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Abstract

We presented here an improvement of Hermite-Hadamard inequality as a linear
combination of its end-points. Improvements of the second order with
applications in Theory of Means are also given.

1. Introduction

A function f: I c R - R 1is said to be convex on an non-empty

interval I if the inequality
f(px + qy) < pf(x) + af (¥), (1.1)

holds for all x, y € I and all non-negative p, q; p +q = 1.
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If the inequality (1.1) reverses, then fis said to be concave on I [1].

Let f:I1 cR —> R be a convex function on an interval I and

a, b el with a < b. Then

a+b

Ly jbm)dtsw. (1.9)

This double inequality is well known in the literature as Hermite-
Hadamard (HH) integral inequality for convex functions. See, for

example, [2] and references therein.
If f1s concave, both inequalities in (1.2) hold in the reversed direction.

Our task in this paper is to improve the inequality (1.2) in a simple

manner, i.e., to find some positive constants o, B, vy, 8 such that the

relations

1@+ 16D+ 5“5 2 ) < 1 [0t < atfia) + )+ pHCUE),

(1.3)
hold for any convex f.

Taking f(t)=Ct,C € R/{0}, it can be easily seen that both

conditions
200+B=12y+38 =1, (1.4)
are necessary for (1.3) to hold.
Denote

M(y, ) = My(a, b; v, 8) = 1(f(@) + () + (222 ),

and

a+b).

N(a, B) = Ny(a, b; o, B) = alf(a) + f(b)) + Bf(
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Since

Nio, B) = (20 ([ 21Oy g @t

< max{ f(a);'f(b)’f(a;'b )= f(a);f(b),

and, consequently,

MGy, 6) = @ (LI s arh)

> mi

nf {10 jatby_qathy

it follows that the inequality (1.3) represents a refinement of Hermite-
Hadamard inequality (1.2).

Now, it can be seen that the bound M(0, 1) is best possible in general
case. Indeed, let y € (0, 1/2] be fixed and the relation

1
My(0,3:7,8) < [ fo)de.

holds for arbitrary convex f.
Then the convex function f(t) = £1/7 gives a counter-example.

This means that the left-hand side of Hermite-Hadamard inequality
cannot be improved, in general, by the form of (1.3).

Nevertheless, such improvement is possible for some special classes

of convex functions (see Corollary 2.9 below).

In case of the bound N(a, B), we found the value N(1/4, 1/2) for
which the right-hand side of (1.3) holds for any integrable convex

function. Since N(a, B) is monotone increasing in a, because

a+b)20’

<L Ny(a, b; 0, B) = fla) + 1) - 2(

it follows that the right-hand side of (1.3) also holds for all
a e [1/4, 1/2].
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In general, the bound N(1/4, 1/2) is best possible, as the example
f@t) =, t € [-a, a] shows.

2. Results and Proofs

We shall begin with the known estimation, cf. ([3], Corollary 3.2).

Theorem 2.1. Let f : I ¢« R — R be a convex function on an interval

ITand a, b € 1. Then

a+b)=

1 b 1 1 .
— ja flt)dt < Z(f(a) + f(b)) + 5 (= - N(1/4,1/2). (2.2)

If f is a concave function on I, then the inequality is reversed.

Proof. We shall derive the proof by Hermite-Hadamard inequality
itself. Indeed, applying twice the right part of this inequality, we get

a+b

%J.an(t)dt < %(f(a) + (2 ; %)),

and

= J;m)dt < U220 )+ 10)).

Summing, the result appears. Therefore, HH inequality has the self-

improving property.

For the second part, note that concavity of f implies convexity of — f

on I. Hence, applying (2.2) we get the result. O

For the sake of further refinements, we shall consider in the sequel
functions from the class C(m)(l ), m € N, ie., functions which are

continuously differentiable up to m-th order on an interval I < R.

We give firstly a sharp improvement of Theorem 2.1.
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Theorem 2.3. Let | € C(2)(I) be convex on I together with its second

derivative. Then for each a, b € I, a < b,

b-a) “) [F"(a) + F'®)].

2
bl 2y < Naja1/2)- o [ e <

If fis convex and f" concave on I, then

2
(bga) [f"(a)+ f'(b)] < N(1/ 4, 1/2)—ﬁjbf(t)dts (bzlsa) f,,(a;b).

Proof. We need the following two assertions.

Lemma 2.4 ([4]). If h is convex on I =|a, b] and, for x, y eI,

xX+y=a+b, then

on( & b ) < hlx) + h(y) < h(a) + h(b).

Remark 2.5. Note that this result is a pre-HH inequality, i.e., HH

inequality is its direct consequence. Indeed, let x = pa + ¢gb, y = qa + pb

for p,q >0, p+q=1.Then x, ye I and x + y = a + b. Hence,

a+b

2h( ) < h(pa + ¢b) + h(ga + pb) < h(a) + h(b).
Integrating this expression over p € [0, 1] we obtain the HH inequality.

Lemma 2.6. Let f € C(g)(I) and a, b € I, a < b. Then the following
identity holds:

N1 - [ rod = O i) ol

N S Y )
wlthx.—a2+b(1 2),y. b2+a(1 2).

It 1s not difficult to prove this identity by double partial integration of
its right-hand side.
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Since x +y =a+b and f" is convex/concave, applying Lemma 2.4

the proof readily follows. O
Another improvement of HH inequality is given in the next

Theorem 2.7. Let f < C(4)(I) and a,be I, a<b. If f" is convex on
I then

;Ibf(t)dt < N(1/6, 2/3),

b-alg,

and the coefficients 1/6, 2/3 are best possible for this class of functions. If

f" is concave on I, then the reversed inequality takes place.

Proof. Note that the coefficients 1/6 and 2/3 are involved in well-

known Simpson’s rule which is of importance in numerical integration. It

says that

Lemma 2.8 ([5]). For an integrable f, we have
[ Hrde = 5 hih + 4ty + ) - 5o BFOE) (1 < & < xg),
x]

where f; = f(x;) and h = x9 — x; = X3 — Xg.

Now, taking x; = a, xg = (@ +b)/2, x5 =b, we get h =(b-a)/2.
Also, convexity/concavity of f” on I implies that f (4)(@ 20 and the proof
follows. O

Combining this theorem with the results of Theorem 2.1, we get

Corollary 2.9. Let f e C(4)(I). If f is convex and f" concave

functions on I, then

1

N(1/6, 2/8) <

J'bf(t)dt < N(1/4, 1/2).
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Analogously, let f be concave and " a convex function on I, then

ia j " f)dt < N@J6, 2/3)

N(/4,1/2) <

Those formulae gives a proper answer, regarding this class of functions, to

the problem posed in Introduction.

Further refinement of the assertion from Theorem 2.7 is possible.

Theorem 2.10. For | € C(4)(I), let f" be convex on I. Then

)+ 760+ 21552y - L [ e

cnlr—t

_(b=a)’

a+ b
324 )

[f"(a) + f"(b) — 2f"(

If f" concave on I, then

0 a+b)]

IN

jfﬁﬂw~4ﬂ@+ﬂw+4ﬂ

<O o b (@) 4 )]

The above theorem sharply refines Simpson’s rule for this class of

functions.

Proof. The left part is proved in Theorem 2.7. For the right part we

shall use an integral identity.

Lemma 2.11.
2
zva/6,2/3>—5%5;jjfaﬁh::iﬁigg—j;wz—4%Mf%x>+f%yndt

where x and y are the same as in Lemma 2.6.

Writing,

th(2 - 3t)[]dt = Ij/3t(2 - 3t)[]dt - I;/St(St - 2)[-]dt,
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and applying Lemma 2.4 to each integral separately, the result appears
since

2/3 1 4
IO t(2 - 3t)dt = I2/3t(3t - 2)dt = 57

3. Applications in Means Theory
A meanisamap M : R, xR, —» R,, with a property
min{a, b} < M(a, b) < max{a, b},
for each a, b € R,.
Hence M is necessary reflexive, M(a, a) = a.

Most known ordered family of means is the following family A of
elementary means:

A:H<G<LSL<I<AZLS,

where

_ _ 1o _ T _._b-a |
H=H(a, b =21/a+1/b)" G = G(a, b) = Jab; L = L(a, b) = Togb _Togd’

a_ _b_
= ; b ;S = S(a, b) = ae+bpatd,

I=1(a,b) = £ (6" /a®)}/*"; 4 = Afa, b) =

are the harmonic, geometric, logarithmic, identric, arithmetic, and Gini

mean, respectively.

Generalized arithmetic mean A, is defined as

a® +b* e
A, = Ay(a, b) = 2 , o # 0.

Ay =G = Vab
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Power-difference mean K, is defined as

o a(x+1 _ boH—l

A+l Lo _pa
K, = K,(a, b) = {Ky(a, b) = L(a, b);

1(a b) L(ab b)

, a=0,-1

It 1s well known that both means are monotone increasing with o

and, evidently,
A_]_ = H, A]_ = A, K_2 = H, K_1/2 = G, K]_ = A
As an illustration of our results, we shall give firstly some sharp
approximations of logarithmic and identric means.
Theorem 3.1. The inequality G < L < A can be improved to

2AG

(A+2G)— = ( )2(A+G)<L<—(A+2G)

Similarly, an approximation of 1/ L in terms of the arithmetic and

harmonic means is given by

A-H 101, 1, 1 _AA-H) 4 _ 3,

Proof. Applying Theorem 2.10 with f = e, we obtain

x+y ex_ey
O<—(e teY)rlez & e
3 x -y

x+y

2
< —(xS_,‘ZZ) (e +e¥ —2e 2 ).

Since x and y are arbitrary real numbers, putting x = log b, y = log a, we

get
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(log b — log a)? (A-G)

1
< — — <
0_3(A+2G) L < 6o

2AG

4 ,logb-loga 2, ,2 2 _
=1 T g ) (AT -G)A+G) =

(A+G),

and the proof is done.

For the second part, applying Theorem 2.3 with f = 1/¢, f" = 2/t3,

we get

b-a? 1 _1 1 b - a)?

<Ll iy, 1 1o
54 45 4'a 0)TATLT T

(S5+5),

Now, the identities 1/a + 1/b = 2/H, (b — a)* = 4A(A - H), AH = G?
yields the proof. O

Some interesting inequalities for the identric mean follows.

Theorem 3.2. For arbitrary positive a, b, we have

A- H)2

A2BGY3 < T < A%I3G3 exp( ( 162H ))

4 (A-HY

4/3q-1/3
8T Af )< I < A*PS™H?2,

A/3g1/3 exp( —
Proof. Applying Theorem 2.10 with f = —log ¢, we obtain the proof.
For the second part we need the next,

Lemma 3.3. For a, b € RY, we have

4 (A(a, b) - H(a, b)?

A3 (a, 8)S?3(a, b) exp( - 81 A@ bHa b))

< I(a?, b2) < A*3(a, b)S¥/3(a, b).

Indeed, for f = tlogt, we get

log I(a?, b2).

J‘ f(t)dt—l b2 logbb:c; log o’ —(a b))—
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Since f" = 1/t, Theorem 2.10 yields

2

1 2 b-a)? 1
g(aloga+blogb)+§AlogA — L (=+ Z)

1
324 a b
a+b

<= logI(aZ,b2)£%(aloga+b10gb)+§AlogA,

and the proof follows by dividing the last expression with a + b = 2A.

Now, combining this assertion with the identity I(a?, %)= I(a, b)S(a, b),

we obtain the desired inequality. O

Finally, we give bounds of power-difference means in terms of the
generalized arithmetic mean.

Theorem 3.4. For a, b € R* and o > 1, we have

%(A(a, b)+ Ay(a, b)) < Ky(a, b) < Ay(a, b). (3.5)

For a < 1, the inequality (3.5) is reversed.

Proof. Let g, (t) = 1/ o £ 0. Since g, 1s concave for o >1,

Theorem 2.1 combined with HH inequality gives

1 x+yl/OL 1. 1/a, 1/a
(5] e et

a  ltl/e _ y1+1/(x . (x n yjl/a
T o+l x-y L2 )

Now, simple change of variables x = a%, y = b% yields the result.

For the second part, note that g, is convex for a < 1 and repeat the

procedure.

The above inequality is refined by the following:
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Theorem 3.6. We have,
(A+2A,), ae(-x 1/3)U@1/2 1);

w|

A, < K, <
%(A+2Aa) <K, <Ay, acll, o)

(A+Ay), ael/3 1/2]

Do |

1
g(A+Aa)SKa <

Proof. Observe that g{ is convex for o € (-, 1/3) U (1/2, 1) and
concave for a € (1/3, 1/2) U (1, ). Hence, applying Theorem 2.7 and

Corollary 2.9 together with HH inequality, we obtain the result.

An inequality for the reciprocals follows.

Theorem 3.7. For B > -2, we have

For B < — 2, the inequality is reversed.

Proof. This is a consequence of Theorem 3.4. Indeed, putting there

B —1 and using identities

o =-
ab ab ab
Ka _K_ﬁrA(x _H7A_ﬁa
the proof appears.
O

Further improvements of this type by Theorem 3.6 are possible but it

is left to the readers.
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4. Addendum
Theorems proved above are the source of a plenty of interesting

inequalities from Classical Analysis. As an illustration we shall give here
a couple of Cusa-type inequalities.

Theorem 4.1. The inequality

lcosx+l< sin x <lcosx+—
2 27 x 3 3’
holds for |x| < m/2.
Also,
1 3 sinhx 1
= 2 <« < = “
4coshx+4_ . _SCOth+8’

holds for |x| < (3/2)3/2.

Proof. For the first part one should apply Corollary 2.9 to the
function f(t) = —cost on a symmetric interval ¢ € [-x, x] c [-n/ 2, n/ 2].

Similarly for the second part, one should apply Theorem 2.10 with
ft) ="
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