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Abstract

In this paper, newly defined four operators over generalized interval valued
intuitionistic fuzzy sets are proposed. Some of the basic properties of the new

operators are discussed.
1. Introduction

In recent decades, several types of sets, such as fuzzy sets (FS)
(Zadeh [30]), interval valued fuzzy sets (IVFS) (Zadeh [31]), intuitionistic
fuzzy sets (IFS) (Atanassov [1]), intuitionistic fuzzy sets of root type
(Srinivasan and Palaniappan [19]), intuitionistic fuzzy sets of second type

(Atanassov [4]), interval valued intuitionistic fuzzy sets (IVIFS)
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(Atanassov and Gargov [2]), type-2 fuzzy sets (John [13]), type-n fuzzy
sets (Dubois and Prade [11]), fuzzy multisets (Yager [29]), vague sets
(Gau and Buehrer [12]) hesitant fuzzy sets (Torra and Narukawa [23]),
generalized interval valued intuitionistic fuzzy sets (GIVIFS) (Bhowmik
and Pal [8, 9]) have been introduced and investigated widely for
modelling several real life problems. Atanassov [3] defined different
operators over IVIFS. Xu and Jian [26] and Xu [27, 28] developed some
arithmetic aggregation operators and some geometric aggregation
operators of IVIFS for decision making. Li [14, 15, 16], Chen et al. [10],
Sahin [18], and Liu and Luo [17] presented methods for multi-criteria
fuzzy decision making based on IVIFS. Bhowmik and Pal [7] define two
operators C and I with some properties over GIVIFSs. Wang et al. [25]
defined two new aggregation operators based on the hLukasiewicz
triangular norm. Wang and Liu [24] considered the interval valued
intuitionistic fuzzy hybrid weighted averaging operator based on Einstein
operation and its application to decision making. Sudharsan and
Ezhilmaran [20] defined two new operators over IVIFSs. Sudharsan and
Ezhilmaran [21] proposed two new operators defined over IFSs and also
two new operators defined over an IVIFS. Sudharsan and Ezhilmaran
[22] present a weighted arithmetic average operator based on interval
valued intuitionistic fuzzy values and their application to multi-criteria

decision making for investment.

Baloui Jamkhaneh and Nadarajah [5] considered a new generalized
intuitionistic fuzzy sets (GIFSs) and introduced some operators over

GIFSg. Baloui Jamkhaneh [6] considered new generalized interval
valued intuitionistic fuzzy sets (GIVIFSg) and introduced some
operators over GIVIFSg. In this paper, our aim is to propose four new

operators on GIVIFSgs and study their properties.

2. Preliminaries

In this section, we give some basic definition. Let X be a non-empty

set.
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Definition 2.1 (Atanassov [1]). An IFS A in X is defined as an object

of the form A = {(x, py(x), va(x)): x € X}, where the functions
uy : X - [0,1] and vy : X — [0, 1] denote the degree of membership and
non-membership functions of A, respectively and 0 < pg(x)+vy(x) <1

for each x € X.

Definition 2.2. Let [I] be the set of all closed subintervals of the interval
[0,1] and My(x) = [Mar(x), Mapy(x)] € [I] and Na(x)=[Nap(x),
Npy(x)] € [I] then N4(x) < M4(x) if and only if Nz (x) < Myz(x)
and Nyp(x) < My (x).

Definition 2.3 (Atanassov & Gargov [2]). Interval valued
intuitionistic fuzzy sets (IVIFS) A in X, is defined as an object of the form
A ={{x, My(x), Ng(x)) : x € X}, where the functions M 4(x) : X — [I]
and Ny(x): X — [I], denote the degree of membership and degree of
non-membership of A, respectively, where M 4(x) = [M 47,(x), M 417(x)],

N4(x) = [Nagr(x), Nap(x)], 0 < M gp7(x) + Nay(x) <1 for each x € X.

Definition 2.4 (Baloui Jamkhaneh and Nadarajah [5]). Generalized
intuitionistic fuzzy sets (GIFSg) A in X, is defined as an object of the form
A = {(x, pa(x), va(x)) : x € X}, where the functions ny : X — [0, 1] and

vy : X - [0,1], denote the degree of membership and degree of non-

membership functions of A, respectively, and 0 < 4 (x)° +va(x)° <1

foreach x e X and § = n or%,nzl, 2,..., N.

Definition 2.5 (Baloui Jamkhaneh [6]). Generalized interval valued

intuitionistic fuzzy sets (GIVIFSp) A in X, is defined as an object of
the form A ={(x, M4(x), Ns(x)):x e X}, where the functions
My(x): X - [I] and Ny(x): X — [I], denote the degree of

membership and degree of non-membership of A, respectively,
and M(x)=[Mar(x), Mapy(x)], Na(x) = [Nap(x), Nay(x)], where
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0<Mup(x) +Napx)® <1, for each xeX and 8=n or %,

n=12 .., N. The collection of all GIVIFSg(§) is denoted by
GIVIFSE(3, X).

Definition 2.6 (Baloui Jamkhaneh [6]). Let A and B be two
GIVIFS gs such that

A= {(x, Ma@), Na()) : x € X}, B = {{x, Mp(x), Np()) : x € X},
Ma(x) = [Map (), Map@)], Na() = [Nag@), Nag@)l,
Mp(x) = [Mpp (), Mpy ()], Np() = [N (), Npy (@)l

Define the following relations on A and B:

(i) A c B ifandonlyif M 4(x)< Mpg(x) and N4(x) > Ng(x), Vx € X;
(i) AUB = {(x, [max(Ma(x), Mpp (), max(Mag(x), Mpu ()
[ min(N 47 (x), Nz (), min(N 4 (), Npo()]) : x < X};

(i) AN B = {(x, [min(M 4y, (x), Mpy (), min(M 40 (x), Mgy (),
[ max(N ap (), Ny (x), max(Nap(x), Ngg@)) : x € X}:

() A = {(x, Nalx), Ma()) : x < X).

Definition 2.7. For every GIVIFSgA = {{x, M 4(x), N4 (x)): x € X},

we define the modal logic operators “necessity” and “possibility”.

The Necessity measure on A:

nA = {(x, [Mar(x), Mag@)], [Nag(x), (1 - Map(x) )%D tx € X}

The Possibility measure on A:

oA = {(x [Mar (), (1= Nay (el ), [Nap @), Nap(@) : x € X},
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Corollary 2.1. Let A, B € GIVIFSpg, we have
(1) mA € GIVIFSp,

(1) 0A € GIVIFSp,

(i1i) o(A U B) = nA U 0B,

(iv) ®(A U B) = 0A U 0B,

(v) o(AN B) = cANoB,

(vi) 0(A N B) = 0AN OB.

Corollary 2.2. Let A, B € GIVIFSpg, we have

(i) 0cA = cA,
(i) 00A = 0A,
(ili) nA = 0A,
(iv) 0A = cA.

Corollary 2.3. Let A, B € GIVIFSp, A — B, we have
(1) oA < oB,

(i1) ¢A c 0B.
3. The Operators of GIVIFSp

Here, we will introduce new operators over the GIVIFSy, which

extend some operators in the research literature related to IVIFSs. Let X
is a non-empty finite set and A = {(x, M4 (x), Na(x)):x € X} is a
GIVIFSg.

Definition 3.1. Let a, B € [0, 1] and A € GIVIFSg, we define the

operator of o/ ; B(A) as follows:
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% 5(A) = {(x, My (AN, (A):xe X}
MJ;’B(A) = {MAL(x)a (MAU(x)6 + ol - My (x)® - BN 4y (x)° )F}

Ny (4) = [B%NAL(x)’ B%NAU(x)].

Theorem 3.1. For every A e GIVIFSp, and for every three real
numbers a, B, v € [0, 1]

@) J5p(A) € GIVIFS,

(i) o« <y = Jgp(A) < Iy p(A),
(i) B <1 = 75, 5(4) = T, (4),
(iv) J11(4) = 0 4,

v) Jo,1(A) = A.

Proof. (1)

(x)° + N s

5
MJ;,B(A)U ’B(A)U(x)

N 5
_ [(MAUW -l = Map () - BN ap () >F] ; (BSNAU(x)j

= (MAU(x)B +a(l - Myp(x) - BNAU(x)6)+ BN 47 (x)°
< Map(x)° +1- Map(x)® = BN op(x)° + BNy (x)® = 1.
Finally, it can be concluded that /g, p(A) € GIVIFSp.

(i1) Since a < y, then it is clear that
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{MAL@), (Map @) + ol - Mar(x)’ - BN sy} ))ﬂ
< [MAL(x)’ (MAU(x)8

+9(1~ Map(x)® - BN 4p(x)° ))ﬂ

Finally, we have J; 5(A) < J5 (A).

The proof of (iii) is similar to that of (i1). Proofs (iv) and (v) are

obvious.

Definition 3.2. Let a, B € [0, 1] and A € GIVIFSg, we define the

operator of jy g(A) as follows:
jop(A) = {(x, M. ()N, (4)):xe X}
M. (4)= [Nar(). (Nag() + ol - pMau ()’ - Nap())s ]

N ()= (85 M az (x), B° Map (2]

Theorem 3.2. For every A e GIVIFSp, and for every three real
numbers a, B, v € [0, 1]

@) jg,p(A) € GIVIFSp,

(i) o <y = jg p(A) < Jjy p(A),
(i) B < v = Jjy p(A) 2 s, (A),
(v) ji1(A) = oA,

V) joa(4) = A.
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Proof. (i)

M (x)°+ N,

)
jopAU i B(A)U(x)

= ((NAUu)S +a(l = BM 4y (x)° - Nap(x)® >)%J6
1 5
; (BSMAU(x)J
= (Nar @) + all - BM oy () - Nag@)))+ BM ay(x)°
< Nap(x)® +1-BMap(x)’ = Nap(x)® + BM ap(x)® = 1.
Finally, it can be concluded that j;’ ﬁ(A) e GIVIFSg.

(1) Since a < y, then it is clear that

{NAL@), (Vg (&) + a1 - BM 4y (&) — Nay (6P ﬂ

< {NAL(x)’ (NAU(x)6 +y(1 - BM 4y (x)° = N g (x)® )F}

Finally, we have j;’B(A) c j;,B(A).

The proof of (ii1) is similar to that of (i1). Proofs (iv) and (v) are

obvious.
Definition 3.3. Let a, B € [0, 1] and A € GIVIFSg, we define the

operator of Hy g(A) as follows:
H (A) = {(x, My (A),Ny. (4):xe X}

My (A)= [0 Map (), Map ),
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1
Ny» B(A) = [Nz (%), (Nap()° +B(1 = aM gy (x)° = Nag(®)®))5 ],

Theorem 3.3. For every A e GIVIFSp, and for every three real
numbers a, B, vy € [0, 1],

() Hj 3(A) e GIVIFSp,

(i) o <y = Hy p(A) c Hj 5(A),
(i) B <y = Hq p(A) > Hy ,(A),
(iv) Hyo(A) = A,

(v) Hi1(A) = oA,

Proof. (i)

() 3
M saw ™+ Ny ap @)

1 5 139
(QSMAU(x)J + ((NAU(x)S +B(1 - aM 4y (x)° — Nyp(x) ))5)

aM oy (x)° + (Nop)® + B - aM 4p(x)° = Nap(x)®))

aM 4y (x)° + (Nap@)® + (1 - aM 4p(x)° -~ Nap(x)°)) = 1.

IA

Finally, it can be concluded that H, 5(A) € GIVIFSg.

The proofs of (i1), (ii1), (iv), and (v) are obvious.
Definition 3.4. Let a, B € [0, 1] and A € GIVIFSp, we define the

operator of hy g(A) as follows:

he, 5(A) = {(x, My, (A).N,. (4):xe X},
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1 1
— 3 [}
M. )\ = [0®N4r(x), a® N ap(x)],

Ny @) = [(Man ). (Mav (el (1= Mav () ~aNap@ )5

Theorem 3.4. For every A e GIVIFSp, and for every three real

numbers a, B, v € [0, 1]
() 47, 5(A) e GIVIFS,
(i) o <y = hg g(A) < hyp(A),
(i) B <y = hg,g(A) o Ay, (A),
(iv) Af o(4) = 4,
(v) i 1(A) = 0A.

Proof. The proofs are obvious.

Corollary 3.1. Let A € GIVIFSg, we have
() Jop(4) = I.p(A),

(i) kg p(A) = Hy, 5(A),

(iii) Jp o (A) = hg,p(A),

(iv) Jp,o(A) = Hg p(A).

Theorem 3.5. For every GIVIFSps A, B, A c B and for every two

real numbers o, B € [0, 1], we have
@) Jq,p(A) g p(B),

(i) Jjo.p(A) D Jjo,p(B),
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(i) Hq p(A) c Hg g(B),
(iv) hg.p(A) > hy §(B),
() Hip(A) c A < J% 4(A).

Proof. The proofs are obvious.

Theorem 3.6. For every GIVIFSg A, and for every two real numbers
a, B e [0, 1], we have

(i) 0A < 0 Jg p(A),
(i) 1A < o J3 5(A),
(i) OH, 5(A) c 04,
(iv) DH;’B(A) c nA.

Proof. The proofs are obvious.

Remark 3.1. According to definition, the operators of Jg 5(A)

increases the membership degree A and reduces non-membership degree

A, the operators of j;’B(A) increases the membership degree A and

reduces non-membership degree A, the operators of H;’B(A) reduces

the membership degree A and increases non-membership degree A, the

operators of h;’ﬁ(A) reduces the membership degree A and increases
non-membership degree A.

Example 3.1. Let A = {(x1, [0.4, 0.5], [0.1, 0.2])}, & = 0.5, then

nA = {(x1, [0.4, 0.5], [0.1, 0.0858])}, 0A = {(x;, [0.4, 0.3056], [0.1, 0.2])},

I p(A) = {21, [0.4, (0.7071 + 0(0.2929 — 0.4472B))* ], [0.18%,0.287 ])},
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Jup(A) = {(x1, [0.1, (0.4472 + 0(0.5528 — 0.7071B))* |, [0.4p%, 0.58 )},

H; 5(A) = {(x1, [0.40%, 0.5a], [0.1, (0.4472 + B(0.5528 - 0.7071c))* )},

hy p(A) = {(xy, [0.18%, 0.2%], [0.4, (0.7071 + B(0.2929 - 0.4472a1))” ])}.

4. Conclusion

We have introduced four modal types of operators over Baloui’s

generalized interval valued intuitionistic fuzzy sets and their

relationships are proved. Some related results have been proved.
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