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Abstract 

In this paper, it is shown that almost every, in terms of P, subsequence ( )xS  of 

double sequence S is not uniformly statistically convergent to L if S converges to 
L uniformly statistically. 

Almost every, in terms of measure ,AP  subsequence ( )xS  of double sequence S 
converges to L, in the Pringsheim’s sense, if S converges to L uniformly 
statistically and divergently in the Pringsheim’s sense. This is not true for P. 

1. Introduction 

The concept of the statistical convergence of a sequences of reals was 
introduced by Fast [13]. Furthermore, Gökhan et al. [16] introduced the 
notion of pointwise and uniform statistical convergent of double 
sequences of real-valued function. Çakan and Altay [5] presented multi-
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dimensional analogues of the results presented by Fridy, Miller and 
Orhan [14, 15, 17]. Dündar and Atay [6-10] investigated the relation 
between I-convergence of double sequences. Now, we recall that the 
definitions of concepts of ideal convergence and basic concepts [1, 2, 11, 
12, 18]. 

The sequence ijS  of real numbers converges to L in the Pringsheim’s 

sense, if for 0,0 >∃>ε KA  such that 

.,, KjiLSij ≥∀ε≤−  

We write .lim
,

LSijji
=

∞→
 

Let .NN ×⊂K  Let nmK  be the number of ( ) Kji ∈,  such that 

., mjni ≤≤  If 

( ) nm
KKd nm

mn ∞→
=

,2 lim  

in the Pringsheim’s sense. Then we say that K has double natural 
density. Let is sequence ijS  of real numbers and .0>ε  Let 

( ) {( ) }.:, ε≥−×∈=ε LSjiA ijNN  

The sequence ijSS =  statistically converges to R∈L  if ( )( ) 02 =εAd  

for .0>ε∀  

We write .lim LSst ij =−  

Let is set .0/≠X  A class I of subsets of X is said to be an ideal in X 
provided the following statements hold: 

(i) ;0 I∈/  

(ii) ;, IBAIBA ∈⇒∈ ∪  

(iii) ., IBABIA ∈⇒⊂∈  
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I is nontrivial ideal if .IX ∈/  A nontrivial ideal I is called admissible 

if { } Ix ∈  for .Xx ∈∀  

In this paper, the focus is put on ideal NN×⊂ 2uI  defined by: subset 

A belongs to the uI  if 

( ){ } 0,:,1lim
,

=∈++<<
∞→

Ajminqjpipqqp
 

uniformly on N∈mn,  in the Pringsheim’s sense. That is subset A of the 

set NN ×  is uniformly statistically density zero. 

The sequence ijSS =  uniformly statistically converges to L if for any 

0>ε  

{( ) } .:, uij ILSji ∈ε≥−×∈ NN  

That is sequence ijSS =  uniformly statistically converges to L, if 

0,0, >∃>ε′ε∀ K  such that 

{ } .,,,,:,1
, N∈∀≥∀ε′<ε≥−<< ++ mnKqpLSqjpipq jmin  

We write .lim LSUst ij =−  

We denote with X a set of all double sequences of 0’s and 1’s, i.e., 

{ { } }.,,1,0: N∈∈== jixxxX ijij  

Let sequence ijSS =  and .Xx ∈  Then with ( )xS  we denote a sequence 

defined following way: 

( ) ,1for, == ijijij xSxS  

which we refer to as subsequence of sequence S. 

The mapping ( )xSx →  is a bijection of the set X to a set of all 

subsequences of the sequence S. 
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Then, under the Lebesgue measure on the set of all subsequences of 
the sequence S consider Lebesgue measure on the set X. 

Let β  smallest algebra-σ  subsets of the set X which contains of 

subsets in the form of: 

{ ( ) },,,,: 21 2211 kkk
axaxaxXxx mnmnmnnm ===∈= "  

{ } .,1,0,,1 N∈∈ kkaa "  

In [3], it was proven that there is a unique Lebesgue measure P on 
the set X for which the following applies: 

({ ( ) }) .
2
1,,,: 21 2211 kkkk

====∈= axaxaxXxxP mnmnmnnm "  

2. New Results 

Almost every double sequences of 0’s and 1’s is not almost convergent 
[4]. This analogue is valid also for uniform statistical convergence. 

Theorem 2.1. Almost every double sequence of 0’s and 1’s is not 
uniformly statistically convergent. 

Proof. Let 

{ }.,,1: njixXxA ijn +<≤=∈= kkk  

Since ( ) ,,
2

1
2 N∈∀= kk

nnAP  it is, 

( ) .
2

1
211

+∞== ∑∑ ∞

=

∞

= nnAP
k

k
k

 

Since k
nA  are independent, based on the second part of Borel-Cantelli 

lemma: 

.1suplim =





 k

k
nAP  
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We denote .,suplim 1 nnnn AAAA ∩∞
=

== k

k
 Then, ( ) .1=AP  For ,Ax ∈∀  

,N∈∀n  there exist a block nn ×  composed of ones. It follows Ax ∈∀  

does not converge uniformly statistically to 0. We denote 

{ } .,suplim,,,0: 1 nnnnijn BBBBnjixXxB ∩∞
=

==+<≤=∈= k

k

k kk

 

Completely analogously, we conclude that ( ) .1=BP  For ,Bx ∈∀  

,N∈∀n  there exists a block nn ×  composed of zeros. It follows Bx ∈∀  

does not converge uniformly statistically to 1. 

Every uniformly statistically convergent sequence Xx ∈  converges 
to 0 or 1. Then, 

{ ( ) }llystatisticauniformlyconvergent: ijxxXx =∈  

{ } { }1lim:0lim: =−∈=−∈= ijij xUstXxxUstXx ∪  

 ( ) .ccc BABA ∩∪ ==  

It follows 

({ ( ) }) ( ) .01llystatisticauniformlyconvergent: =−==∈ BAPxxXxP ij ∩  

Definition 2.2. The subsequence ( )xS  of sequence S uniformly 

statistically converges to L, if 0,0, >∃>ε′ε∀ K  such that for Kqp ≥∀ ,  

and N∈∀ mn,  provided that ,1=nmx  we have 

{ }
{ } .1:,

1,:,
,

,, ε′≤
=<<

=ε≥−<<

++

++++

jmin

jminjmin
xqjpi

xLSqjpi
 

We write ( ) .lim LxSUst ij =−  
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Almost every subsequence ( )xS  of statistically convergent double 

sequence S is statistically convergent. The analogue does not apply to 
uniformly statistically convergence. 

Theorem 2.3. Let LSUst ij =− lim  and the sequence S is divergent 

in the Pringsheim’s sense. Then, 

({ ( ) }) .0lim: ==−∈ LxSUstXxP ij  

Proof. Let 

{ ,,1: ,, ε≥−=∈= ++++ LSxXxT jninjninuv kkkk
k  

( ) ( ) .2
1,2

1,,0


+

=
+

=<<
vvmuunji kkk  

Due to the divergence of the sequence ,,, NNS ≥∃∈∀ kN  such that 

0/≠k
uvT  for infinitely ( )., vu  Then, ( ) 2

2

1
k

k ≥uvTP  for infinitely 

( ) k
uvTvu ,,  are independent and 

( )

( )
( )

.
2

1
2

0,,0,,

+∞=≥ ∑∑
/≠/≠
k

k

kk
uvuv Tvu

uv
Tvu

TP  

Due to second part of Borel-Cantelli lemma, it follows: 

( )
( )

.1suplim
0,,

=













=

/≠

kk
k

uv
Tvu

TPTP
uv

 

Hence, ( ) .1=







= k

k
TPTP ∩  

Let .Tx ∈  Then, NN ≥∃∈∀ k,N  such that 

{ }
{ } .11:,

,0,,1:
,

,, =
=<<

<<ε≥−=∈

++

++++

jmin

jninjnin
xqjpi

jiLSxXx kkkkk  
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Hence, ( )xS  does not converge to L uniformly statistically. So, 

({ ( ) }) .0lim: ==−∈ LxSUstXxP ij  

Example. Let NN ×⊂A  uniformly density zero, with the following 
characteristic: 

( ) .,thatsuch,,, kk ≥∈∃∈∀ jiAjiN  

Let the sequence ( )ijSS =  defined as 

( )

( )
.

,,0

,,1







∈

∈/
=

Aji

Aji
Sij  

Then, ,,,0 N∈∀>ε∀ mn  the following is valid: 

{ }ε≥−<< ++ 1:,1
, jminSqjpipq  

{ ( ) } .,for0,:,1 ∞→→∈++<<= qpAjminqjpipq  

Respectively, .1lim =− ijSUst  Let 

{ ( ) }.,,1:
,1

AjixXxB ijji
∈=∈=

∞

≥

∞

= ∪∩ kk
 

Let is the infinite sequence ( )
kk jiS  such that kk kk ≥≥ ji ,  and  

( ) ., Aji ∈kk  Then, 

({ }) .2
11:

11
∞===∈ ∑∑ ∞

=

∞

= kk kk jixXxP  

Due to second part of Borel-Cantelli lemma, ( ) .1=BP  

Since subsequence ( )xS  of S does not converge to 1 in the 

Pringsheim’s sense if and only if ,Bx ∈  it 

({ ( ) }) .0senses’Pringsheimthein,1lim:
,

==∈
∞→

xSXxP ijji
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Let .NN ×⊂A  There is a unique measure AP  on X with the 

property: 

({ })
( )

( )
,

,,
2

1
,,2

1
1:









∈

∈/
==∈

+
Aji

Aji
xXxP

ji
ijA  

({ })kjijiA axaxXxP kk ==∈ ,,: 111 "  

({ }) ({ }).:: 111 kjiAjiA axXxPaxXxP kk =∈=∈= "  

Analogue theorem is valid: Let the sequence ( )ijSS =  be divergent in 

the Pringsheim’s sense. Then, S statistically converges to 
NN ×⊂∃⇔ AL  with density zero, such that 

({ ( ) }) .1senses’Pringsheimthein,lim:
,

==∈
∞→

LxSXxP ijjiA  

Theorem 2.4. Let the sequence ( )ijSS =  divergent in the Pringsheim’s 

sense. Then, S uniformly statistically converges to NN ×⊂∃⇔ AL   
uniformly density zero, such that 

({ ( ) }) .1’,lim:
,

==∈
∞→

sensesringsheimPtheinLxSXxP ijjiA  

Proof. Because of Lemma 2.1, the following is valid: =− ijSUst lim  

NN ×⊂∃⇒ AL  uniformly density zero, such that the subsequence 
( )yS  of S converges to L, in the Pringsheim’s sense, for 

( )

( )
.

,,0

,,1







∈

∈/
=

Aji

Aji
yij  

Not generalizing we can assume that L is not a point accumulation of the 

subsequence ( ),xS  for 

( )

( )
.

,,0

,,1







∈/

∈
=

Aji

Aji
xij  
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Hence, the subsequence ( )zS  converges to L, in the Pringsheim’s sense if 

and only if N∈∃M  such that 

{( ) } .0,,1:, /=≥=×∈ AMjizji ij ∩NN  

Let 

{ ( ) } .,,,,,1:
1

M
M

ijM BBAjiMjixXxB ∩
∞

=

=∈≥=∈=  

Then, ,N∈∀M  is, 

( ) ( )
( )

.
2

1
2

1
2

1
22

,,,,
−+

≥
+

∈≥

=≤=≤ ∑∑ Mji
Mji

ji
AjiMji

MAA BPBP  

Hence, ( ) .0=BPA  Since the set B is a set of all Xx ∈  for which ( )xS  

does not converge to L, in the Pringsheim’s sense. It 

({ ( ) }) .1senses'Pringsheimthein,lim:
,

==∈
∞→

LxSXxP ijjiA  

Let the sequence S not be uniformly statistically convergent and let  
NN ×⊂A  arbitrary uniformly density zero. Then, due to the lemma, 

the subsequence ( )xS  is divergent in the Pringsheim’s sense for 

( )

( )
.

,,0

,,1







∈

∈/
=

Aji

Aji
xij  

The following cases can be presented: 

(a) ( ) ( ) ( ) ,for,,,,,, kkkkkkkkkk ∀≥∈/∃ mnSAmnmnmn   

(b) ( ) ( ) ( ) ,for,,,,,, kk
kkkkkkkk ∀−≤∈/∃ mnSAmnmnmn   

(c) ( ) ( ) ( ) ( ) ( ) ( ) λ≤∈/∃∃ 11,,,,,,,, 22112211
kk

kkkkkkkk mnSAmnmnmnmn   

.22
kkmnS≤µ<  
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It follows: 

(a) ({ }) ,2
11:

11
∞===∈ ∑∑ ∞

=

∞

= kk kkmnA xXxP  

(b) ({ }) ,2
11:

11
∞===∈ ∑∑ ∞

=

∞

= kk kkmnA xXxP  

(c)  ({ }) ({ }) .1:1: 2211 11
∞==∈==∈ ∑∑ ∞

=

∞

= kkkk kk mnAmnA xXxPxXxP  

Then, due to second part of Borel-Cantelli lemma, the following is valid: 

(a) ({ }) ,1infinitefor1: ==∈ kkkmnA xXxP  

(b) ({ }) ,1infinitefor1: ==∈ k
kkmnA xXxP  

(c) ({ }) .1infinitefor1: 2211 ===∈ k
kkkk mnmnA xxXxP  

It follows: 

({ ( ) }) .1senses’Pringsheimtheindivergent: =∈ xSXxPA  

Hence,  

({ ( ) }) .0senses’Pringsheimtheinconvergent: =∈ xSXxPA  

Lemma 2.5. NN ×⊂∃⇔=− ALSUst ijlim  uniformly density zero 

such that ( ) ,lim
,

LxSijji
=

∞→
 in the Pringsheim’s sense for 

( )
( )

.
,,0
,,1





∈
∈/

=
Aji
Aji

xij  

Proof. Let .lim LSUst ij =−  Then, there is a sequence of natural 

numbers ( )∞=2kkr  such that 

.,,,,11:,1
2, N∈∀≥∀≤





 ≥−<< ++ mnrqpLSqjpipq jmin k

kk
 

Let 
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∪∪ ∞

=

∞

=
=

1,2 mn
A

k
 

( ) .1,,,:, ,11 





 ≥−<<≥++ ++++ kkkk LSrjrirjijmin jmin  

We define Xx ∈  the following way: 

( )
( )

.
,,0
,,1





∈
∈/

=
Aji
Aji

xij  

For ,,0 0 N∈∃>ε∀ k  such that .,1
0kk

k
≥∀ε≤  From the definition 

of the sequence x, we have 

( ) .,,,, 0,, N∈∀≥∀ε≤−=− ++++ mnrjiLSLxS jminjmin k  

Hence, the subsequence ( )xS  converges to L in the Pringsheim’s sense. 

For ,,0 0 N∈∃>ε∀ k  such that, 

( )
.21

1,2
1

2
0

2
0

ε≤
−

ε≤∑
∞

= kkkk
 

Let ,, 0krqp >  then 

{ ( ) }Ajminqjpipq ∈++<< ,:,1  

{ ( ) }Ajminrjriqjpipq ∈++≤≤<<≤ ,,:,1
00 kk   

{ ( ) } .,,,:,1
0 Ajminrjiqjpipq ∈++><<+ k  

{ ( ) }Ajminrjriqjpipq ∈++≤≤<< ,,:,1
00 kk   









−
≥−<<≤ ++ 1

1:,1
0

, k
LSqjpipq jmin  
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( )
.,,21

1
2

0
N∈∀ε≤

−
≤ mn
k

 

{ ( ) }Ajminrjiqjpipq ∈++><< ,,,:,1
0k  







 ≥−≤≤><<≤ ++++

0
,11

1,,,:,1
000 kkkk LSrjrirjiqjpipq jmin  









+
≥−≤≤><<+ +++++ 1

1,,,:,1
0

,221 000 kkkk LSrjrirjiqjpipq jmin  

.,,2
1
2

0

N∈∀ε≤≤+ ∑
∞

=

mn
kkk

"  

Hence, ,,0 0kr∃>ε∀  such that 

{ ( ) } .,,,,22,:,1
0 N∈∀≥∀ε=ε+ε≤∈++<< mnrqpAjminqjpipq k  

Respectively, A is uniformly density zero. 

We assume that there is a subset A of set ,NN ×  uniformly density 

zero such that subsequence ( )xS  of S converges to L, in the Pringsheim’s 

sense, for 

( )
( )

.
,,0
,,1





∈
∈/=

Aji
Aji

xij  

Then, ,,,0 00 N∈∃>ε∀ mn  such that .,, 00 mjniLSij ≥∀≥∀ε≤−  

{ }ε≥−<< ++ LSqjpipq jmin ,:,1  

{ }ε≥−<+<+<<= ++ LSmjmninqjpipq jmin ,00 ,:,1   

{ }ε≥−≥+≥+<<+ ++ LSmjmninqjpipq jmin ,00 ,,:,1  
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{ }00:,1 mjmninqjpipq <+<+<<≤   

{ ( ) }Ajminmjmninqjpipq ∈++≥+≥+<<+ ,,,:,1
00  

{ }00:,1 mjmninqjpipq <+<+<<≤   

{ ( ) } .,:,1 Ajminqjpipq ∈++<<+  

Obviously, the first summand converges to zero uniformly on 
., N∈mn  The second summand converges to zero uniformly on 

N∈mn,  due to the assumption. So .lim LSUst ij =−  
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