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Abstract 

In this study, we define some new types of ruled surfaces called slant ruled 
surfaces. We give some characterizations for a regular ruled surface to be a 

slant ruled surface in Euclidean 3-space .3E  We show that if the slant ruled 
surface is developable then the striction curve is a general helix or a slant helix 
according to the kind of surface. Moreover, we give the relationships between 
slant ruled surfaces and some offset surfaces such as Bertrand offsets and 
Mannheim offsets. 

1. Introduction 

In the local differential geometry, the curves for which the curvatures 
satisfy some special conditions have an important role. The well-known of 

such curves are helices. A general helix in Euclidean 3-space 3E  is 
defined by the property that along the curve, the tangent of curve makes 
a constant angle with a fixed straight line called the axis of the general 
helix [4]. Therefore, a general helix can be equivalently defined as one 
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whose tangent indicatrix is a planar curve. Certainly, the helices in nE  
correspond with those whose unit tangent indicatrices are contained in 
hyperplanes. A classical result for the helices stated by M. A. Lancret in 
1802 and first proved by B. de Saint Venant in 1845 (see [18] for details) 
is: A necessary and sufficient condition that a curve to be a general helix is 
that the ratio of the first curvature to the second curvature be constant, 
i.e., τκ/  is constant along the curve, where κ  and τ  denote the first and 

second curvatures of the curve, respectively. Helices have been studied not 
only in Euclidean spaces but also in Lorentzian spaces by some 
mathematicians and different characterizations of these curves have 
been obtained according to the properties of the spaces [4-7, 10, 16]. 

Recently, Izumiya and Takeuchi [8] have introduced the concept of 
slant helix by saying that the normal lines of the curve make a constant 
angle with a fixed direction and they have given a characterization of 

slant helix in Euclidean 3-space .3E  Later, Kula and Yaylı [11] have 
investigated spherical images, the tangent indicatrix and the binormal 
indicatrix of a slant helix and they have obtained that the spherical 
images of a slant helix are spherical helices. Moreover, Kula et al. [12] 
have also studied slant helices in Euclidean 3-space and given some other 
characterizations. Monterde [13] has shown that for a curve with 
constant curvature and non-constant torsion the principal normal vector 
makes a constant angle with a fixed constant direction, i.e., the curve is a 
slant helix. Ali [3] has studied the position vectors of slant helices in 
Euclidean 3-space. Then Ali and Turgut [2] have given the corresponding 
characterizations for the position vector of a time-like slant helix in 

Minkowski 3-space .3
1E  Furthermore, Ali and Lopez [1] have given some 

new characterizations of slant helices in Minkowski 3-space .3
1E  

Moreover, it is well know that a ruled surface has an orthonormal 
base along its striction line. This frame is called Frenet frame of the 
ruled surface. In this paper, by considering the Frenet vectors of a ruled 
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surface we give the definitions of some special ruled surfaces for which 
the Frenet vectors make a constant angle with some fixed directions in 
the space and we called these surfaces as slant ruled surfaces. 

2. Ruled Surfaces in Euclidean 3-space 3E  

In this section, we give a brief summary of ruled surfaces in .3E  For 
more details, we refer the readers to [9]. 

Let I be an open interval in the real line ( )uff
GK

=,R  be a regular 

curve in 3E  defined on I and ( )uqq GG
=  be a unit direction vector of an 

oriented line in .3E  Then the parametric representation of a ruled 
surface N is given as follows: 

( ) ( ) ( )., uqufur GGG
νν +=   (1) 

The curve ( )uff
GK

=  is called base curve or generating curve of the  

surface and various positions of the generating lines ( )uqq GG
=  are called 

rulings. In particular, if the direction of qG  is constant, then the ruled 

surface is said to be cylindrical, and non-cylindrical otherwise. 

The distribution parameter of N is defined by 

,
,

,,

qq

qqf
d �G�G

�GG�K

=  (2) 

where ., du
qdqdu

fdf
G

�G
K

�K ==  If ,0,, =qqf �GG�K  then the normal vectors are 

collinear at all points of same ruling and at nonsingular points of the 
surface N, the tangent planes are identical, i.e., tangent plane contacts 
the surface along a ruling. Such a ruling is called a torsal ruling. If 

,0,, ≠qqf �GG�K  then the tangent planes of the surface N are distinct at all 

points of same ruling which is called nontorsal [9]. 
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Definition 2.1 ([9]). A ruled surface whose all rulings are torsal is 
called a developable ruled surface. The remaining ruled surfaces are 
called skew ruled surfaces. From (2), it is clear that a ruled surface is 
developable if and only if at all its points the distribution parameter is 
zero. 

For the unit normal vector mG  of a ruled surface N, we have 

( ) .
,,

2
qfqfqf

qqf
rr
rrm

u
u

G�K�G�K�G�K

G�G�K
GG
GGG

−++

×+
=

×
×

=

νν

ν
ν

ν  (3) 

Along a ruling ,1uu =  the unit normal of the surface approaches a 

limiting direction as ν  infinitely decreases. This direction is called the 
asymptotic normal (central tangent) direction and from (3) defined by 

( ) .,lim 1 q
qquma �G
�GGGG ×==

±∞→
ν

ν
 

The point at which mG  is perpendicular to aG  is called the striction point 
(or central point) and denoted by C. The set of striction points of all 
rulings is called striction curve of the surface. The parametrization of the 
striction curve ( )ucc GG

=  on a ruled surface is given by 

( ) ( ) ( ) ,
,

,
0 q

qq

fq
fuqufuc G

�G�G

�K�GGGGG
−=+= ν  (4) 

where 
qq

fq
�G�G

�K�G

,

,
0 −=ν  is called strictional distance. 

The vector h
G

 defined by qah GGG
×=  is called central normal vector 

which is the surface normal along the striction curve. Then the 

orthonormal system { }ahqC GGG ,,;  is called Frenet frame of the ruled 

surface N, where C is the central point and ahq GGG ,,  are unit vectors of 

ruling, central normal, and central tangent, respectively. 
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For the Frenet formulae of the ruled surface N with respect to the arc 
length s of striction curve, we have 
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 (5) 

where ds
ds

ds
ds 3

2
1

1 , == kk  and 31, ss  are the arc lengths of the spherical 

curves circumscribed by the bound vectors qG  and ,aG  respectively and 
ruled surfaces satisfying 0,0 21 =≠ kk  are called conoids (for details, see 

[9]). 

Theorem 2.1 ([15]). Let the striction curve ( )scc GG
=  of the ruled 

surface N be unit speed, i.e., s is arc length parameter of ( )scG  and let ( )scG  

be the base curve of the surface. Then N is developable if and only if the 
unit tangent of the striction curve is the same with the ruling along the curve. 

3. q-Slant Ruled Surfaces in 3E  

In this section, we introduce the definition and characterizations of     

q-slant ruled surfaces in .3E  First, we give the following definition. 

Definition 3.1. Let N be a regular ruled surface in 3E  given by the 
parametrization 

( ) ( ) ( ) ( ) ,1,, =+= sqsqscsr GGGG
νν   (6) 

where ( )scG  is striction curve of N and s is arc length parameter of ( ).scG  

Let the Frenet frame and non-zero invariants of N be { }ahq GGG ,,  and 

,, 21 kk  respectively. Then, N is called a q-slant ruled surface if the ruling 

makes a constant angle θ  with a fixed non-zero direction uG  in the space, 
i.e., 

.2;cos, π≠θ=θ= antconstuq GG  (7) 
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Then we give the following characterizations for q-slant ruled 
surfaces. Whenever we talk about N, we will mean that the surface has 
the parametrization and Frenet elements as assumed in Definition 3.1. 

Theorem 3.1. N is a q-slant ruled surface if and only if the function 

,tan
2
1 θ=
k
k  (8) 

is constant, where θ  is the angle between the ruling qG  and a fixed 

direction. 

Proof. Let N be a q-slant ruled surface in uE G,3  be a unit vector of a 

fixed direction and θ  be constant angle between qG  and .uG  Then, N satisfies 

.cos, antconstuq =θ=
GG   (9) 

Differentiating (9) with respect to s gives .0, =uh GG
 Therefore, uG  lies on 

the plane spanned by the vectors qG  and ,aG  i.e., 

( ) ( ) .sincos aqu GGG
θ+θ=   (10) 

By differentiating (10) with respect to s it follows 

( ) ,sincos0 21 h
G

kk θ−θ=   (11) 

and then we have θ= tan/ 21 kk  is constant. 

Conversely, for a given a regular ruled surface N, let the Equation (8) 
is satisfied. We define 

( ) ( ) .sincos aqu GGG
θ+θ=   (12) 

Differentiating (12) and using (8) it follows ,0=′uG  i.e., uG  is a constant 

vector. On the other hand .cos, antconstuq =θ=
GG  Then N is a q-slant 

ruled surface. 
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Theorem 3.2. N is a q-slant ruled surface if and only if 
( ) .0,,det =′′′′′′ qqq GGG  

Proof. Let N be a regular ruled surface in .3E  From the Frenet 
formulae in (5), we have 

,1hq
GG

k=′  

,211
2
1 ahqq GGGG

kkkk +′+−=′′  

( ) ( ) ( ) ,23 1221
2
21

3
1111 ahqq GGGG

kkkkkkkkkk ′+′+−−′′+′−=′′′  

and then 

( ) .,,det
2
12

2
3
1

′






=′′′′′′
k
kkkqqq GGG  (13) 

Let now N be a q-slant ruled surface in .3E  By Theorem 3.1 we have 

2
1
k
k  is constant. Then from (13), it follows that ( ) .0,,det =′′′′′′ qqq GGG  

Conversely, if ( ) ,0,,det =′′′′′′ qqq GGG  since the curvatures are non-zero 

from (13) it is obtained that 
2
1
k
k  is constant and Theorem 3.1 gives that N 

is a q-slant ruled surface in .3E  

Theorem 3.3. N is a q-slant ruled surface if and only if 
( ) .0,,det =′′′′′′ aaa GGG  

Proof. From the Frenet formulae, we have 

,2ha
GG

k−=′  

,2
2221 ahqa GGGG
kkkk −′−=′′  

( ) ( ) ,32 222
2
1

3
222121 ahqa GGGG

kkkkkkkkkk ′−++′′−+′+′=′′′  
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and so, 

( ) .,,det
2
15

2
′






=′′′′′′
k
kkaaa GGG  (14) 

Let now N be a q-slant ruled surface in .3E  By Theorem 3.1 we have 

2
1
k
k  is constant. Then from (14), it follows that ( ) .0,,det =′′′′′′ aaa GGG  

Conversely, if ( ) ,0,,det =′′′′′′ aaa GGG  since the curvature 2k  is non-zero 

from (14) it is obtained that 
2
1
k
k  is constant and Theorem 3.1 gives that N 

is a q-slant ruled surface in .3E  

Theorem 3.4. N is a q-slant ruled surface if and only if 

,3 1hqmq ′′+′=′′′
GGG

k   (15) 

where ( ).2
2

2
1

1
1 kk
k
k

+−
′′

=m  

Proof. Assume that N is a q-slant ruled surface. From (5), we get 

,211
2
1 ahqq GGGG

kkkk +′+−=′′   (16) 

( ) ( ) ( ) .23 2
12121

2
21111 qahqq ′−′+′+−′′+′−=′′′

GGGGG
kkkkkkkkkk  (17) 

Since 
2
1
k
k  is constant, by differentiation we have 

,1221 kkkk ′=′   (18) 

and from (5) 

.1
1

qh ′=
GG

k
 (19) 
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Substituting (18) and (19) in (17) gives 

( ) ( ) .33 1211
2
2

2
1

1
1 aqqq GGGG

kkkkkk
k
k ′+′−′






 −−

′′
=′′′  (20) 

Using the second equation of (5), (15) is obtained from (20). 

Conversely, let us assume that (15) holds. Differentiating (19) we 
obtain 

,1
12

1

1 qqh ′′





+′
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



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
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k  (21) 

and so, 
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Substituting (15) in (22), it follows 
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Now, writing (16) in (23) and using (5), we have 
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On the other hand, from (5), it is obtained 

.2
2
211 ahqqh GGGGG

kkkk ′+−′−′−=′′   (25) 

Substituting (25) in (24), we have 

.
1
1

2
2

k
k

k
k ′

=
′  (26) 

Integrating (26) we get that 
2
1
k
k  is constant and by Theorem 3.1, N is a     

q-slant ruled surface. 
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Theorem 3.5. Let N be a developable ruled surface in .3E  Then N is 
a q-slant ruled surface if and only if the striction line ( )scG  is a general 

helix in .3E  

Proof. Since N is a developable ruled surface in ,3E  from Theorem 

2.1 we have ( ) ( ) ( ).sqstsc GGG
==′  Then from Definition 3.1, it is clear that 

N is a q-slant ruled surface if and only if the striction line ( )scG  is a 

general helix in .3E  

4. h-Slant Ruled Surfaces in 3E  

In this section, we introduce the definition and characterizations of    

h-slant ruled surfaces in .3E  First, we give the following definition. 

Definition 4.1. Let N be a regular ruled surface in 3E  given by the 
parametrization 

( ) ( ) ( ) ( ) ,1,, =+= sqsqscsr GGGG
νν   (27) 

where ( )scG  is striction curve of N and s is arc length parameter of ( ).scG  

Let the Frenet frame and non-zero invariants of N be { }ahq GGG ,,  and 

,, 21 kk  respectively. Then N is called an h-slant ruled surface if the 

central normal vector h
G

 makes a constant angle ϕ  with a fixed non-zero 
direction uG  in the space, i.e., 

.2;cos, π≠ϕ=ϕ= antconstuh GG
  (28) 

Then, under the assumptions given in Definition 4.1, we can give the 
following theorems characterizing h-slant ruled surfaces. 

Theorem 4.1. N is an h-slant ruled surface if and only if the function 

( )
′








+
1
2

2
2

2
1

2
1

2
3 k
k

kk

k  (29) 

is constant. 
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Proof. Assume that N is an h-slant ruled surface in .3E  Let uG  be a 

fixed constant vector such that ,cos, antconstcuh ==ϕ=
GG

 where ϕ  is 

the constant angle between h
G

 and .uG  Then for the vector ,uG  we have 

( ) ( ) ( ) ( ) ( ),21 sasbshcsqsbu GGGG
++=   (30) 

where ( )sbb 11 =  and ( )sbb 22 =  are smooth functions of arc length 

parameter s. Since uG  is constant, differentiation of (30) gives 













=+′

=−

=−′

.0

,0

,0

22

2211

11

k

kk

k

cb

bb

cb

 (31) 

From the second equation of system (31), we have 

.
1
2

21 k
kbb =  (32) 

Moreover, 

., 2
2

22
1 antconstbcbuu =++=

GG  (33) 

Substituting (32) in (33) gives 

.1 2
2

1
22

2 antconstnb ==















+
k
k  (34) 

If ,0=n  then 02 =b  and from (31) we have .0,01 == cb  This means 

that 0
GG

=u  which is a contradiction. Thus, .0≠n  Then from (34), it is 
obtained that 

.

1
2

1
2

2







+

±=

k
k

nb  (35) 
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Considering the third equation of system (31), from (35), we have 

.

1
22

1
2

k

k
k

cn
ds
d −=



























+

±  (36) 

This can be written as 

( )
,

1
2

2
2

2
1

2
1

2
3 antconstn

c ===
′








+

A
k
k

kk

k  

which is desired. 

Conversely, assume that the function in (29) is constant, i.e., 

( )
.

1
2

2
2

2
1

2
1

2
3 antconst==

′








+

A
k
k

kk

k  

We define 

.
2
2

2
1

1
2
2

2
1

2 ahqu GG
A

GG

kk

k

kk

k

+
++

+
=  (37) 

Differentiating (37) with respect to s and using (29) we have ,0=′uG  i.e., 

uG  is a constant vector. On the other hand ., antconstuh =
GG

 Thus, N is 

an h-slant ruled surface in .3E  

Theorem 4.2. Let N be a regular ruled surface in 3E  with first 
curvature .11 ≡k  Then N is an h-slant ruled surface if and only if the 

second curvature is given by 

( ) .
tan 222

s
ss

−ϕ
±=k  (38) 



SLANT RULED SURFACES 75

Proof. Let N be an h-slant ruled surface with .11 ≡k  Then for a 

fixed constant unit vector ,uG  we have 

.cos, antconstuh =ϕ=
GG

  (39) 

Differentiating (39) with respect to s gives 

,0,2 =+− uaq GGG
k   (40) 

and from (40) we have 

.,, 2 uauq GGGG
k=   (41) 

If we put ,, xua =
GG  we can write 

.cos2 axhqxu GGGG
+ϕ+= k   (42) 

Since uG  is unit, from (42), we have 

.
1
sin

2
2k+

ϕ±=x  (43) 

Then, the vector uG  is given as follows 

.
1
sincos

1

sin
2
2

2
2

2 ahqu GGGG

kk

k

+

ϕ±ϕ+
+

ϕ
±=  (44) 

Differentiating (40) with respect to s, it follows 

( ) .0,1 2
2
2 =′++− uah GGG

kk  (45) 

Writing x and (39) in (45) we have 

( ) .cos1
2

2
2
k
k
′

ϕ+
=x  (46) 

From (43) and (46), we obtain the following differential equation: 

( )
.01

1
tan 2/32

2

2 =+
+

′
ϕ±

k

k  (47) 
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By integration from (47), we get 

,0
1

tan
2
2

2 =++
+

ϕ± cs
k

k  (48) 

where c is integration constant. The integration constant can be 
subsumed thanks to a parameter change .css −→  Then (48) can be 
written as 

,
1

tan
2
2

2 s−=
+

ϕ±
k

k  (49) 

which gives us ( ) .
tan 222

s
ss

−ϕ
±=k  

Conversely, assume that ( )
222

tan s
ss

−ϕ
±=k  holds and let us put 

,tancos

tan
1

sin
1
sin 22

22

22
2

s

s
s

x −ϕϕ=

−ϕ
+

ϕ=
+

ϕ= ∓∓∓
k

 (50) 

where we are assuming that when 2k  has the positive (negative) sign, 

then x gets the negative (positive) sign and θ  is constant. Thus, 
.cos2 ϕ−= sxk  Let now consider the vector uG  defined by 

.tancos 22 




 





 −ϕ±+ϕ= ashqsu GGGG  (51) 

We will prove that uG  is constant and makes a constant angle ϕ  with .h
G

 

By differentiating (51) and using Frenet formulae we have ,0=′uG  i.e., 

the direction of uG  is constant and .cos, antconstuh =ϕ=
GG

 Then N is 

an h-slant ruled surface. 
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On the other hand, if the striction line ( )scG  is a geodesic on N, then 

the principal normal vector nG  of ( )scG  and the central normal vector h
G

 of 

N coincide. Then, we have the following corollary. 

Corollary 4.1. Let the striction line ( )scG  be a geodesic on N. Then N 

is an h-slant ruled surface if and only if the striction line is a slant helix 

in .3E  

If the ruled surface N is developable, then by Theorem 2.1, the Frenet 

frame { }bnt
GGG

,,  of the striction line ( )scG  coincides with the frame 

{ }ahq GGG ,,  and we can give the following corollary. 

Corollary 4.2. Let N be a developable surface. Then N is an h-slant 

ruled surface if and only if the striction line is a slant helix in .3E  

5. a-Slant Ruled Surfaces in 3E  

In this section, we introduce the definition of a-slant ruled surfaces in 

.3E  

Definition 5.1. Let N be a regular ruled surface in 3E  given by the 
parametrization 

( ) ( ) ( ) ( ) ,1,, =+= sqsqscsr GGGG
νν  

where ( )scG  is striction curve of N and s is arc length parameter of ( ).scG  

Let the Frenet frame and non-zero invariants of N be { }ahq GGG ,,  and 

,, 21 kk  respectively. Then N is called an a-slant ruled surface if the 

central tangent vector aG  makes a constant angle µ  with a fixed non-zero 

direction uG  in the space, i.e., 

.2;cos, π≠µ=µ= antconstua GG  
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From (10), it is clear that a ruled surface N is a-slant ruled surface if 
and only if it is a q-slant ruled surface. So, all the theorems given in 
Section 3 also characterize the a-slant ruled surfaces. 

After these definitions and characterizations of slant ruled surfaces 
we have the followings: 

Let 1N  and 2N  be two ruled surfaces in 3E  with Frenet frames 

{ }111 ,, ahq GGG  and { },,, 222 ahq GGG  respectively. If 1N  and 2N  have common 

central normals, i.e., 21 hh
GG

=  at the corresponding points of their 

striction lines, then 1N  and 2N  are called Bertrand offsets [17]. 

Similarly, if 21 ha
GG

=  at the corresponding points of their striction lines, 

then the surface 2N  is called a Mannheim offset of 1N  and the ruled 

surfaces 1N  and 2N  are called Mannheim offsets [14]. Considering these 

definitions we come to the following corollaries: 

Corollary 5.1. Let 1N  be an h-slant ruled surface. Then the Bertrand 

offsets of 1N  form a family of h-slant ruled surfaces. 

Corollary 5.2. Let 1N  and 2N  form a Mannheim offset. Then 1N  is 

a q-slant (or a-slant) ruled surface if and only if 2N  is an h-slant ruled 

surface. 

6. Examples 

Example 6.1. Let consider the ruled surface N given by the 
parametrization 

( ) =ν,sr  

( ) ( ) ( ) ( ) .
2

1
2

1,12
113

1,12
113

1 2/12/32/12/3






 +−−−+++ ννν sssss  
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(Figure 6.1). It is easily seen that ( ) .0,,det =′′′′′′ qqq GGG  Then Theorem 3.2 

gives that N is a q-slant ruled surface in .3E  Since the q-slant ruled 
surfaces are also a-slant, N is also an a-slant ruled surface. 

 

Figure 6.1. 

Example 6.2. Let consider the ruled surface N given by the 
parametrization ( ) ( ),,,, 321 rrrsr =ν

G  where 

( ) ( ) ( ) ( ) ( ) ,50cos68
1818cos6

550sin1700
918sin612

25,1 



 −+−= sssssr
8
0νν  

( ) ( ) ( ) ( ) ( ) ,50sin68
1818sin6

550cos1700
918cos612

25,2 



 −++−= sssssr
8
0νν  

( ) ( ) ( ).16cos17
1516sin272

15,3 sssr νν +=  
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(Figure 6.2). After some computations, the curvatures of the surface are 
obtained as 

( ) ( ).16cos17
510,16sin17

510
21 ss == kk  

Then we have 

( )
,255

136
1
2

2
2

2
1

2
1

2
3 −=

′








+
k
k

kk

k  

and Theorem 4.1 gives that N is an h-slant ruled surface. 

 

Figure 6.2. 
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7. Conclusion 

New types of ruled surfaces in Euclidean 3-space 3E  are defined and 
called slant ruled surfaces. Some properties of these special surfaces are 
obtained and the relationships between slant ruled surfaces and their 
striction lines are introduced. Of course, one can consider the definitions 
and characterizations given in this study for the ruled surfaces of the 
other spaces and obtain the corresponding characterizations. 
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