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Abstract 

In this paper, we give a study of the symmetrized divergences ( ) =qpUs ,  

( ) ( )pqKqpK ss +  and ( ) ( ) ( ) ,, pqKqpKqpV sss =  where sK  is the relative 

divergence of type ., R∈ss  Some basic properties as symmetry, monotonicity, 
and log-convexity are established. An important result from the Convexity 
Theory is also proved. 

1. Introduction 

Let 

{ { } },1,0| =>==Ω ∑+
iii pppp  

be the set of finite discrete probability distributions. 
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One of the most general probability measures which is of importance 
in Information Theory is the famous Csiszár’s f-divergence ( )qpCf  [1], 

defined by 

Definition 1. For a convex function ( ) ,,0: R→∞f  the f-divergence 

measure is given by 

( ) ( ),: iiif qpfqqpC ∑=  

where ., +Ω∈qp  

Some important information measures are just particular cases of the 
Csiszár’s f-divergence. 

For example, 

(a) taking ( ) ,1, >α= αxxf  we obtain the α-order divergence defined 

by 

( ) .: 1 α−α
α ∑= ii qpqpI  

Remark. The above quantity is an argument in well-known 
theoretical divergence measures such as Renyi α-order divergence 

( )qpI R
α  or Tsallis divergence ( ),qpIT

α  defined as 

( ) ( ) ( ) ( )( ).11
1:;log1

1: −
−α

=
−α

= αααα qpIqpIqpIqpI TR  

(b) for ( ) ,log xxxf =  we obtain the Kullback-Leibler divergence ([4]) 

defined by 

( ) ( );log: iii qppqpK ∑=  

(c) for ( ) ( ) ,1 2−= xxf  we obtain the Hellinger distance 

( ) ( ) ;:, 22
ii qpqpH −= ∑  
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(d) if we choose ( ) ( ) ,1 2−= xxf  then we get the 2χ -distance 

( ) ( ) .:, 22
iii qqpqp −=χ ∑  

The generalized measure ( ),qpKs  known as the relative divergence 

of type s [8], or simply s-divergence, is defined by 

( )

( ) ( ) { }

( )

( )











=

=

∈−−

=

−∑

.1,

;0,

;1,0,11

:

1

sqpK

spqK

sssqp

qpK

s
i

s
i

s

R

 

It include the Hellinger and 2χ  distances as particular cases. 

Indeed, 

( ) ( ) ( ) ( );,22214 2
21 qpHqpqpqpqpK iiiiii =−+=−= ∑∑  

( ) ( ) ( ) ( ).,2
1

2
112

1 2
22

2 qpq
qp

q
pqpK

i
ii

i
i χ=

−
=−= ∑∑  

The s-divergence represents an extension of Tsallis divergence to the 
real line and accordingly is of importance in Information Theory. Main 
properties of this measure are given in [8]. 

Theorem A. For fixed ,,, qpqp ≠Ω∈ +  the s-divergence is a 

positive, continuous and convex function in .R∈s  

We shall use in this article a stronger property. 

Theorem B. For fixed ,,, qpqp ≠Ω∈ +  the s-divergence is a log-

convex function in .R∈s  
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Proof. This is a corollary of an assertion proved in [6]. It says that 
for arbitrary positive sequence { }ix  and associated weight sequence 

Qq ∈  (see Appendix), the quantity sλ  defined by 

( )
( )1:
−

−
=λ ∑∑

ss
xqxq s

ii
s
ii

s  

is logarithmically convex in .R∈s  

Putting there ,iii qpx =  we obtain that ( )qpKss =λ  is log-convex 

in .R∈s  Hence, for any real s, t, we have that 

( ) ( ) ( ).2

2
qpKqpKqpK tsts +≥  

 

Among all mentioned measures, only Hellinger distance has a 

symmetry property ( ) ( ).,, 222 pqHqpHH ==  Our aim in this paper is 

to investigate some global properties of the symmetrized measures  
( ) ( ) ( ) ( )pqKqpKpqUqpUU sssss +=== :,,  and ( ) ( )pqVqpVV sss ,, ==  

( ) ( ).: pqKqpK ss=  Since Kullback and Leibler themselves in their 

fundamental paper [4] (see also [3]) worked with the symmetrized 
variant ( ) ( ) ( ) ( ) ( ),log:, iiii qpqppqKqpKqpJ −=+= ∑  our results 

can be regarded as a continuation of their ideas. 

2. Results and Proofs 

We shall give firstly some properties of the symmetrized divergence 
( ) ( ).pqKqpKV sss =  

Proposition 2.1. (1) For arbitrary, but fixed probability distributions 

,,, qpqp ≠Ω∈ +  the divergence sV  is a positive and continuous function 

in .R∈s  

(2) sV  is a log-convex (hence convex) function in .R∈s  
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(3) The graph of sV  is symmetric with respect to the line ,21=s  

bounded from below with the universal constant 44H  and unbounded 
from above. 

(4) sV  is monotone decreasing for ( )21,−∞∈s  and monotone 

increasing for ( ).,21 ∞+∈s  

(5) The inequality 

rs
t

st
r

rt
s VVV −−− ≤  

holds for any .tsr <<  

Proof. The part (1) is a simple consequence of Theorem A above. 

The proof of part (2) follows by using Theorem B. Namely, for any 
,, R∈ts  we have 

[ ( ) ( )] [ ( ) ( )]pqKqpKpqKqpKVV ttssts =  

 [ ( ) ( )] [ ( ) ( )]pqKpqKqpKqpK tsts=  

 [ ( )] [ ( )] [ ] .222
222

tststs VpqKqpK +++ =≥  

(3) Note that 

( ) ( ) ( ) ( ).; 11 qpKpqKpqKqpK ssss −− ==  

Hence ,1 ss VV −=  that is, .,2121 R∈= +− sVV ss  

Also, 

( ) ( ) ( ) ( ) ( ) .4 42
211 HqpKqpKqpKpqKqpKV sssss =≥== −  

(4) We shall prove only the “increasing” assertion. The other part 
follows from graph symmetry. 

Therefore, for any ,21 yx <<  we have that 

.11 yxxy <<−<−  
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Applying Proposition X (see Appendix) with ,1,,1 xsybya −==−=  

( ) ( ),log:; qpKsfxt s==  we get 

( ) ( ) ( ) ( ),loglogloglog 11 qpKqpKqpKqpK yyxx −− +≤+  

that is yx VV ≤  for .yx <  

(5) From the parts (1) and (2), it follows that log sV  is a continuous 
and convex function on .R  Therefore, we can apply the following 
alternative form [2]: 

Lemma 2.2. If ( )sφ  is continuous and convex for all s of an open 

interval I for which ,321 sss <<  then 

( ) ( ) ( ) ( ) ( ) ( ) .0123312231 ≥−φ+−φ+−φ sssssssss  

Hence, for ,tsr <<  we get 

( ) ( ) ( ) ,logloglog trs VrsVstVrt −+−≤−  

which is equivalent to the assertion of part (5).   

Properties of the symmetrized measure ( ) ( )pqKqpKU sss +=:  are 
very similar; therefore some analogous proofs will be omitted. 

Proposition 2.3. (1) The divergence sU  is a positive and continuous 

function in .R∈s  

(2) sU  is a log-convex function in .R∈s  

(3) The graph of sU  is symmetric with respect to the line ,21=s  

bounded from below with 24H  and unbounded from above. 

(4) sU  is monotone decreasing for ( )21,−∞∈s  and monotone 

increasing for ( ).,21 ∞+∈s  

(5) The inequality 

rs
t

st
r

rt
s UUU −−− ≤  

holds for any .tsr <<  
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Proof. (1) Omitted. 

(2) Since both sK  and sV  are log-convex functions, we get 

2

2
tsUUU ts +−  

[ ( ) ( )] [ ( ) ( )] [ ( ) ( )]2
22

pqKqpKpqKqpKpqKqpK tststtss ++ +−++=  

[ ( ) ( ) ( ) ] [ ( ) ( ) ( ) ]22
22

pqKpqKpqKqpKqpKqpK tsts tsts ++ −+−=  

[ ( ) ( ) ( ) ( ) ( ) ( )]pqKqpKqpKpqKpqKqpK tstststs
22

2 ++−++  

[ ( ) ( ) ( ) ] [ ( ) ( ) ( ) ]22
22

pqKpqKpqKqpKqpKqpK tsts tsts ++ −+−≥  

[ ] .02
2

≥−+ +tsVVV ts  

(3) The graph symmetry follows from the fact that .,1 R∈= − sUU ss  

We also have, due to arithmetic-geometric inequality, that 

.42 2HVU ss ≥≥  

Finally, since qp ≠  yields max { } ,1>= ∗∗ qpqp ii  we get 

( ) ( )
( ) ( ).1

1
∞→∞→

−
−

> ∗∗∗ sss
qpqqpK

s
s  

It follows that both sU  and sV  are unbounded from above. 

(4) Omitted. 

(5) The proof is obtained by another application of Lemma 2.2 with 
( ) .log sUs =φ    

Remark 2.4. We worked here with the class +Ω  for the sake of 
simplicity. Obviously that all results hold, after suitable adjustments, for 
arbitrary probability distributions and in the continuous case as well. 
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Remark 2.5. It is not difficult to see that the same properties         

are valid for normalized divergences ( ( ) ( ))pqKqpKU sss +=∗
2
1  and  

( ) ( ),pqKqpKV sss =∗  with 

.2 2 ∗∗ ≤≤ ss UVH  
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3. Appendix 

A convexity property 

Most general class of convex functions is defined by the inequality 

( ) ( ) ( ).22
yxyx +φ≥φ+φ   (3.1) 

A function which satisfies this inequality in a certain closed interval I 
is called convex in that interval. Geometrically, it means that the 
midpoint of any chord of the curve ( )xy φ=  lies above or on the curve. 

Denote now by Q the family of weights, i.e., positive real numbers 
summing to 1. If φ  is continuous, then much more can be said, i.e., the 

inequality 

( ) ( ) ( )qypxyqxp +φ≥φ+φ   (3.2) 

holds for any ., Qqp ∈  Moreover, the equality sign takes place only if 

yx =  or φ  is linear (cf. [2]). 

We shall prove here an interesting property of this class of convex 
functions. 

Proposition X. Let ( )⋅f  be a continuous convex function defined on a 

closed interval [ ] .:, Iba =  Denote 

( ) ( ) ( ) ( ).22:, tsftfsftsF +−+=  

Then 

( ) ( ).,,max
,

baFtsF
Its

=
∈

  (1) 

Proof. It suffices to prove that the inequality 

( ) ( )baFtsF ,, ≤  

holds for .btsa <<<  
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In the sequel we need the following assertion (which is of 
independent interest). 

Lemma 3.3. Let ( )⋅f  be a continuous convex function on some interval 

.R⊆I  If Ixxx ∈321 ,,  and ,321 xxx <<  then 

( ) ( ) ( ) ( ) ( );222i 313212 xxfxxfxfxf +
−

+
≤

−  

( ) ( ) ( ) ( ) ( ).222ii 213123 xxfxxfxfxf +
−

+
≥

−  

Proof. We shall prove the first part of the lemma; the proof of second 
part goes along the same lines. 

Since ,2 3
32

21 xxxxx <
+

<<  there exist 1,1,0;, =+<< qpqpqp  

such that .2
32

12
xxqpxx +

+=  

Hence, 

( ) ( ) ( ) [ ( ) ( ( ) ( ))] ( )222
1

22
3232

11
3221 xxfxxqfxpfxfxxfxfxf +

+
+

+−≥
+

+
−  

( ) ( ) ( ( )) ( ).222
2

222
2

2
3132

1
32

1
xxfxxqxqfxxfqxfq +

=
+−+≥

+−+=  

 

Now, applying the part (i) with bxsxax === 321 ,,  and the part 

(ii) with ,,, 321 bxtxsx ===  we get 

( ) ( ) ( ) ( );222
bafbsfafsf +−+≤−  (2) 

( ) ( ) ( ) ( ),222
tsfbsftfbf +−+≥−  (3) 

respectively. 

Subtracting (2) from (3), the desired inequality follows. 

 
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Corollary 3.4. Under the conditions of Proposition X, we have that 
the double inequality 

( ) ( ) ( ) ( ) ( )bfaftbaftfbaf +≤−++≤+
22  (4) 

holds for each .It ∈  

Proof. Since the condition It ∈  is equivalent with ,Itba ∈−+  
applying Proposition X with tbas −+=  we obtain the right-hand side 
of (4). The left-hand side inequality is obvious.   

Remark 3.5. The relation (4) is a kind of pre-Hermite-Hadamard 
inequalities. Indeed, integrating both sides of (4) over I, we obtain the 
famous H-H inequality 

( ) ( ) ( ) ( ) ,2
1

2
bfafdttfab

baf
b

a

+≤
−

≤+ ∫  

since ( ) ( ) .dttfdttbaf
b
a

b
a ∫∫ =−+  

 


