Research and Communications in Mathematics and Mathematical Sciences Vol. 10, Issue 1, 2018, Pages 25-40 ISSN 2319-6939 Published Online on February 27, 2018 2018 Jyoti Academic Press http://jyotiacademicpress.org

CHARACTERIZATION IN TERMS OF MEASURE OF LACUNARY UNIFORM STATISTICAL CONVERGENCE OF DOUBLE SEQUENCES

FIKRET ČUNJALO

Department of Mathematics Faculty of Natural Sciences and Mathematics University of Sarajevo Bosnia & Herzegovina e-mail: fcunjalo01@hs-hkb.ba

Abstract

In the [3] is proven that almost every, in terms of measure P_A , subsequence $S(x)$ of double sequence *S* converges to *L* in the Pringsheim's sense, if and only if sequence *S* uniformly statistically converges to *L*. In this paper, it is proven that analogue is valid and for lacunary uniformly statistical convergence. Almost every, in terms of measure P_A , subsequence $S(x)$ of double sequence *S* converges to *L* in the Pringsheim's sense, if and only if sequence *S* lacunary uniformly statistically converges to *L*.

This is not true for measure *P*.

Almost every, in terms of measure P , subsequence $S(x)$ of double sequence S of 0's and 1's is not almost uniformly statistically convergent, if is sequence *S* lacunary uniformly statistically convergent and divergent in the Pringsheim's sense.

²⁰¹⁰ Mathematics Subject Classification: Primary 40B05; Secondary 40A35, 40G15. Keywords and phrases: multiple sequences, statistical convergence.

Communicated by Erdinc Dundar.

Received January 23, 2018; Revised February 15, 2018

1. Introduction

The concept of the statistical convergence of a sequences of real numbers was introduced by Fast [10]. Furthermore, Gökhan et al. [13] introduced the notion of pointwise and uniform statistical convergent of double sequences of real-valued function. Dündar and Altay [5-9] investigated the relation between *I*-convergence of double sequences. Fridy and Orhan [12] have studied lacunary statistical convergence of single sequences. Patterson and Savaş in [14] defined the lacunary statistical analogue for double sequences. Now, we recall that the definitions of concepts of ideal convergence and basic concepts [1, 2, 11].

The sequence S_{ij} of real numbers converges to L in the Pringsheim's sense, if for $\forall \varepsilon > 0$, $\exists K > 0$ such that

$$
|S_{ij} - L| \leq \varepsilon, \ \forall i, \ j \geq K.
$$

We write $\lim_{i,j\to\infty} S_{ij} = L$.

Let *K* ⊂ N × N. Let K_{nm} be the number of $(i, j) \in K$ such that $i \leq n, j \leq m$. If

$$
d_2(K) = \lim_{n,m \to \infty} \frac{K_{nm}}{nm},
$$

in the Pringsheim's sense then, we say that *K* has double natural density. Let is sequence S_{ij} of real numbers and $\varepsilon > 0$. Let

$$
A(\varepsilon) = \{(i, j) \in \mathbb{N} \times \mathbb{N} : |S_{ij} - L| \geq \varepsilon\}.
$$

The sequence $S = S_{ij}$ statistically converges to $L \in \mathbb{R}$ if $d_2(A(\varepsilon)) = 0$ for $\forall \varepsilon > 0$.

We write $st - \lim S_{ij} = L$. Let is set $X \neq 0$. A class *I* of subsets of *X* is said to be an *ideal in X* provided the following statements hold:

(i) $\emptyset \in I$, (ii) $A, B \in I \Rightarrow A \cup B \in I$, (iii) $A \in I$, $B \subset A \Rightarrow B \in I$.

The ideal is called *nontrivial* if $I \neq \{0\}$ and $X \in I^c$. A nontrivial ideal *I* is called *admissible* if it contains all the singleton sets. A nontrivial ideal *I* on $N \times N$ is called *strongly admissible* if $\{i\} \times N$ and $\mathbb{N} \times \{i\}$ belong to *I* for each $i \in \mathbb{N}$.

A nonempty family *F* of subsets of a set *X* is called a *filter* if

- (i) $\emptyset \in F^c$,
- (ii) $A, B \in F \Rightarrow A \cap B \in F$,
- (iii) $A \in F$, $A \subset B \Rightarrow B \in F$.

In this paper, the focus is put on ideal $I_u \subset 2^{\mathbb{N} \times \mathbb{N}}$ defined by: subset *A* belongs to the I_u if

$$
\lim_{p,q\to\infty}\frac{1}{pq}|\{i < p, \ j < q : (n+i, \ m+j) \in A\}| = 0,
$$

uniformly on $n, m \in \mathbb{N}$ in the Pringsheim's sense. That is subset *A* of the set $N \times N$ is uniformly density zero.

The sequence $S = S_{ij}$ uniformly statistically converges to *L* if for any ε > 0

$$
\{(i, j) \in \mathbb{N} \times \mathbb{N} : |S_{ij} - L| \ge \varepsilon\} \in I_u.
$$

That is sequence $S = S_{ij}$ uniformly statistically converges to *L* if ∀ε, ε′ > 0, ∃*K* > 0 such that

$$
\frac{1}{pq}|\{i < p, \ j < q : |S_{n+i, m+j} - L| \geq \varepsilon\}| < \varepsilon', \ \forall p, \ q \geq K, \ \forall n, \ m \in \mathbb{N}.
$$

We write $Ust - \lim S_{ij} = L$.

We denote with X a set of all double sequences of 0 's and 1 's, i.e.,

$$
X = \{x = x_{ij} : x_{ij} \in \{0, 1\}, i, j \in \mathbb{N}\}.
$$

Let sequence $S = S_{ij}$ and $x \in X$. Then with $S(x)$ we denote a sequence defined following way:

$$
S_{ij}(x) = S_{ij}, \text{ for } x_{ij} = 1.
$$

The mapping $x \to S(x)$ is a bijection of the set *X* to a set of all subsequences of the sequence *S*.

Then, under the Lebesgue measure on the set of all subsequences of the sequence *S* consider Lebesgue measure on the set *X*.

Let β smallest σ-algebra subsets of the set *X* which contains of subsets in the form of:

$$
\{x = (x_{nm}) \in X : x_{n_1m_1} = a_1, x_{n_2m_2} = a_2, \dots, x_{n_km_k} = a_k\},\
$$

$$
a_1, \dots, a_k \in \{0, 1\}, k \in \mathbb{N}.
$$

There is a unique Lebesgue measure *P* on the set *X* for which the following applies:

$$
P(\lbrace x=(x_{nm}) \in X : x_{n_1m_1} = a_1, x_{n_2m_2} = a_2, \cdots, x_{n_km_k} = a_k \rbrace) = \frac{1}{2^k}.
$$

The subsequence $S(x)$ of sequence *S* uniformly statistically converges to *L* if ∀ε, ε' > 0, ∃*K* > 0 such that for $∀p, q ≥ K$ and $∀n, m ∈ ℕ$ provided that $x_{nm} = 1$, we have

CHARACTERIZATION IN TERMS OF MEASURE ... 29

$$
\frac{|\{i < p, j < q : |S_{n+i, m+j} - L| \geq \varepsilon, x_{n+i, m+j} = 1\}|}{|\{i < p, j < q : x_{n+i, m+j} = 1\}|} \leq \varepsilon'.
$$

We write $Ust - \lim S_{ij}(x) = L$.

By a lacunary sequence, we mean an increasing sequence $\Theta = (k_r)$ such that

$$
k_0 = 0
$$
 and $h_r = k_r - k_{r-1} \rightarrow \infty$ as $r \rightarrow \infty$.

Let

$$
I_1 = \{(i, j) \in \mathbb{N} \times \mathbb{N} : i, j \le k_1\},\
$$

$$
I_2 = \{(i, j) \in \mathbb{N} \times \mathbb{N} : i, j \le k_2\} \setminus I_1, \dots,
$$

 ${I_r} = \{(i, j) \in \mathbb{N} \times \mathbb{N} : i, j \leq k_r\} \setminus (I_{r-1} \cup I_{r-2} \cup \dots \cup I_1)$, for $\forall r \in \mathbb{N}$.

The sequence S_{ij} lacunary statistically converges to *L* if $\forall \varepsilon > 0$, we have

$$
\lim_{r \to \infty} \frac{1}{|I_r|} |\{(i, j) \in I_r : |S_{ij} - L| \ge \varepsilon\}| = 0.
$$

We write S_{Θ} – $\lim S_{ij} = L$.

Fridy proved that if $S = S_i$ sequence of real numbers and $\Theta = (k_r)$ lacunary sequence such that

$$
1 < \liminf \frac{k_r}{k_{r-1}} \le \limsup \frac{k_r}{k_{r-1}} < \infty.
$$

Then, sequence $S = S_i$ statistically convergent if and only if it lacunary statistically convergent.

Let $S = S_{ij}$ double sequence of real numbers and $\Theta = (k_r)$ lacunary sequence of natural numbers.

A sequence $S = S_{ij}$ lacunary uniformly statistically converges to real number *L* if $\forall \varepsilon, \varepsilon' > 0, \exists r_0 \in \mathbb{N}$ such that for $\forall r > r_0$ and $\forall n, m \in \mathbb{N}$, we have

$$
\frac{1}{|I_r|} |\{(i, j) \in I_r : |S_{n+i, m+j} - L| \ge \varepsilon\}| \le \varepsilon'.
$$

We write Ust_{Θ} – $\lim S_{ij} = L$.

The subset *A* of the set $N \times N$ is lacunary uniformly density zero if $\forall \varepsilon > 0, \exists r_0 \in \mathbb{N}$ such that for $\forall r > r_0$ and $\forall n, m \in \mathbb{N}$, we have

$$
\frac{1}{|I_r|} |\{(i, j) \in I_r : (n+i, m+j) \in A\}| \leq \varepsilon.
$$

2. New Results

Not almost every, in terms of *P*, subsequence $S(x)$ of double sequence *S* is convergent to *L* in the Pringsheim's sense if *S* converges to *L* lacunary uniformly statistically.

Example. Let be $\Theta = (k_r)$ lacunary sequence and $A \subset \mathbb{N} \times \mathbb{N}$ lacunary uniformly density zero such that for $\forall N \in \mathbb{N}$, $\exists (i, j) \in A$ and $i, j \geq N$.

Let the sequence $S = (S_{ij})$ defined as

$$
S_{ij} = \begin{cases} 1, & (i, j) \notin A, \\ 0, & (i, j) \in A. \end{cases}
$$

Then, $\forall \varepsilon > 0$, $\forall n, m \in \mathbb{N}$, the following is valid:

$$
\frac{1}{|I_l|} |\{(i, j) \in I_l : |S_{n+i, m+j} - 1| \ge \varepsilon\}|
$$

=
$$
\frac{1}{|I_l|} |\{(i, j) \in I_l : (n+i, m+j) \in A\}| \to 0 \text{ for } l \to \infty.
$$

Respectively, Ust_{Θ} – lim S_{ij} = 1. Let

$$
B = \bigcap_{M=1}^{\infty} \bigcup_{i, j \ge M}^{\infty} \{x \in X : x_{ij} = 1, (i, j) \in A\}.
$$

$$
\sum_{i, j \ge M, (i, j) \in A} P(\{x \in X : x_{ij} = 1\}) = \sum_{i, j \ge M, (i, j) \in A} \frac{1}{2} = \infty.
$$

Due to second part of Borel-Cantelli lemma, $P(B) = 1$.

Since subsequence $S(x)$ of *S* does not converge to 1 in the Pringsheim's sense if and only if $x \in B$, it,

$$
P({x \in X : \lim_{i,j \to \infty} S_{ij}(x) = 1 \text{ in the Pringsheim's sense}}) = 0.
$$

Let $A \subset \mathbb{N} \times \mathbb{N}$. There is a unique measure P_A on X with the property:

$$
P_A(\{x \in X : x_{ij} = 1\}) = \begin{cases} \frac{1}{2}, & (i, j) \notin A, \\ \frac{1}{2^{i+j}}, & (i, j) \in A, \end{cases}
$$

 $P_A(\lbrace x \in X : x_{i_1j_1} = a_1, \dots, x_{i_kj_k} = a_k \rbrace)$ $= P_A(\lbrace x \in X : x_{i_1 j_1} = a_1 \rbrace) \cdots P_A(\lbrace x \in X : x_{i_k j_k} = a_k \rbrace).$

Analogue theorem is valid: Let the sequence $S = (S_{ij})$ be divergent in the Pringsheim's sense. Then, *S* uniformly statistically converges to *L* if and only if $\exists A \subset \mathbb{N} \times \mathbb{N}$ uniformly density zero such that

$$
P_A(\{x \in X : \lim_{i,j \to \infty} S_{ij}(x) = L \text{ in the Pringsheim's sense}\}) = 1.
$$

Theorem 2.1. Let the sequence $S = (S_{ij})$ divergent in the Pringsheim's *sense*. *Then*, *the sequence S lacunary uniformly statistically converges to L if and only if* ∃*A* ⊂ N × N *lacunary uniformly density zero such that*

$$
P_A(\{x \in X : \lim_{i,j \to \infty} S_{ij}(x) = L \text{ in the Pringsheim's sense}\}) = 1.
$$

Proof. Because of lemma the following is valid: Let is Ust_{Θ} – lim *S*_{*ij*} = *L*, then ∃*A* ⊂ N × N lacunary uniformly density zero such that the subsequence $S(y)$ of *S* converges to *L* in the Pringsheim's sense for

$$
y_{ij} = \begin{cases} 1, & (i, j) \notin A, \\ 0, & (i, j) \in A. \end{cases}
$$

Not generalizing we can assume that *L* is not a point accumulation of the subsequence $S(x)$ for

$$
x_{ij} = \begin{cases} 1, & (i, j) \in A, \\ 0, & (i, j) \notin A. \end{cases}
$$

Hence, the subsequence $S(z)$ converges to L in the Pringsheim's sense if and only if $\exists M \in \mathbb{N}$ such that

$$
\{(i, j) \in \mathbb{N} \times \mathbb{N} : z_{ij} = 1, i, j \geq M\} \bigcap A = \emptyset.
$$

Let

$$
B_M = \{x \in X : x_{ij} = 1, i, j \ge M, (i, j) \in A\}, B = \bigcap_{M=1}^{\infty} B_M.
$$

Then, $\forall M \in \mathbb{N}$, is,

$$
P_A(B) \le P_A(B_M) = \sum_{i, j \ge M, (i, j) \in A} \frac{1}{2^{i+j}} \le \sum_{i, j \ge M} \frac{1}{2^{i+j}} = \frac{1}{2^{2M-2}}.
$$

Hence, $P_A(B) = 0$. Since the set *B* is a set of all $x \in X$ for which $S(x)$ does not converge to *L* in the Pringsheim's sense. It,

$$
P_A(\{x \in X : \lim_{i,j \to \infty} S_{ij}(x) = L \text{ in the Pringsheim's sense}\}) = 1.
$$

Let the sequence *S* not be lacunary uniformly statistically convergent and let $A \subset \mathbb{N} \times \mathbb{N}$ lacunary uniformly density zero. Then, due to the lemma, the subsequence $S(x)$ is divergent in the Pringsheim's sense for

$$
x_{ij} = \begin{cases} 1, & (i, j) \notin A, \\ 0, & (i, j) \in A. \end{cases}
$$

The following cases can be presented:

(a)
$$
\exists (n_k), (m_k), n_k \nearrow, m_k \nearrow, (n_k, m_k) \notin A
$$
, $S_{n_k m_k} \ge k$ for $\forall k$,
\n(b) $\exists (n_k), (m_k), n_k \nearrow, m_k \nearrow, (n_k, m_k) \notin A$, $S_{n_k m_k} \le -k$ for $\forall k$,
\n(c) $\exists (n_k^1), (m_k^1), \exists (n_k^2), (m_k^2), (n_k^1, m_k^1), (n_k^2, m_k^2) \notin A$, $S_{n_k^1 m_k^1} \le \lambda < \mu$
\n $\le S_{n_k^2 m_k^2}$. It follows:

(a)
$$
\sum_{k=1}^{\infty} P_A(\{x \in X : x_{n_k m_k} = 1\}) = \sum_{k=1}^{\infty} \frac{1}{2} = \infty,
$$

\n(b)
$$
\sum_{k=1}^{\infty} P_A(\{x \in X : x_{n_k m_k} = 1\}) = \sum_{k=1}^{\infty} \frac{1}{2} = \infty,
$$

\n(c)
$$
\sum_{k=1}^{\infty} P_A(\{x \in X : x_{n_k^1 m_k^1} = 1\}) = \sum_{k=1}^{\infty} P_A(\{x \in X : x_{n_k^2 m_k^2} = 1\}) = \infty.
$$

Then due to second part of Borel-Cantelli lemma the following is valid:

- (a) $P_A(\{x \in X : x_{n_k m_k} = 1 \text{ for infinite } k\}) = 1,$
- (b) $P_A(\{x \in X : x_{n_k m_k} = 1 \text{ for infinite } k\}) = 1,$
- (c) $P_A(\lbrace x \in X : x_{n_k^1 m_k^1} = x_{n_k^2 m_k^2} = 1 \text{ for infinite } k \rbrace) = 1.$

It follows

$$
P_A(\{x \in X : S(x) \text{ divergent in the Pringsheim's sense}\}) = 1.
$$

Hence,

$$
P_A(\{x \in X : S(x) \text{ convergent in the Pringsheim's sense}\}) = 0.
$$

Lemma 2.2 ([4]). Let is $\Theta = (k_r)$ lacunary sequence and $S = S_{ij}$ *double sequence. Then,* Ust_{Θ} − lim S_{ij} = *L if and only if* $\exists A \subset \mathbb{N} \times \mathbb{N}$ *lacunary uniformly density zero and* $\lim_{i, j \to \infty} S_{ij}(x) = L$, *in the Pringsheim*'s *sense*, *for*

$$
x_{ij} = \begin{cases} 1, & (i, j) \notin A, \\ 0, & (i, j) \in A. \end{cases}
$$

Proof. Let is Ust_{Θ} – $\lim S_{ij} = L$. Then there is a sequence of natural numbers $(u_r)_{r=2}^{\infty}$ such that for $\forall l \ge u_r$ and $\forall n, m \in \mathbb{N}$, we have

$$
\frac{1}{|I_l|} \left| \left\{ (i, j) \in I_l : |S_{n+i, m+j} - L| \ge \frac{1}{r} \right\} \right| \le \frac{1}{r}.
$$

Let

$$
A = \bigcup_{r=2}^{\infty} \bigcup_{n,m=1}^{\infty} \left\{ (n+i, m+j) : (i, j) \in \bigcup_{l=u_r}^{u_{r+1}-1} I_l, |S_{n+i, m+j} - L| \geq \frac{1}{r} \right\}.
$$

We define $x \in X$ the following way:

$$
x_{ij} = \begin{cases} 1, & (i, j) \notin A, \\ 0, & (i, j) \in A. \end{cases}
$$

For $\forall \varepsilon > 0, \exists r_0 \in \mathbb{N}$ such that for $\forall r \geq r_0$ we have $\frac{1}{r} \leq \varepsilon$. From the definition of the sequence *x*, such that for $l \geq u_{r_0}$ and $\forall n, m \in \mathbb{N}$ provided that $x_{n+i, m+j} = 1$, we have

$$
|S_{n+i, m+j}(x) - L| = |S_{n+i, m+j} - L| \le \varepsilon.
$$

Hence, for $\forall i, j \geq k_{u_{r_0}}$ and $\forall i, j \in \mathbb{N}$ provided that $x_{ij} = 1$, we have

$$
|S_{ij}(x) - L| \leq \varepsilon.
$$

Hence, the subsequence $S(x)$ converges to L , in the Pringsheim's sense. For $\forall l \leq u_{r_0}$ and $\forall n, m \in \mathbb{N}$ valid

$$
\frac{1}{|I_l|} |\{(i, j) \in I_l : (n + i, m + j) \in A\}|
$$

$$
= \frac{1}{|I_l|} \left| \{(i, j) \in I_l : |S_{n + i, m + j} - L| \ge \frac{1}{r} \right| \le \frac{1}{r} \le \varepsilon.
$$

Hence,

$$
\lim_{l \to \infty} \frac{1}{|I_l|} |\{(i, j) \in I_l : (n + i, m + j) \in A\}| = 0, \text{ uniformly for } \forall n, m \in \mathbb{N}.
$$

We assume that there is a subset A of the set $N \times N$ such that

 ${\lim_{l \to \infty} \frac{1}{|I_l|} |\{(i, j) \in I_l : (n + i, m + j) \in A\}| = 0, \text{ uniformly for } \forall n, m \in \mathbb{N}}$ and $\lim_{i,j\to\infty} S_{ij}(x) = L$, in the Pringsheim's sense, for

$$
x_{ij} = \begin{cases} 1, & (i, j) \notin A, \\ 0, & (i, j) \in A. \end{cases}
$$

For $\forall \varepsilon > 0$, $\exists N \in \mathbb{N}$ such that for $\forall n, m \ge N$, we have

$$
|S_{nm}(x) - L| \leq \varepsilon.
$$

For $\forall l \in \mathbb{N}$ such that $k_{l-1} > N$. Then,

$$
\frac{1}{|I_l|} |\{(i, j) \in I_l : |S_{n+i, m+j} - L| \ge \varepsilon\}|
$$

$$
= \frac{1}{|I_l|} |\{(i, j) \in I_l : n+i < N \lor m+j < N, |S_{n+i, m+j} - L| \ge \varepsilon\}|
$$

$$
+ \frac{1}{|I_l|} |\{(i, j) \in I_l : n+i, m+j \ge N, |S_{n+i, m+j} - L| \ge \varepsilon\}|
$$

$$
\leq \frac{2N(k_l - k_{l-1})}{k_l^2 - k_{l-1}^2} + \frac{1}{|I_l|} |\{(i, j) \in I_l : n + i, m + j \geq N, (n + i, m + j) \in A\}|
$$

$$
\leq \frac{2N(k_l - k_{l-1})}{k_l^2 - k_{l-1}^2} + \frac{1}{|I_l|} |\{(i, j) \in I_l : (n + i, m + j) \in A\}|.
$$

Obviously, the first summation converges to zero uniformly on $n, m \in \mathbb{N}$. The second summation converges to zero uniformly on $n, m \in \mathbb{N}$ due to the assumption.

So,
$$
Ust_{\Theta} - \lim S_{ij} = L
$$
.

Theorem 2.3. Let is $\Theta = (k_r)$ *lacunary sequence. Then, almost every double sequence of* 0'*s and* 1'*s is not lacunary uniformly statistically convergent*.

Proof. Let

$$
A_n^r = \{x \in X : x_{n+i, n+j} = 1, (i, j) \in I_r\}.
$$

Since $P(A_n^r) = \frac{1}{|I|}$, $\forall n \in \mathbb{N}$, $P(A_n^r) = \frac{1}{2^{|I_r|}}, \forall n \in \mathbb{N}, \text{ it is}$

$$
\sum_{n=1}^{\infty} P(A_n^r) = \sum_{n=1}^{\infty} \frac{1}{2^{|I_r|}} = +\infty.
$$

Since A_n^k are independent, based on the second part of Borel-Cantelli lemma:

$$
P\left(\limsup_n A_n^r\right)=1.
$$

We denote $A^r = \limsup A_n^r$, $A = \limsup A^n$. *r* $A^r = \limsup_n A_n^r$, $A = \limsup_n A^n$. Since $P(A^r) = 1$, $\forall r \in \mathbb{N}$,

it is $\sum_{r=1}^{\infty} P(A^r) = +\infty$. $\sum_{r=1}^{\infty} P(A^r)$

Due to second part of Borel-Cantelli lemma, it follows $P(A) = 1$. Let is *x* ∈ *A* then, for $\forall r_0 \in \mathbb{N}$, $\exists n \in \mathbb{N}$, $\exists r > r_0$ such that $x \in A_n^r$. It follows $\forall x \in A$ does not converge lacunary uniformly statistically to 0.

Completely analogously, almost every $x \in X$ does not converge lacunary uniformly statistically to 1.

Every lacunary uniformly statistically convergent sequence $x \in X$ converges 0 or 1. It follows

 $P({x \in X : x = (x_{ij})$ convergent lacunary uniformly statistically}) = 0.

Definition 2.4. The subsequence $S(x)$ of sequence *S* lacunary uniformly statistically converges to *L* if $\forall \varepsilon, \varepsilon' > 0$, $\exists K > 0$ such that for $∀r ≥ K$ and $∀n, m ∈ ℕ$ provided that $x_{nm} = 1$, we have

$$
\frac{|\{(i, j) \in I_r : |S_{n+i, m+j} - L| \ge \varepsilon, x_{n+i, m+j} = 1\}|}{|\{(i, j) \in I_r : x_{n+i, m+j} = 1\}|} \le \varepsilon'.
$$

We write Ust_{Θ} – $\lim S_{ij}(x) = L$.

Almost every, in terms of measure *P*, subsequence of uniformly statistically convergent double sequence *S* is uniformly statistically convergent. This analogue is valid also for lacunary uniform statistical convergence double sequences of 0's and 1's.

Theorem 2.5. *Let is Sij sequence of* 0'*s and* 1'*s that is convergent lacunary uniformly statically and divergent in the Pringsheim*'*s sense*. *Let* $i\mathbf{s} \ \Theta = (k_r)$ *lacunary sequence. Then,*

 $P({x \in X : S_{ij}(x) \text{ convergent} \}_ \text{learning} \times \text{statistically}}) = 0.$

Proof. Since a sequence S_{ij} convergent lacunary uniformly statically, it is,

$$
Ust_{\Theta} - \lim S_{ij} = 1 \quad \text{or} \quad 0.
$$

Suppose it is $Ust_{\Theta} - \lim S_{ij} = 1$ and $\lim_{i,j \to \infty} S_{ij} \neq 1$ in the Pringsheim's sense. Then, there exists infinite subsequence $\left(k_{r_l}\right)$ of the sequence $\left(k_{r}\right)$ such that for $\forall l \in \mathbb{N}$, $\exists (i, j) \in I_{r_l}$ we have $S_{ij} = 0$. Not generalizing we can assume that for $\forall r \in \mathbb{N}, \exists (i, j) \in I_r$, we have $S_{ij} = 0$. Let

$$
A_n^r = \{x \in X : x_{n+i, n+j} = S'_{n+i, n+j}, (i, j) \in I_r\},\
$$

where is

$$
S'_{ij} = \begin{cases} 1, S_{ij} = 0, \\ 0, S_{ij} = 1. \end{cases}
$$

Since $P(A_n^r) = \frac{1}{r-1}$, 2 1 $P(A_n^r) = \frac{1}{2^{|I_r|}}, \text{ it is }$

$$
\sum_{n=1}^{\infty} P(A_n^r) = \sum_{n=1}^{\infty} \frac{1}{2^{|I_r|}} = +\infty.
$$

Since A_n^k are independent, based on the second part of Borel-Cantelli lemma:

$$
P\left(\limsup_n A_n^r\right)=1.
$$

We denote $A^r = \limsup A_n^r$, $A = \limsup A^n$. *r* A^r = $\limsup_n A_n^r$, $A = \limsup_r A^r$. Since $P(A^r) = 1$, $\forall r \in \mathbb{N}$, it is, $\sum_{r=1}^{\infty} P(A^r) = +\infty$. $\sum_{r=1}^{\infty} P(A^r)$

Due to second part of Borel-Cantelli lemma, it follows $P(A) = 1$. Let is *x* ∈ *A* then, for $\forall r_0$ ∈ N, $\exists n \in \mathbb{N}$, $\exists r > r_0$ such that $x \in A_n^r$. Then, for $\forall \varepsilon > 0$, we have

$$
\frac{|\{(i, j) \in I_r : |S_{n+i, n+j} - 1| \ge \varepsilon, x_{n+i, n+j} = 1\}|}{|\{(i, j) \in I_r : x_{n+i, n+j} = 1\}|} = 1.
$$

Hence, subsequence $S(x)$ does not converge lacunary uniformly statistically to 1. Completely analogously, almost every subsequence $S(x)$ of sequence S_{ii} does not converge lacunary uniformly statistically to 0. It follows

 $P({x \in X : S(x) \text{ convergent lacunary uniformly statistically}}) = 0.$

References

 [1] B. Altay and F. Başar, Some new spaces of double sequences, J. Math. Anal. Appl. 309(1) (2005), 70-90.

DOI: https://doi.org/10.1016/j.jmaa.2004.12.020

 [2] M. Balcerzak, K. Dems and A. Komisarski, Statistical convergence and ideal convergence for sequences of functions, J. Math. Anal. Appl. 328(1) (2007), 715-729.

DOI: https://doi.org/10.1016/j.jmaa.2006.05.040

- [3] F. Čunjalo and F. Destović, Subsequence characterization of uniform statistical convergence of double sequence, Res. Comm. Math. Math. Sci. 9(1) (2017), 37-50.
- [4] F. Čunjalo, Some characterization of lacunary uniform statistical convergence of double sequences, Res. Comm. Math. Math. Sci. 10(1) (2018), 1-12.
- [5] E. Dündar, On rough *I*2-Convergence of double sequences, Numer. Func. Anal. Optim. 37(4) (2016), 480-491.

DOI: https://doi.org/10.1080/01630563.2015.1136326

- [6] E. Dündar and B. Altay, I_2 -Convergence of double sequences of functions, El. J. Math. Anal. Appl. 3(1) (2015), 111-121.
- [7] E. Dündar and B. Altay, *I*2-Convergence and *I*2-cauchy double sequences, Acta Math. Sci. 34(2) (2014), 343-353.

DOI: https://doi.org/10.1016/S0252-9602(14)60009-6

[8] E. Dündar and B. Altay, I_2 -Uniform convergence of double sequences of function, Filomat 30(5) (2016), 1273-1281.

DOI: https://doi.org/10.2298/FIL1605273D

- [9] E. Dündar and B. Altay, On some properties of I_2 -convergence and I_2 -cauchy of double sequences, Gen. Math. Notes 7(1) (2011), 1-12.
- [10] H. Fast, Sur la convergenc statistique, Colloq. Math. 2(3-4) (1951), 241-244.
- [11] J. A. Fridy, On statistical convergence, Analysis 5(4) (1985), 301-313.

DOI: https://doi.org/10.1524/anly.1985.5.4.301

 [12] J. A. Fridy and C. Orhan, Lacunary statistical convergence, Pacific J. Math. 160(1) (1993), 43-51.

DOI: https://doi.org/10.2140/pjm.1993.160.43

 [13] A. Gökhan, M. Güngör and M. Et, Statistical convergence of double sequences of real-valued functions, Int. Math. Forum 2(8) (2007), 365-374.

DOI: http://dx.doi.org/10.12988/imf.2007.07033

 [14] R. F. Patterson and E. Savaş, Lacunary statistical convergence of double sequences, Math. Comm. 10(1) (2005), 55-61.

g