set of delta “functions” and derivatives of delta “functions” on the 
unit circle, with the singularities located at some of the points ,iθ  and of 

nothing else. 

Proof 3.1. In order to prove this, first let us note that the derivative 

( )
( ) ( )θ+ '1n
nf  is identically zero within all the open intervals defining the 

sections. This is so because the maximum order of all the polynomials 
involved is n, and the ( ) th-1+n  derivative of a polynomial of order equal 

to or less than n is identically zero, 

( )
( ) ( ) { }.,,1,allfor01 Nif i
n
n …∈θ≠θ=θ+ '   (70) 

We conclude, therefore, that the real object represented by the inner 

analytic function ( ) ( )zw n •+1  has support only at the N isolated singular 

points ,iθ  thus implying that it can contain only singular distributions. 

Second, let us prove that the derivative cannot be identically zero 
over the whole unit circle. In order to do this we note that one cannot 
have a non-zero piecewise polynomial real function of order n, such as the 
one described above, that is also continuous and differentiable to the 
order n on the whole unit circle. This is so because this hypothesis would 
lead to an impossible integral-differential chain. 

If this were possible, then starting from a non-zero real function 

( )( )θnf  that corresponds to a non-zero inner analytic function ( ),zw  and 

after a finite number n of steps along the differentiation direction of the 
corresponding integral-differential chain, one would arrive at a real 
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function that is continuous over the whole unit circle, that is constant 
within each section and that has zero average over the whole unit circle. 
It follows that such a function would have to be identically zero, thus 
corresponding to the inner analytic function ( ) .0≡zw  But this is not 

possible, because this inner analytic function belongs to another chain, 
the one which is constant, all members being ( ) ,0≡zw  and we have 

shown in [1] that two different integral-differential chains cannot 
intersect. 

It follows that ( )( )θnf  can be globally differentiable at most to order 

,1−n  so that the n-th derivative is a discontinuous function, and 
therefore the ( ) th-1+n  derivative already gives rise to singular 

distributions. Therefore, every real function that is piecewise polynomial 
on the unit circle, of order n, when differentiated 1+n  times, so that it 
becomes zero within the open intervals corresponding to the existing 
sections, will always result in the superposition of some non-empty set of 
singular distributions with their singularities located at the points 
between two consecutive sections. 

We can also establish that only functions of this form give rise to such 
superpositions of singular distributions and of nothing else. The necessity 
of the fact that the real functions on integral-differential chains 
generated by superpositions of singular distributions must be piecewise 
polynomials comes directly from the fact that all such distributions and 
all such superpositions of distributions are zero almost everywhere, in 
fact everywhere but at their singular points. Due to this, it is necessary 
that these real functions, upon a finite number 1+n  of differentiations, 
become zero everywhere strictly within the sections, that is, within the 
open intervals between two successive singularities. Therefore, within 
each open interval the condition over the sectional real function at that 
interval is that 

( )

( ) ( ) ,01

1
≡θ

θ +

+

in

n
f

d
d   (71) 
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and the general solution of this ordinary differential equation of order 
1+n  is a polynomial of order ,nni ≤  containing at most 1+n  non-zero 

arbitrary constants, 

( ) ( )( ).θ=θ in
ii Pf   (72) 

Since only polynomials have the property of becoming identically zero 
after a finite number of differentiations, it is therefore an absolute 
necessity that these real functions be polynomials within each one of the 
sections. This completes the proof of Theorem 3. 

Note that the inner analytic function ( ) ( )zw n •+1  corresponding to 

( )
( ) ( )θ+ '1n
nf  represents therefore the superposition of a non-empty set of 

singular distributions with their singularities located at the singular 
points. In the other words, after 1+n  angular differentiations of ( ),zw  

which correspond to 1+n  straight differentiations with respect to θ  of 

the polynomials ( )( )θin
iP  within the sections, one is left with an inner 

analytic function ( ) ( )zw n •+1  whose real part converges to zero in the 

( )−→ρ 1  limit, at all points on the unit circle which are not one of the N 

singular points. 

It is interesting to note that, since we have the inner analytic 
function that corresponds to the Dirac delta “function” in explicit form, it 
is not difficult to calculate directly its first angular primitive. A few 
simple and straightforward calculations lead to 

( )
10

1
1 , zz

zzdzzw
z

−′
′′

π
= ∫•−

δ
ı  

.ln
1

1 





 −

π
= z

zzı  (73) 
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This inner analytic function has a logarithmic singularity at ,1z  which is 

a borderline hard singularity. Note that, as expected, we have that 

( ) .0,0 1
1 =
•−

δ zw  

5. Products of Distributions 

In the Schwartz theory of distributions, one important theorem states 
that it is not possible to define, in a general way, the product of two 
distributions [13], which has the effect that the space of Schwartz 
distributions cannot be promoted from a vector space to an algebra. In 
this section, we will interpret this important fact in the context of the 
representation of integrable real functions and singular distributions in 
terms of inner analytic functions. We start by noting that, although it is 
always possible to define the product of two inner analytic functions, 
which is always an inner analytic function itself, this does not correspond 
to the product of the two corresponding real functions or related objects. 
If we have two inner analytic functions given by 

( ) ( ) ( ),,, 111 θρ+θρ= vuzw ı  

( ) ( ) ( ),,, 222 θρ+θρ= vuzw ı   (74) 

the product of the two inner analytic functions is given by 

( ) [ ( ) ( ) ( ) ( )]θρθρ−θρθρ= ,,,, 2121 vvuuzw  

[ ( ) ( ) ( ) ( )],,,,, 2121 θρθρ+θρθρ+ uvvuı   (75) 

whose real part is not just the product ( ) ( ).,, 21 θρθρ uu  In fact, the 

problem of finding an inner analytic function whose real part is this 
quantity often has no solution. One can see this very simply by observing 
that both ( )θρ,1u  and ( )θρ,2u  are always harmonic functions, and that 

the product of two harmonic functions in general is not a harmonic 
function. Since the real and imaginary parts of an inner analytic function 
are always harmonic functions, it follows that the problem posed in this 
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way cannot be solved in general. The only simple case in which we can 
see that the problem has a solution is that in which one of the two 
functions being multiplied is a constant function. 

Let us state in a general way the problem of the definition of the 
product of two distributions. Suppose that we have two inner analytic 
functions such as those in Equation (74). The two corresponding real 
objects are ( )θ,11u  and ( ),,12 θu  and their product, assuming that it can 

be defined in strictly real terms, is simply the real object ( ) ( ).,1,1 21 θθ uu  

The problem of finding an inner analytic function that corresponds to this 
product is the problem of finding an harmonic function ( ),, θρπu  whose 

limit to the unit circle results in this real object, 

( ) ( ) ( ).,1,1,1 21 θθ=θπ uuu   (76) 

If one can find such a harmonic function, then it is always possible to find 
its harmonic conjugate function ( )θρπ ,v  and therefore to determine the 

inner analytic function 

( ) ( ) ( ),,, θρ+θρ= πππ vuzw ı   (77) 

which corresponds to the product of the two real objects. According to the 
construction presented in [1], this can always be done so long as the 
product ( ) ( )θθ ,1,1 21 uu  is an integrable real function of .θ  However, if 

( )θ,11u  and ( )θ,12u  are singular objects that can only be defined as 

limits from within the open unit disk, then the product may not be 
definable in strictly real terms, and it may not be possible to find an 
inner analytic function such that the ( )−→ρ 1  limit of its real part 

results in this product, interpreted in some consistent way. This is the 
content of the theorem that states that this cannot be done in general. 

It is not too difficult to give examples of products which are not well 
defined. It suffices to consider the product of any two singular 
distributions which have their singularities at the same point on the unit 
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circle. If one considers integrating the resulting object and using for this 
purpose the fundamental property of any of the two distributions 
involved, one can see that the integral is not well defined in the context of 
the definitions given here for the singular distributions. Although one 
cannot rule out that some other definition can be found to include some 
such cases, we certainly do not have one at this time. 

We thus see that we are in fact unable to promote the whole space of 
integrable real functions and singular distributions to an algebra. 
However, there are some sub-spaces within which this can be done. 
Under some circumstances, one can solve the problem of defining within 
the complex-analytic structure the product of two integrable real 
functions. This cannot be done for the whole sub-space of integrable real 
functions, because there is the possibility that the product of two 
integrable real function will not be integrable. However, if we restrict the 
sub-space to those integrable real functions which are also limited, then 
it can be done. This is so because the product of two limited integrable 
real functions is also a limited real function, and therefore integrable. In 
this way, one can find the inner analytic function that corresponds to the 
product, since according to the construction which was presented in [1], 
this can be done for any integrable real function. The resulting inner 
analytic function will not, however, be related in a simple way to the 
inner analytic functions of the two factor functions. 

One case in which the product can always be defined is that of an 
integrable real function with a Dirac delta “function”, so long as the real 
function is well defined at the singular point of the delta “function”. 
Given the nature of the delta “function”, this is equivalent to multiplying 
it by a mere real number, the value of the integrable real function at the 
singular point of the delta “function”, 

( ) ( ) ( ) ( ).111 θ−θδθ=θ−θδθ gg   (78) 
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The corresponding inner analytic function is therefore given simply by 
( ) ( )., 11 zzwg δθ  Similar statements are true, of course, for all the 

derivatives of the delta “function”. Therefore, in all such cases, there is no 
difficulty in determining the inner analytic function that corresponds to 
the product. 

Note that this difficulty relates only to the definition of the product of 
two real objects on the unit circle. As was observed before, for all the 
singular distributions their definition by means of inner analytic 
functions always provides the means to determine whether or not they 
can be applied to a given real object, so long as it is represented by an 
inner analytic function, and determines what results from that operation, 
if it is possible at all. 

6. Conclusions and Outlook 

We have extended the close and deep relationship established in a 
previous paper [1], between integrable real functions and complex 
analytic functions in the unit disk centered at the origin of the complex 
plane, to include singular distributions. This close relationship between, 
on the one hand, real functions and related objects, and on the other 
hand, complex analytic functions, allows one to use the powerful and 
extremely well-known machinery of complex analysis to deal with the 
real functions and related objects in a very robust way, even if these 
objects are very far from being analytic. The concept of integral-
differential chains of proper inner analytic functions, which we 
introduced in that previous paper, played a central role in the analysis 
presented. 

One does not usually associate non-differentiable, discontinuous and 
unbounded real functions with single analytic functions. Therefore, it 
may come as a bit of a surprise that, as was established in [1], all 
integrable real functions are given by the real parts of certain inner 
analytic functions on the open unit disk when one approaches the unit 
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circle. This surprise is now compounded by the fact that inner analytic 
functions can represent singular distributions as well and, in fact, can 
represent what may be understood as a complete set of such singular 
objects. 

There are many more inner analytic functions within the open unit 
disk than those that were examined here and in [1], in relation to 
integrable real functions and singular distributions. Therefore, it may be 
possible to further generalize the relationship between real objects on the 
unit circle and inner analytic functions. For example, we have observed 
in this paper that there are inner analytic functions whose real parts 
converge to non-integrable real functions on the unit circle. Simple 
examples are the inner analytic functions given by 

( ) ( ),,, 11 zzwzzw nn '' δδ
−= ı   (79) 

for { },,,3,2,1,0 ∞∈ …n  that correspond to the non-integrable real 

functions which are the Fourier-conjugate functions of the Dirac delta 
“function” and its derivatives. This suggests that we consider the 
question of how far this can be generalized, that is, of what is the largest 
set of non-integrable real functions that can be represented by inner 
analytic functions. This issue will be discussed in the fourth paper of this 
series. 

The singular distributions are integrable real objects associated to 
non-integrable singularities of the corresponding inner analytic 
functions, a fact which is made possible by the orientation of the 
singularities with respect to the direction along the unit circle. This 
suggests that the most general definition of such singular distributions 
may be formulated in terms of the type and orientation of the 
singularities present on the unit circle. In this case one would expect that 
singular distributions would be associated to inner analytic functions 
with hard singularities that are oriented in a particular way, so that the 
integrals of their real parts can be defined via limits from the open unit 
disk to the unit circle. 
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We believe that the results presented here establish a new perspective 
for the representation and manipulation of singular distributions. It 
might also constitute a simpler and more straightforward way to 
formulate and develop the whole theory of Schwartz distributions within 
a compact domain. 
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