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Abstract 

We consider the complicated and exotic asymptotic expansions of solutions to a 
polynomial ordinary differential equation (ODE). They are such series on 
integral powers of the independent variable, which coefficients are the Laurent 
series on decreasing powers of the logarithm of the independent variable and on 
its pure imaginary power correspondingly. We propose an algorithm for writing 
ODEs for these coefficients. The first coefficient is a solution of a truncated 
equation. For some initial equations, it is a polynomial. Question: will the 
following coefficients be polynomials? Here the question is considered for the 
third ( ) ,3P  fifth ( ) ,5P  and sixth ( )6P  Painlevé equations. We have found that 

second coefficients in six of eight families of complicated expansions are 
polynomials, as well in two of four families of exotic expansions, but in other 
four families, polynomiality of the second coefficient demands some conditions. 
We give a survey of these results. 
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1. Introduction 

In 2004, I proposed a method for calculation of asymptotic expansions 
of solutions to a polynomial ordinary differential equation (ODE) [1]. It 
allowed to compute power expansions and power-logarithmic expansions 
(or Dulac series) of solutions, where coefficients of powers of the 
independent variable x are either constants or polynomials of logarithm 
of x. Later it is appeared that such equations have solutions with other 
expansions: they can have coefficients of powers of x as Laurent series 
either in increasing powers of log x or in increasing and decreasing 
imaginary powers of x. They are correspondingly complicated (psi-series) 
[2] or exotic [3] expansions. Methods from [1] are not suitable for their 
calculation. Now I have found a method to writing down ODE for each 
coefficient of such series (Section 2). The equations are linear and contain 
higher and low variations from some parts of the initial equation. The 
first coefficient is a solution of the truncated equation, and usually it is a 

Laurent series in log x or in .γix  But it is a polynomial or a Laurent 
polynomial for some equations. 

Question. Will be the following coefficients of the same structure? 

I consider this question for three Painlevé equations 53, PP  and ,6P  

because among 6 Painlevé equations 61-PP  there are 3 equations 

653 ,, PPP  having complicated and exotic expansions of solutions ([4-6]). 

First coefficients for equations ,, 53 PP  and 6P  are polynomials in log x in 

complicated expansions and usual or Laurent polynomials in γix  in 
exotic expansions [4, 6]. Each of the Painlevé equations ,, 53 PP  and 6P  

has 4 complex parameters .,,, dcba  Two of them are included into the 

truncated equation. These three Painlevé equations have 8 families of 
complicated expansions and 4 families of exotic expansions. I have 
calculated several first polynomial coefficients for all these 12 families, 
sometimes under some simplifications (Sections 3 and 4). Second 
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coefficients in 6 of 8 families of complicated expansions are polynomials, 
as well in 2 families of exotic expansions, but two families of complicated 
and two families of exotic expansions demand some conditions for 
polynomiality of the second coefficient. The third coefficient is a 
polynomial ether always, either under some restrictions on parameters, 
or never. We give a survey of these results. 

2. Writing ODEs for Coefficients 

2.1. Algebraic case 

Let we have the polynomial 

( ),, yxf   (1) 

and the series 
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where coefficients kϕ  are functions of some quantities. Let we put the 

series (2) into the polynomial (1) and will select all addends with fixed 
power exponent of x. For that, we break up the polynomial (1) into the 
sum 

( ) ( ) ,,
0

i
i

m

i
xyfyxf ∑

=

=  

and we write the series (2) in the form 

.0
def

1
0 ∆+ϕ=ϕ+ϕ= ∑

∞

=

k
k

k
xy  

Then 

,kk
k

xc j
j

j ∑
∞

=

=∆  



ALEXANDER D. BRUNO 46

where coefficients kjc  are definite sums of products of j coefficients lϕ  

and corresponding multinomial coefficients [7]. At last, each item 
( )∆+ϕ0if  can be expanded into the Taylor series 
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So the result of the substitution of series (2) into the polynomial (1) 
can be written as the sum 

( ) ( )










 ϕ
+ϕ ∑∑∑

∞

=

∞

==

k
k

k
xc

dy
fd

jfx j
j

j
i

j

j
i

i
m

i

0

1
0

0
!

1  

of items of the form 

( ) .!
1 0 k

kxc
dy
fd

jx jj
i

j
i ϕ   (3) 

Here integral indexes 0,, kji  are such 

.0then,0if; == kk jj   (4) 

Set of such points ( ) 3,, Z∈kji  will be denoted as M. At last, all items (3) 

with fixed power exponent nx  are selected by the equation .ni =+ k  

The set M can be considered as a part of the integer lattice 3Z  in 3R  
with points ( ),,, kji  which satisfy (4). 

If we look for expansion (2) as a solution of the equation ( ) 0, =yxf  

and want to use the method of indeterminate coefficients, then we obtain 
the equation ( ) 000 =ϕf  for the coefficient ,0ϕ  and equation 
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for the coefficient nϕ  with ,0>n  where 

( ) { }.0if,1and,0 =>=+>= ijnijn k∩MN  

That equation can be cancelled by nx  and be written in the form 
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Theorem 1 ([8]). If ( ) ,000 ≠ϕ dydf  then coefficients nϕ  can be found 

from Equation (6) successfully with increasing n. 

2.2. Case of ODE 

If ( )yxf ,  is a differential polynomial, i.e., it contains derivatives 

,ll dxyd  then the job of derivatives j
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Analogue of the Taylor formula is correct for variations 
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Let now we have the differential polynomial ( )yxf ,  and we look for 

solution of the equation ( ) 0, =yxf  in the form of expansion (2). Here the 

technique, described above for algebraic equation, can be used, but with 
the following refinements: 

 



ALEXANDER D. BRUNO 48

(1) According to [1], differential polynomial ( )yxf ,  is a sum of 

differential monomials ( ),, yxa  which are products of a usual monomial 

const sr yx⋅  and several derivatives .ll dxyd  Each monomial ( )yxa ,  

corresponds to its vectorial power exponent ( ) ( )21, qqaQ =  under the 

following rules: 

( ) ( ) ( ) ( ) ( ),1,,,,0const ldxydQsryxQQ llsr −===  

vectorial power exponent of a product of differential monomials is a 
vectorial sum of their vectorial power exponents ( ) ( ) ( ).bQaQabQ +=  Set 

( )fS  of all vectorial power exponents ( )aQ  of all differential monomials 

( )yxa ,  containing in ( )yxf ,  is called as support of f. Its convex hull ( )fΓ  

is a Newton polygon of f. Its boundary Γ∂  consists of vertices ( )0
jΓ  and 

edges ( ).1
jΓ  To each boundary element ( )d

jΓ  corresponds the truncated 

equation ( ) ,0ˆ =d
jf  where ( )d

jf̂  is a sum of all monomials with power 

exponents ( ).d
jQ Γ∈  The first term of solution’s expansion to the full 

equation is a solution to the corresponding truncated equation. Now the 
part ( )yxfi ,  contains all such differential monomials ( ),, yxa  for which 

in ( )aQ  the first coordinate .1 iq =  Besides, we assume that ( )yxf ,  has 

no monomials with ,01 <q  and ( ) .00 ≡/yf  Then all formula of the 

algebraic case with variations instead of derivations are correct. 

(2) Variations are operators, which are not commute with differential 
polynomials. So the formulae (5) takes the form 
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but in it we cannot cancel by nx  and obtain an analogue of formulae (6).     

In (7), all j
i

j yf δδ  are taken for .0ϕ=y  

 



POWER GEOMETRY AND EXPANSIONS OF SOLUTIONS … 49

Theorem 2 ([8]). In the expansion (2) coefficient nϕ  satisfies Equation (7). 

(3) Rules of commutation of variations with functions of different 

classes exist. If kϕ  is a series in log x, then xlog=ξ  and .ξ= ss ex  

Lemma 1 ([4]). 
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 are binomial coefficients and ( )kϕ  is the k-th derivation of ( )ξϕ  

along .ξ   

If kϕ  is a series in ,γix  then γ=ξ ix  and ( ).γξ= issx  

Lemma 2 ([9]). 
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These lemmas give rules of commutation of an operator with .sx  

Applying them in Equation (7), we can cancel the equation by nx  and 
obtain an equation without x, only with .ξ  So the algorithm consists of 

the following steps: 

Step 0. From the initial equation ( ) ,0, =yxf  we select such 

truncated equation ( )( ) ,0,ˆ 1
1 =yxf  which corresponds to edge ( )1

1Γ  of the 

polygon Γ  of the differential sum ( )yxf ,  and has a complicated or exotic 

solution depending from log x or R∈γγ ,ix  correspondingly. 

Step 1. We make a power transformation of the variables zxy l=  to 
make the truncated equation correspond to the vertical edge. 
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Step 2. We divide the transformed equation ( ) 0, =zxg  into parts 

( ) ,, i
i xyxg  corresponding to different verticals of its support. 

Step 3. In these parts ( ) i
i xyxg ,  we change the independent variable 

x by log x or by .γix  

Step 4. We write down equations for several first coefficients .kϕ  

Step 5. Using the rules of commutation, we exclude powers of x from 
these equations and we obtain linear ODEs for coefficients with 

independent variable log x or .γix  Their solutions are power expansions 
and can be computed by known methods from [1]. 

 

Figure 1. Support and polygon of the Equation (8) for .0,,, ≠dcba  
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3. Results for Complicated Expansions 

3.1. The third Painlevé equation 3P  

Written as differential polynomial, it is 

( ) ,0, 432def
=++++′−′+′′−= dxcxybyayyyyxyxyyxf   (8) 

where dcba ,,,  are complex parameters. Its support and polygon for 

0,,, ≠dcba  are shown in Figure 1. The edge ( )1
1Γ  corresponds to the 

truncated equation 

( ) .0ˆ 2def1
1 =++′−′+′′−= dxbyyyyxyxyf   (9) 

After the power transformation xzy =  and canceling by x, the full 

Equation (8) became 

.04432222def
=++++′−′+′′−= zcxzaxdbzzxzzxzzxg   (10) 

Here the truncated Equation (9) takes the form 

.0222def
0 =++′−′+′′−= dbzzxzzxzzxg   (11) 

Support and polygon of Equation (10) are shown in Figure 2. Here the 

truncated equation (11) corresponds to the vertical edge ( )1
1

~Γ  at the axis 

.01 =q  Here ., 4
4

3
2 czgazg ==  After the logarithmic transformation 

,log x=ξ  Equation (11) takes the form 
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where .ξ= ddzz�  Support and polygon of Equation (12) are shown in 

Figure 3 in the case .0≠bd  Here ., 4
4

3
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Figure 2. Support and polygon of the Equation (10) for .0,,, ≠dcba  

 

Figure 3. Support and polygon of the Equation (12) with .0≠bd  
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Let .0≠b  The edge ( )1
1

~Γ  of Figure 3 corresponds to the truncated 

equation 

( ) .0ˆ 2def1
1 =++−= bzzzzh ���  

It has the power solution .22ξ−= bz  According to [1], extending it as 

expansion in decreasing powers of ,ξ  we obtain the solution of Equation 

(11) 

( ) ,2
~log2 0

2 ϕ=−+−= b
dcxbz  (13) 

where c~  is arbitrary constant. 

Let us consider Equation (11) in the case .0,0 ≠= db  It has 

solution 

( ) .~log 0ϕ=+−±= cxdz   (14) 

Solutions to Equation (10) have the form of expansion 
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where 0ϕ  is given by (13) or (14). 

In the first case ,0≠b  we call family of solutions (15) as main, and 
in the second case ,0,0 ≠= db  we call the family of solutions (15) as 

additional 

According to Theorem 2, equation for 2ϕ  is 
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According to (10), 3
2 azh =  and according to Lemma 1, 
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So, Equation (16), after cancelling ,2x  takes the form 

[ ] [ ] ( ) ,02244 3
222222 =+ϕ−+ϕ+ϕ+ϕ+ϕ+ϕ− azzbzz �������  

where 0ϕ=z  from (13) or (14). In both cases that equation has a 

polynomial solution: 

[ ( ) ( ) ] ,2
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4,2122216
2

2
2234
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 +ξ−ξ−=ϕλ+ξλ+−ξλ++ξ−ξ=ϕ adab  

where ,2bd=λ  for the main family, and for the additional family 

correspondingly. 

Hypothesis 1 ([8]). Coefficients ( )ξϕ k2  in expansion (15) of the main 

family of the equation 3P  are polynomials in log x, if the parameter of the 

equation .0=d  

Theorem 3 ([8]). Third 4ϕ  and fourth 6ϕ  coefficients in expansion 

(15) of the additional family of the equation 3P  are polynomials if the 

parameter of the equation .0=a  The fifth coefficient 8ϕ  never is a 

polynomial, if .0≠+ ca  

3.2. The fifth Painlevé equation 5P  

It can be written as 

( ) ( ) ( ) 223222 1112
31 bzzazzzxzzzxzzzx ++++′−





 +′++′′−  

( ) ( ) ( ) .0211 222 =+++++ zzdxzcxz  (17) 

It has two different cases of beginning of complicated expansions. Its 
Newton polygon Γ  is in Figure 4. 
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Figure 4. Support and Newton polygon of the equation .5P  

Two its edges ( )1
1Γ  (Case I) and ( )1

2Γ  (Case II) give truncated 

equations, which solutions can be continued as complicated expansions 
and as exotic expansions. The truncated equation, corresponding to the 

edge ( ),1
1Γ  coincides with considered truncated equation for equation 3P  

and contains parameters c, d. Let .xzv =  
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To study Case II, in Equation (17), we make transformation wz 1=  

and obtain equation 

( ) ( ) ( ) ( )2222def
112

11, wawwxwwwxwwwxwxh +++′+




 +′−+′′=  

( ) ( ) ( ) .02111 222222 =++++++ wwwdxwcxwbw  

If write 

( ) ( ) ( ) ( ),,,,, 2
2
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then 

( ) ( ) ( )12
11, 222
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 +′−+′′= wwxwwwxwwwxwxh  

( ) ,1 22 bwwa +++  

  ( ) ( ) ,1, 22
1 wcwwxh +=  

( ) ( ) ( ).121, 22
2 ++= wwdwwxh  (18) 

Expansions of solutions to the full equation 5P  have the form 

( ) ( ) ,or
1

0
k

k
k

xwv ξϕ+ξϕ= ∑
∞

=

  (19) 

where 0ϕ  belongs to two families (main and additional) in each of both 

Cases I, II and are polynomials. 

Theorem 4 ([10]). For the equation ,5P  the second coefficients ( )ξϕ1  

are polynomials for 3 complicated expansions (19), but for the main family 
in Case I, it is true iff the parameter .0=d  
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3.3. The sixth Painlevé equation 6P  

Its Newton polygon is in Figure 5. 

 

Figure 5. Support and Newton polygon of the equation .6P  

We consider the truncated equation corresponding to left vertical 
edge. It has 2 parameters a, c and after the power transformation 

wy 1−=  it coincides with the truncated equation of equation 5P  in the 

Case II, i.e., ( ) 0,0 =wxh  from (18) with – c instead of b. If ,0
def

≠−=α ca  

the truncated equation has solutions 

( ) ,~
2 0

2 ϕ=
α

++ξα= acw  (20) 
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where c~  is an arbitrary constant. If ,0,0 ≠=α a  then it has solutions 

( ) ( ).~20 caw +ξ±==ξϕ   (21) 

Here we look for expansions of solutions to the full equation 6P  in 
the form (19), where ( )ξϕ0  is either (20) or (21), then (19) forms the main 
family, or the additional family correspondingly. 

Theorem 5. In the complicated expansions (19) for the equation ,6P  
the second coefficient 1ϕ  is a polynomial for the additional family, but it 
is so for the main family iff .2a=α  

4. Results for Exotic Expansions 

Exotic expansions can give real functions. For example, 2=+ −ii xx  
.logcos x  For beginning of exotic expansions, equations ,, 53 PP  and 6P  

have the same truncated equations as it was for complicated expansions. 
Each of the truncated equations of ,3P  of 5P  in Case I, of 5P  in Case II 
and of 6P  has one big family of solutions in the form 

( ) ,1
0

−ξ++ξ=ξϕ CBA   (22) 

where .0,const,,const,, ≠γ∈=γ=ξ∈= γ RC ixCBA  Exotic expansions 
for equations ,, 53 PP  and 6P  have the form (19), where all ( )ξϕk  are 
convergent Laurent series, and k  are even for equation .3P  

Theorem 6 ([9]). In the exotic expansion (19) for equation ,3P  the 
second coefficient ( )ξϕ2  is a Laurent polynomial. 

Theorem 7 ([10]). In the exotic expansion (19) for the Case I of 
equation ,5P  the second coefficient ( )ξϕ1  is always Laurent polynomial, 
but for the Case II of equation ,5P  it is a Laurent polynomial only under 
two conditions 

( ) ( ) ( ) 0112,012 2 =−γ+=++ CBABBAC  

on parameters of the solution 0ϕ  in (22). 
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Theorem 8. In the exotic expansion (19) for equation ,6P  the second 

coefficient ( )ξϕ1  is a Laurent polynomial only under three conditions: 

( ) ( ) ( ) ( ) ,0112,012 2 =−−γ+=++ dbCBABBAC  

[ ] .036 2 =−− BBAC  

Usually the equation for ( )ξϕk  has two solutions: with increasing and 

with decreasing powers of .ξ  But they coincide if the solution is an usual 

or Laurent polynomial. If all coefficients ( )ξϕk  are polynomials then 

there is one family of expansions (19). In another case there are two 
different families. Details see in [10]. 

5. Conclusion 

In both cases: complicated and exotic expansions we have its own 
alternative. In complicated expansion, the coefficient ( )ξϕk  is either a 

polynomial or a divergent Laurent series. In exotic expansion, the 
coefficient ( )ξϕk  is either a Laurent polynomial, in that case it is unique, 

or a Laurent series, then there are two different coefficients both in form 
of convergent series. 

In all considered cases, when coefficient ( ) +ξ+ξ=ξϕ −1mm EDk  

…+ξ −2mF  of the complicated or exotic expansion is an usual or Laurent 

polynomial, its coefficients ,,,, …FED  satisfy to a system of linear 

algebraic equations. And number of equations is more than number of 
these coefficients. Such linear systems have solutions only in degenerated 
cases when rank of the extended matrix of the system is less than the 
maximal possible. Existence of such situations in the Painlevé equations 
shows their degeneracy or their inner symmetries. 
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