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Abstract 

In this paper, newly defined four operators over generalized interval valued 
intuitionistic fuzzy sets are proposed. Some of the basic properties of the new 
operators are discussed. 

1. Introduction 

In recent decades, several types of sets, such as fuzzy sets (FS) 
(Zadeh [30]), interval valued fuzzy sets (IVFS) (Zadeh [31]), intuitionistic 
fuzzy sets (IFS) (Atanassov [1]), intuitionistic fuzzy sets of root type 
(Srinivasan and Palaniappan [19]), intuitionistic fuzzy sets of second type 
(Atanassov [4]), interval valued intuitionistic fuzzy sets (IVIFS) 
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(Atanassov and Gargov [2]), type-2 fuzzy sets (John [13]), type-n fuzzy 
sets (Dubois and Prade [11]), fuzzy multisets (Yager [29]), vague sets 
(Gau and Buehrer [12]) hesitant fuzzy sets (Torra and Narukawa [23]), 
generalized interval valued intuitionistic fuzzy sets (GIVIFS) (Bhowmik 
and Pal [8, 9]) have been introduced and investigated widely for 
modelling several real life problems. Atanassov [3] defined different 
operators over IVIFS. Xu and Jian [26] and Xu [27, 28] developed some 
arithmetic aggregation operators and some geometric aggregation 
operators of IVIFS for decision making. Li [14, 15, 16], Chen et al. [10], 
Sahin [18], and Liu and Luo [17] presented methods for multi-criteria 
fuzzy decision making based on IVIFS. Bhowmik and Pal [7] define two 
operators C and I with some properties over GIVIFSs. Wang et al. [25] 
defined two new aggregation operators based on the Łukasiewicz 
triangular norm. Wang and Liu [24] considered the interval valued 
intuitionistic fuzzy hybrid weighted averaging operator based on Einstein 
operation and its application to decision making. Sudharsan and 
Ezhilmaran [20] defined two new operators over IVIFSs. Sudharsan and 
Ezhilmaran [21] proposed two new operators defined over IFSs and also 
two new operators defined over an IVIFS. Sudharsan and Ezhilmaran 
[22] present a weighted arithmetic average operator based on interval 
valued intuitionistic fuzzy values and their application to multi-criteria 
decision making for investment. 

Baloui Jamkhaneh and Nadarajah [5] considered a new generalized 
intuitionistic fuzzy sets (GIFSB) and introduced some operators over 

.GIFSB  Baloui Jamkhaneh [6] considered new generalized interval 

valued intuitionistic fuzzy sets ( )BGIVIFS  and introduced some 

operators over .GIVIFSB  In this paper, our aim is to propose four new 

operators on sGIVIFSB  and study their properties. 

2. Preliminaries 

In this section, we give some basic definition. Let X be a non-empty 
set. 
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Definition 2.1 (Atanassov [1]). An IFS A in X is defined as an object 
of the form { ( ) ( ) },:,, XxxxxA AA ∈µ= ν  where the functions 

[ ]1,0: →µ XA  and [ ]1,0: →XAν  denote the degree of membership and 

non-membership functions of A, respectively and ( ) ( ) 10 ≤+µ≤ xx AA ν   

for each .Xx ∈  

Definition 2.2. Let [I] be the set of all closed subintervals of the interval 
[ ]1,0  and ( ) [ ( ) ( )] [ ]IxMxMxM AUALA ∈= ,  and ( ) [ ( ),xNxN ALA =  

( )] [ ]IxN AU ∈  then ( ) ( )xMxN AA ≤  if and only if ( ) ( )xMxN ALAL ≤  

and ( ) ( ).xMxN AUAU ≤  

Definition 2.3 (Atanassov & Gargov [2]). Interval valued 
intuitionistic fuzzy sets (IVIFS) A in X, is defined as an object of the form 

{ ( ) ( ) },:,, XxxNxMxA AA ∈=  where the functions ( ) [ ]IXxM A →:  

and ( ) [ ],: IXxN A →  denote the degree of membership and degree of 

non-membership of A, respectively, where ( ) [ ( ) ( )],, xMxMxM AUALA =  

( ) [ ( ) ( )] ( ) ( ) 10,, ≤+≤= xNxMxNxNxN AUAUAUALA  for each .Xx ∈  

Definition 2.4 (Baloui Jamkhaneh and Nadarajah [5]). Generalized 
intuitionistic fuzzy sets ( )BGIFS  A in X, is defined as an object of the form 

{ ( ) ( ) },:,, XxxxxA AA ∈µ= ν  where the functions [ ]1,0: →µ XA  and 

[ ],1,0: →XAν  denote the degree of membership and degree of non-

membership functions of A, respectively, and Aµ≤0 ( ) ( ) 1≤+ δδ xvx A  

for each Xx ∈  and n=δ  or .,,2,1,1 Nnn …=  

Definition 2.5 (Baloui Jamkhaneh [6]). Generalized interval valued 
intuitionistic fuzzy sets ( )BGIVIFS  A in X, is defined as an object of    

the form { ( ) ( ) },:,, XxxNxMxA AA ∈=  where the functions 

( ) [ ]IXxM A →:  and ( ) [ ],: IXxN A →  denote the degree of 

membership and degree of non-membership of A, respectively,               
and ( ) [ ( ),xMxM ALA =  ( )] ( ) [ ( ) ( )],,, xNxNxNxM AUALAAU =  where 
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( ) ( ) ,10 ≤+≤ δδ xNxM AUAU  for each Xx ∈  and n=δ  or ,1
n  

.,,2,1 Nn …=  The collection of all ( )δBGIVIFS  is denoted by 

( )., XGIVIFSB δ  

Definition 2.6 (Baloui Jamkhaneh [6]). Let A and B be two 
sGIVIFSB  such that 

{ ( ) ( ) } { ( ) ( ) },:,,,:,, XxxNxMxBXxxNxMxA BBAA ∈=∈=  

( ) [ ( ) ( )] ( ) [ ( ) ( )],,,, xNxNxNxMxMxM AUALAAUALA ==  

( ) [ ( ) ( )] ( ) [ ( ) ( )].,,, xNxNxNxMxMxM BUBLBBUBLB ==  

Define the following relations on A and B: 

(i) BA ⊂  if and only if ( ) ( )xMxM BA ≤  and ( ) ( ) ;, XxxNxN BA ∈∀≥   

(ii) { ( ) ( )( ) ( ) ( )( )[ ],,max,,max, xMxMxMxMxBA BUAUBLAL=∪  

[ ( ) ( )( ) ( ) ( )( )] };:,min,,min XxxNxNxNxN BUAUBLAL ∈  

(iii) { ( ) ( )( ) ( ) ( )( )[ ],,min,,min, xMxMxMxMxBA BUAUBLAL=∩  

[ ( ) ( )( ) ( ) ( )( )] };:,max,,max XxxNxNxNxN BUAUBLAL ∈  

(iv) { ( ) ( ) }.:,, XxxMxNxA AA ∈=  

Definition 2.7. For every { ( ) ( ) },:,, XxxNxMxAGIVIFS AAB ∈=  

we define the modal logic operators “necessity” and “possibility”. 

The Necessity measure on A: 

[ ( ) ( )] [ ( ) ( ( ) ) ] .:1,,,,
1





 ∈−= δ

δ XxxMxNxMxMxA AUALAUAL  

The Possibility measure on A: 

[ ( ) ( ( ) ) ] [ ( ) ( )] .:,,1,,
1





 ∈−=◊ δ

δ XxxNxNxNxMxA AUALAUAL  
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Corollary 2.1. Let ,, BGIVIFSBA ∈  we have 

(i) ,BGIVIFSA ∈  

(ii) ,BGIVIFSA ∈◊  

(iii) ( ) ,BABA  ∪∪ =  

(iv) ( ) ,BABA ◊◊=◊ ∪∪  

(v) ( ) ,BABA  ∩∩ =  

(vi) ( ) .BABA ◊◊=◊ ∩∩  

Corollary 2.2. Let ,, BGIVIFSBA ∈  we have 

(i) ,AA  =◊  

(ii) ,AA ◊=◊  

(iii) ,AA ◊=  

(iv) .AA =◊  

Corollary 2.3. Let ,,, BAGIVIFSBA B ⊂∈  we have 

(i) ,BA  ⊂  

(ii) .BA ◊⊂◊  

3. The Operators of BGIVIFS  

Here, we will introduce new operators over the ,GIVIFSB  which 

extend some operators in the research literature related to IVIFSs. Let X 
is a non-empty finite set and { ( ) ( ) }XxxNxMxA AA ∈= :,,  is a 

.GIVIFSB  

Definition 3.1. Let [ ]1,0, ∈βα  and ,BGIVIFSA ∈  we define the 

operator of ( )AJ ∗
βα,  as follows: 
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( ) ( ) ( ) ,:,,
,,, 






 ∈= ∗

βα
∗
βα

∗
βα XxANAMxAJ JJ  

( ) ( ) ( ) ( ( ) ( ) )( ) ,1,
1

,








β−−α+= δ

∗
βα

δδδ xNxMxMxMAM AUAUAUALJ  

( ) [ ( ) ( )].,
11

,
xNxNAN AUALJ

δδ
∗
βα

ββ=  

Theorem 3.1. For every ,BGIVIFSA ∈  and for every three real 

numbers [ ]1,0,, ∈γβα  

(i) ( ) ,, BGIVIFSAJ ∈∗
βα  

(ii) ( ) ( ),,, AJAJ ∗
βγ

∗
βα ⊂⇒γ≤α  

(iii) ( ) ( ),,, AJAJ ∗
γα

∗
βα ⊃⇒γ≤β  

(iv) ( ) ,1,1 AAJ ◊=∗  

(v) ( ) .1,0 AAJ =∗  

Proof. (i) 

( ) ( ) ( ) ( )δδ
∗
βα

∗
βα

+ xNxM UAJUAJ ,,
 

( ) ( ( ) ( ) )( ) ( )
δδ

δδδ








β+








β−−α+= δδ xNxNxMxM AUAUAUAU

11
1  

( ) ( ( ) ( )( ) ( )δδδδ β+β−−α+= xNxNxMxM AUAUAUAU 1  

( ) ( ) ( ) ( ) .11 =β+β−−+≤ δδδδ xNxNxMxM AUAUAUAU  

Finally, it can be concluded that ( ) ., BGIVIFSAJ ∈∗
βα  

(ii) Since ,γ≤α  then it is clear that 
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( ) ( ) ( ( ) ( ) )( ) 







β−−α+ δδδδ

1
1, xNxMxMxM AUAUAUAL  

( ) ( )(



≤ δxMxM AUAL ,  

 ( ( ) ( ) )) .1
1





β−−γ+ δδδ xNxM AUAU  

Finally, we have ( ) ( ).,, AJAJ ∗
βγ

∗
βα ⊂  

The proof of (iii) is similar to that of (ii). Proofs (iv) and (v) are 
obvious. 

Definition 3.2. Let [ ]1,0, ∈βα  and ,BGIVIFSA ∈  we define the 

operator of ( )Aj∗ βα,  as follows: 

( ) ( ) ( ) ,:,,
,,, 






 ∈= ∗

βα
∗
βα

∗
βα XxANAMxAj jj  

( ) [ ( ) ( ( ) ( ( ) ( ) )) ],1,
1

,
δ∗

βα

δδδ −β−α+= xNxMxNxNAM AUAUAUALj  

( ) [ ( ) ( )].,
11

,
xMxMAN AUALj

δδ
∗
βα

ββ=  

Theorem 3.2. For every ,BGIVIFSA ∈  and for every three real 

numbers [ ]1,0,, ∈γβα  

(i) ( ) ,, BGIVIFSAj ∈∗
βα  

(ii) ( ) ( ),,, AjAj ∗
βγ

∗
βα ⊂⇒γ≤α  

(iii) ( ) ( ),,, AjAj ∗
γα

∗
βα ⊃⇒γ≤β  

(iv) ( ) ,1,1 AAj =∗  

(v) ( ) .1,0 AAj =∗  
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Proof. (i) 

( ) ( ) ( ) ( )δδ
∗
βα

∗
βα

+ xNxM UAjUAj ,,

( )( ( ( ) ( ) ))
δ

δδδ








−β−α+= δ

1
1 xNxMxN AUAUAU  

( )
δ









β+ δ xM AU

1
 

( ) ( ( ) ( ) )( ) ( )δδδδ β+−β−α+= xMxNxMxN AUAUAUAU 1  

( ) ( ) ( ) ( ) .11 =β+−β−+≤ δδδδ xMxNxMxN AUAUAUAU  

Finally, it can be concluded that ( ) ., BGIVIFSAj ∈∗
βα  

(ii) Since ,γ≤α  then it is clear that 

( ) ( ) ( ( ) ( ) )( ) 







−β−α+ δδδδ

1
1, xNxMxNxN AUAUAUAL  

( ) ( ) ( ( ) ( ) )( ) .1,
1









−β−γ+≤ δδδδ xNxMxNxN AUAUAUAL  

Finally, we have ( ) ( ).,, AjAj ∗
βγ

∗
βα ⊂  

The proof of (iii) is similar to that of (ii). Proofs (iv) and (v) are 
obvious. 

Definition 3.3. Let [ ]1,0, ∈βα  and ,BGIVIFSA ∈  we define the 

operator of ( )AH ∗
βα,  as follows: 

( ) ( ) ( ) ,:,,
,,, 






 ∈= ∗

βα
∗
βα

∗
βα XxANAMxAH HH  

( ) [ ( ) ( )],,
11

,
xMxMAM AUALH

δδ
∗
βα

αα=  
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( ) [ ( ) ( ( ) ( ( ) ( ) )) ].1,
1

,
δ∗

βα

δδδ −α−β+= xNxMxNxNAN AUAUAUALH  

Theorem 3.3. For every ,BGIVIFSA ∈  and for every three real 

numbers [ ],1,0,, ∈γβα  

(i) ( ) ,, BGIVIFSAH ∈∗
βα  

(ii) ( ) ( ),,, AHAH ∗
βγ

∗
βα ⊂⇒γ≤α  

(iii) ( ) ( ),,, AHAH ∗
γα

∗
βα ⊃⇒γ≤β  

(iv) ( ) ,0,1 AAH =∗  

(v) ( ) .1,1 AAH =∗  

Proof. (i) 

( ) ( ) ( ) ( )δδ
∗
βα

∗
βα

+ xNxM UAHUAH ,,
 

( ) ( ( ) ( ( ) ( ) ))
δ

δδδ
δ






 −α−β++








α= δδ

11
1 xNxMxNxM AUAUAUAU  

( ) ( ( ) ( ( ) ( ) ))δδδδ −α−β++α= xNxMxNxM AUAUAUAU 1  

( ) ( ( ) ( ( ) ( ) )) .11 =−α−++α≤ δδδδ xNxMxNxM AUAUAUAU  

Finally, it can be concluded that ( ) ., BGIVIFSAH ∈∗
βα  

The proofs of (ii), (iii), (iv), and (v) are obvious. 

Definition 3.4. Let [ ]1,0, ∈βα  and ,BGIVIFSA ∈  we define the 

operator of ( )Ah∗
βα,  as follows: 

( ) ( ) ( ) ,:,,
,,, 






 ∈= ∗

βα
∗
βα

∗
βα XxANAMxAh hh  
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( )( ) [ ( ) ( )],,
11

,
xNxNAM AUALAh

δδ
∗
βα

αα=  

( )( ) [( ( ) ( ( ) ( ( ) ( ) )) ].1,
1

,
δ∗

βα

δδδ α−−β+= xNxMxMxMAN AUAUAUALAh  

Theorem 3.4. For every ,BGIVIFSA ∈  and for every three real 

numbers [ ]1,0,, ∈γβα  

(i) ( ) ,, BGIVIFSAh ∈∗
βα  

(ii) ( ) ( ),,, AhAh ∗
βγ

∗
βα ⊂⇒γ≤α  

(iii) ( ) ( ),,, AhAh ∗
γα

∗
βα ⊃⇒γ≤β  

(iv) ( ) ,0,1 AAh =∗  

(v) ( ) .1,1 AAh ◊=∗  

Proof. The proofs are obvious. 

Corollary  3.1. Let ,BGIVIFSA ∈  we have 

(i) ( ) ( ),,, AJAj ∗
βα

∗
βα =  

(ii) ( ) ( ),,, AHAh ∗
βα

∗
βα =  

(iii) ( ) ( ),,, AhAJ ∗
βα

∗
αβ =  

(iv) ( ) ( ).,, AHAj ∗
βα

∗
αβ =  

Theorem 3.5. For every BABAsGIVIFSB ⊂,,  and for every two 

real numbers [ ],1,0, ∈βα  we have 

(i) ( ) ( ),,, BJAJ ∗
βα

∗
βα ⊂  

(ii) ( ) ( ),,, BjAj ∗
βα

∗
βα ⊃  
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(iii) ( ) ( ),,, BHAH ∗
βα

∗
βα ⊂  

(iv) ( ) ( ),,, BhAh ∗
βα

∗
βα ⊃  

(v) ( ) ( ).,, AJAAH ∗
βα

∗
βα ⊂⊂  

Proof. The proofs are obvious. 

Theorem 3.6. For every BGIVIFS  A, and for every two real numbers 

[ ],1,0, ∈βα  we have 

(i) ( ),, AJA ∗
βα◊⊂◊  

(ii) ( ),, AJA ∗
βα⊂   

(iii) ( ) ,, AAH ◊⊂◊ ∗
βα  

(iv) ( ) ., AAH  ⊂∗
βα  

Proof. The proofs are obvious. 

Remark 3.1. According to definition, the operators of ( )AJ ∗
βα,  

increases the membership degree A and reduces non-membership degree 

A, the operators of ( )Aj∗ βα,  increases the membership degree A  and 

reduces non-membership degree ,A  the operators of ( )AH ∗
βα,  reduces 

the membership degree A and increases non-membership degree A, the 

operators of ( )Ah∗
βα,  reduces the membership degree A  and increases 

non-membership degree .A  

Example 3.1. Let [ ] [ ]{ } ,5.0,2.0,1.0,5.0,4.0,1 =δ= xA  then 

[ ] [ ]{ } [ ] [ ]{ },2.0,1.0,3056.0,4.0,,0858.0,1.0,5.0,4.0, 11 xAxA =◊=  

( ) { [ ( )( ) ] [ ] },2.0,1.0,4472.02929.07071.0,4.0, 222
1, βββ−α+=∗

βα xAJ  
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( ) { [ ( )( ) ] [ ] },5.0,4.0,7071.05528.04472.0,1.0, 222
1, βββ−α+=∗

βα xAj  

( ) { [ ] [ ( )( ) ] },7071.05528.04472.0,1.0,5.0,4.0, 222
1, α−β+αα=∗

βα xAH  

( ) { [ ] [ ( )( ) ] }.4472.02929.07071.0,4.0,2.0,1.0, 222
1, α−β+ββ=∗

βα xAh  

4. Conclusion 

We have introduced four modal types of operators over Baloui’s 
generalized interval valued intuitionistic fuzzy sets and their 
relationships are proved. Some related results have been proved. 
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