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Abstract 

In this paper, we prove the semilocality of some multi-anisotropic Sobolev 
spaces, the density of smooth finite functions in those spaces when Sobolev 
spaces generated by completely regular Newton polyhedrons and give some 
examples showing that multi-anisotropic Sobolev space generated by a non-
regular Newton polyhedron is not semilocal. 

1. Introduction 

We use the following standard notation: N denotes the set of all     

natural numbers { }( )0where 0000 ∪… NNNNN n =××=  is the set of 

all n-dimensional multi-indices, nE  and nR  are the n-dimensional 
Euclidean spaces of points (vectors) ( )nxxx ,,1 …=  and ( ),,,1 nξξ=ξ …  
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respectively, { ( )} { ,:,,,10,: 0,, nn
j

nn RRnjRR ∈ξξ==≥ξ∈ξξ=+ …  

}.01 ≠ξξ n…  

For nn ExR ∈∈ξ ,  and ,, +∈α nR  we put ,22
1 nξ++ξ=ξ …  

,, 1
11 nnn

ααα ξξ=ξα++α=α ……  and ,1
1

nnDDD ααα = …  where 

j
j xiD

δ
δ= 1  ( ) .,,,1 0

nNnj ∈α= …  

Let { ( )}Mj
n

jj
11 ,, αα=α= …A  be a finite set of points in ., +nR  By 

the Newton polyhedron of the set ,A  we mean the minimal convex hull 

(which is a polyhedron) ( )Aℜℜ =  in +,nR  containing all points of .A  

A polyhedron ℜ  with vertices in +,nR  is said to be complete (see [17] 
or [9]), if ℜ  has a vertex at the origin and one vertex (distinct from the 

origin) on each coordinate axis of ., +nR  The ldimensiona-k  faces of a 

polyhedron ℜ  are denoted by ( ).1,,1,0,,,1 −=′= nMii …… kk
kℜ  The 

set of 0-dimensional faces (vertices) of ℜ  we denote by .0ℜ  

In the sequel, the outward (with respect to ℜ ) normal to the hyper 
plane of the support of the complete polyhedron ℜ  containing some face 
k
iℜ  and  not containing any other face of dimension greater than k  will 

be called simply the outward normal to the face .kiℜ  Thus, a given vector 

λ  can serve as an outward normal to one and only one face of a convex 
complete polyhedron .ℜ  

The face ( )10,1 −≤≤′≤≤ nMii kk
kℜ  of a polyhedron ℜ  is said to 

be principal (see [17]) if there is an outward normal with at least one 
positive component among outward normals to the face. If moreover, 
there is an outward normal with nonnegative (positive) components, the 

face k
iℜ  is said to be regular (completely regular). A complete polyhedron 

ℜ  is said to be regular (completely regular), if all its non-coordinate 
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( )1−n -dimensional faces are regular (completely regular) (see [12], [2], 

or [5], [7]). 

Let ℜ  be a complete polyhedron with vertices in 0
0 , ℜnN  be the set of 

its vertices, Ω  be a domain in ,nE  and .1 ∞<< p  Denote by ( )Ωℜ
pW  

(respectively ( )Ω
0ℜ

pW ) the set of functions u with the following bounded 

norms (see [12] or [2], paragraph 13): 

( ) ( ),Ω
α

∈α
Ω ∑=

pp LW uDu
ℜ

ℜ   (1.1) 

and respectively, 

( ) ( ).
0

0
Ω

α

∈α
Ω ∑=

pp LW uDu
ℜ

ℜ  (1.2) 

For a vector ( ) ( )njmEmmm j
n

n ,,10,,,1 …… =>∈=  the collections 

{ },1;:
1

01 ≤
α

≡α∈αα= ∑
= j

j
n

j

n
mmNA  

and 

{( ) [ ]},1;:0,,0 02 =α∈αα= mNA n∪…  

the sets ( )1
0 Aℜ  and ( )2

0 Aℜ  coincide, where the sets ( )( )Ω1A
pWℜ                

(respectively, ( )( )Ω2A
pW ℜ ) coincide with the isotropic Sobolev space 

( )Ωm
pW  when nmmm === …21  (respectively with the anisotropic 

Sobolev space ( )Ωm
pW~  when ji mm ≠  for a pair ( )ji, ) with the norm 

( )( ( ) ( ) ).~ ΩΩ
α

=α
Ω

α

≤α

+== ∑∑ pp
m
pp

m
p LL

m
WL

m
W uuDuuDu  
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Therefore, the sets ( )Ωℜ
pW  with the arbitrary polyhedron ℜ  and with the 

suitable norms we will call multi-anisotropic Sobolev spaces. 

The notion of completely regular polyhedron, not being right 
triangles, arises in connection with numerous problems in the theory of 
partial differential equations, in particular when we study hypoelliptic 
(see [11], Definition 11.1.2 ) or hyperbolic (see, for instance, [10] or [11], 
Definition 12.3.3) differential operators (equations). Recall that a linear 

differential operator ( ) ( ) α
α

α
γ== ∑ DDDPDP n,,1 …  with constant 

coefficients (here the sum goes over a finite set of multi-indices  

( ) { })0;0 ≠γ∈α= α
nNP  is called hypoelliptic if its complete symbol 

(characteristic polynomial) ( ) ( ) α
α

α
ξγ=ξξ=ξ ∑nPP ,,1 …  satisfies the 

condition ( ) ( ) 0→ξξα PPD  as ∞→ξ  for all .0 0
nN∈α≠  Operator 

( )DP  is called N-hyperbolic (by )rdingGo�  if there exists a real number 

0τ  such that ( ) 0≠+ξ NP τ  for all nR∈ξ  and 0ττ <  (see, for instance, 

[10] or [11], Definition 12.3.3). It is well known that an operator ( )DP  is 

hypoelliptic if and only if all distributional solutions of the equation 
( ) 0=uDP  are infinitely differentiable (see [11], Theorem 11.1.3) and 

that Cauchy problem is well posed for a large set of hyperbolic by 
rdingGo� operators and s-hyperbolic operators (see, for instance, [16], [9], 

[21], [5], [7], [23] and others). 

Operator ( )DP  is called almost hypoelliptic (see [13]) if there exists a 

constant 0>C  such that ( ) ( )[ ] CPPD ≤+ξξα 1  for all nN0∈α  and 

.nR∈ξ  

The Newton polyhedron of the set ( ) 0∪P  is called the Newton (or 

characteristic) polyhedron of the operator ( )DP  (the polynomial ( )ξP ) 

(see [13], [17], [9] or [19]). 
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It turned out that there is a strong connection between the (almost) 
hypoellipsity of operator ( )DP  and its Newton polyhedron: the Newton 

polyhedron of a hypoelliptic operator is completely regular and an almost 
hypoelliptic operator is regular. On the other hand, in [8], the following 
statement was proved: let f and all its derivatives be square integrable on 

nE  with a certain exponential weight. Then all square integrable (with 
the same weight) solutions of the equation ( ) fuDP =  have square 

integrable derivatives with this weight if and only if the operator ( )DP  is 

almost hypoelliptic. In other words, if f is infinitely differentiable, then 
all distributional solutions of the equation ( ) fuDP =  which belong to 

the certain weighted multi-anisotropic Sobolev space ℜ
δ,pW  (the definition 

see below in Section 3) are infinitely differentiable if and only if ( )DP  is 

almost hypoelliptic. 

Newton polyhedron generalizes the notion of degree of polynomial of 
n variables and the notion of degree of partial differential equations. 
There are great many applications of Newton polyhedron’s concept to 
different fields of mathematics (see, for instance, [14]-[20] and others) but 
in this work we will be concentrate only to (weighted) multi-anisotropic 
Sobolev spaces generated by some completely regular Newton polyhedron. 

Sobolev spaces play an outstanding role in modern analysis. In 
particular, weighted Sobolev spaces are of great interest in many fields of 
mathematics and first of all they arise in various issues of the theory of 
partial differential equations. Many monographs and papers have 
already been devoted to this topic. We mention only some of such works 
which are closely related to the present paper. First of all, we refer to the 
monographs [2], [11], and [22]. In these monographs, it is proved 
semilocality of various (weighted) Banach spaces, in particular, classical 
Sobolev spaces. 

In the paper [6] by Carlson and Maz’ya, necessary and sufficient 
conditions are given for a function from weighted Sobolev spaces (with a 
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weight µ  which specifies a non trivial positive Radon measure) to be 

approximated by test functions. Besov proved in [1], the density of the 
infinitely differentiable finite functions in some weighted Sobolev space. 
Burenkov proved in [3] (see also [4]), the density of finite functions in the 

isotropic Sobolev space ( )Ωl
pW  for any open set .Ω  In book [15], Kufner 

deals with properties of weighted Sobolev spaces ( )Ωµ
m
pW ,  the weight 

function µ  being dependent on ( ),, Ω∂xd  the distance of points of the 

domain Ω  from its boundary (or its part). 

These works are devoted to isotropic (or anisotropic) weighted 
Sobolev spaces, i.e., the spaces which are generated by a homogeneous 
(or, respectively non homogeneous) vector ( ).,,1 nmmm …=  Its Newton 

polyhedrons are ( )1+n -simplexes (geometrically, for example, in case 

,2=n  they are right triangles with a vertex in the origin, isosceles or 

not). 

Here we consider general case when the Sobolev space is generated 
by a Newton polyhedron of any kind. 

It turned out that for a set A  (say, polyhedrons ℜ ) the nature of a 
multi-anisotropic Sobolev space can be essentially different from usual 
(isotropic or anisotropic) Sobolev spaces. Therefore, a natural problem 
arises to find conditions on a polyhedron ℜ  corresponding to the set A  
and on a domain Ω  under which 

(1) the norms (1.1) and (1.2) are equivalent, i.e., the spaces ( )Ωℜ
pW  

and ( )Ω
0ℜ

pW  coincide; 

(2) the set ( )Ωℜ
pW  is a semilocal space. Recall that a functional 

Banach space ( )ΩB  is called semilocal if ( )Ω∈ Bu  and ( )Ω∈ϕ ∞
0C  

leades ( )Ω∈ϕ Bu  (see, for instance, [10], Definition 10.1.18); 
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(3) the set of infinitely differentiable functions with compact supports 

in Ω  is dense in multi-anisotropic Sobolev space ( ).Ωℜ
pW  

It turned out that there is a direct connection between the geometric 
properties of a Newton polyhedron ℜ  and the answers to these questions. 

We note in this regard that for Sobolev spaces ( )Ωm
pW  with different 

domains Ω  there are definite answers to the listed questions (see, for 

instance, [2], [4] or [15]). In particular, the spaces ( )Ωm
pW  and ( )Ωm

pW~  

are isometrically isomorphic. 

In this paper, we prove the following in main result 

Theorem. Let ℜ  be a completely regular Newton polyhedron, g be an 

exponential weight function, nE⊂Ω  be a domain satisfying the 

rectangle condition, and ( ).,1 ∞∈p  Then (a) the space ( )Ωℜ
pW  is 

semilocal, (b) the set ∞
0C  is dense in ℜ

pW  and .,
ℜ

δgpW  

We present some examples when spaces ℜ
pW  are not semilocal if they 

are generated by non-regular Newton polyhedrons. 

2. Equivalence of Norms and Semilocality of Multi- 
Anisotropic Sobolev Spaces 

We mention some statements on which we shall rely in the sequel. 

Theorem I (Il’in) (see [12] or [2], Theorem 13.3.2'). Let ,1 ∞<< p  

the domain Ω  satisfy the rectangle condition (see [12] or [2], p. 13.1) and 
let the Newton polyhedron ( )Aℜ  of a collection of multi-indices 

{ }0,,1 Nee …=A  be completely regular. Then there exists a constant 

0>C  such that 

( )
( )

( ) ( ),
0

1
Ω

=
Ω

∈
Ω ∑∑ ≤≡

p

i

pp L
e

N

i
LW uDCuDu ν

ℜν
ℜ

A
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for all ( ).Ω∈ ℜ
pWu  

Since the inverse inequality is obvious, this implies that for a 
completely regular polyhedron and a domain Ω  satisfying the rectangle 
condition, the norms (1.1) and (1.2) are equivalent, i.e., the spaces 

( )Ωℜ
pW  and ( )Ω

0ℜ
pW  coincide. 

Definition 2.1 (see [2], p. 11). A measurable function Φ  is called 

pL -multiplier (denoted by p
pM∈Φ ), if the transformation pp LLT →Φ :   

defined by equality 

( )
( ) [ ] ( ) ( ) [ ][ ]fFFdefFfT xi

En n Φ≡ξξξΦ
π

= −ξ
Φ ∫ 1,

22
1  

is bounded for all functions ,0
∞∈ Cf  i.e., there exists a constant 0>C  

such that pp fCfT ≤Φ  for all .0
∞∈ Cf  

Theorem L (Lizorkin, see [2], p. 11). A function ( )0,nn RC∈Φ  is a 

pL -multiplier ( )p
pM∈Φ  if there exists a number 0>M  such that 

( ) MDnn ≤ξφξξ kkk …1
1  for all ,0,nR∈ξ  where ( )nkkk ,,1 …=  and jk  

takes only values 0 and .,,1,1 nj …=  

Theorem M (Mikhailov, see [17]). For any set A  of points 
0,1 0,, nN Ree ∈…  with the Newton polyhedron ( ),Aℜℜ =  there exists a 

constant ( ) 0>= ℜCC  such that 

.,
0

1

ne
N

i
RC

i
∈ξ∀ξ≤ξ ∑∑

=

α

∈α ℜ
 

Theorem 2.1. For any completely regular polyhedron ,ℜ  any domain 
nE⊂Ω  satisfying the rectangle condition and any ( )∞∈ ,1p  a space 

( )Ωℜ
pW  is semilocal. 
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Proof. Let ( ) ( )Ω∈ϕΩ∈ ∞
0, CWu p

ℜ  are fixed and ℜ∈α  is arbitrary. 

By the Leibnitz formula, we conclude that 

( ) .ϕ=ϕ ββ−α

α≤β

α ∑ uDDuD  (2.1) 

Since the polyhedron ℜ  is completely regular, ℜ∈βα -  for any ℜ∈α  

and .α≤β  Therefore by Theorem I, there exists a constant 01 >C  such 

that for all ℜ∈α  and α≤β  

( ) ( ).1 ΩΩ
β−α ≤ ℜ

pp WL uCuD   (2.2) 

On the other hand, since ( ),0 Ω∈ϕ ∞C  there exists a constant 02 >C  

such that for all ℜ∈α  and α≤β  

( ) .,2 Ω∈∀≤ϕβ xCxD   (2.3) 

It follows from relations (2.1)-(2.3) that there exists a constant 03 >C  

such that 

( ) ( ),3 ΩΩ ≤ϕ ℜℜ
pp WW uCu  

i.e., ( ),Ω∈ϕ ℜ
pWu  which proves the theorem.  

Lemma 2.1. Let ∞<< p1  and ( )Aℜℜ =  be the Newton polyhedron 

of a collection of multi-indices { }.,, 01 Nee …=A  Then there exists a 

constant 0>C  such that for all ∞∈ 0Cu  

.
0

1
p

i

p L
e

N

i
L uDCuD ∑∑

=∈

≤ν

ℜν
  (2.4) 

Proof. Perform the Fourier transformation to functions u from .0
∞C  

Applying Theorem M and Parseval’s equality we obtain inequality (2.4) 
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for .2=p  To prove the inequality (2.4) for 2≠p  note that by the well-

known properties of Fourier transformation we have 

[ ] [ ] [ ] [ ] ( ).,,1; 0NjuFuDFuFuDF
jj ee …=ξ=ξ= νν  

A simple computation gives 

[ ] ( ) [ ],
0

1
uDFuDF

je
j

N

j
ξφ= ∑

=

ν  

where 

( ) ( ) ( ).,,1 0
2

1

0
NjQ

j

j

j e

e
N

e
j …=

ξ
ξ≡

ξ

ξ=ξΦ
+

=

+

∑

νν

k

 

To prove the inequality (2.4) for any ( )∞∈ ,1p  it is sufficient (by the 

definition of pL -multipliers) to show that ( ).,,1 0NjM p
pj …=∈Φ  For 

this purpose we apply Theorem L. 

The boundedness of { }jΦ  leads immediately from Theorem M. Let us 

show the boundedness of, for example, { }.
1

1 ξ∂
φ∂

ξ j  

Again, a simple computation gives for each 0,,1 Nj …=  

( ) [( ) ( ) ].2
2

1
1

11
1

1
0

ξ
ξ−+ξφ=

ξ∂
φ∂

ξ ∑
=

Qee
eN

j
j

j
k

k

k
ν  

Since ( ) ( )0
2 ,,11 NQe …=≤ξξ k
k

 for all ,nR∈ξ  this implies the 

boundedness of { }.
1

1 ξ∂
φ∂

ξ j  By the same way one can prove the 

boundedness of other derivatives. Lemma 2.1 is proved.  
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Lemma 2.2. Let the Newton polyhedron ( )Aℜℜ =  of a collection 

{ }0,,1 Nee …=A  of multi-indices be completely regular. The set of 

infinitely differentiable finite ( )nEin  functions is dense in 

( )n
pp EWW ℜℜ =  if and only if the inequality (2.4) is valid for all functions 

.ℜ
pWu ∈  

Proof. Sufficiency. Let the inequality (2.4) is valid, ∞∈ω 0C  be a 

function of one variable such that ( ) ,0=ω t  outside of ( ),1,0  and 

( ) .1
1
0

=ω∫ dtt  Fix a function ℜ
pWu ∈  and put 

( ) ( ) ( ) .1

1
dyyxuh

y
h

xu i
n

i
nh +ω= ∏∫

=

 

Then it is easy to verify that (see, for example, [2], p. 5): (1) ,∞∈ Cuh  

(2) 0→− ℜ
pWhuu  as .0→h  Thus, the set of infinitely differentiable 

functions is dense in ,ℜ
pW  and it remains to proof that every infinitely 

differentiable function ℜ
pWu ∈  can be approximated in ℜ

pW  by 

-0
∞C functions. 

Let ∞∈χ 0Ck  for any ,N∈k  and ( ) 10 ≤χ≤ xk  for all 

( ) 1, =χ∈ xEx n
k  for ( ) 0, =χ≤ xx kk  for ( ) ,,1 MxDx ≤χ+> α

kk  

where the constant 0>M  does not depend on nN0∈α  and .k  

For any Nk ∈  and ,∞∈ CWu p ∩ℜ  let .ukk χ=ϕ  It is clear that 

.0
∞∈ϕ Ck  On the other hand, it follows from Theorem 2.1 (recall that the 

polyhedron ℜ  is completely regular, and obviously the space nE  satisfies 

the rectangle condition) that .ℜ
pW∈ϕk  Then applying Leibnitz’ formula 

we get for a number 0>C  
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[ ] [ ( )] ( )kkkk >χ−=ϕ−=ϕ− ∑∑∑
===

xuDuDDuD
p

j

p

j

p

jj
L

e
N

j
L

e
N

j
L

ee
N

j
1

000

111
 

[ ( )] ( ) ( ).1sup
,,

kkk
k

>≤>χ−≤ ∑∑
∈∈

α

∈α
xuDCxuDxD

pp LLx
ν

ℜν

ν

ℜνℜ
 

Since ℜ
pWu ∈  hence ., ℜνν ∈∈ pLuD  Consequently, ( ) 0→>kxLp

uDν  

as ,∞→k  i.e., 00
1 →ϕ−=ϕ− ∑ = p

jj

p L
eeN

jW DuDu kk ℜ  as .∞→k  

The sufficiency is proved. 

Necessity. The inequality (2.4) is valid for functions from ∞
0C  by 

Lemma 2.1. Since the set ∞
0C  is dense in ,ℜ

pW  then the inequality (2.4) is 

valid for all functions .ℜ
pWu ∈  So Lemma 2.2 is proved.  

Combining Lemmas 2.1 and 2.2, we obtain 

Theorem 2.2. Let the Newton polyhedron ℜ  of a set of multi-indices 
0,,1 Nee …  be completely regular. Then the set ∞

0C  is dense in .ℜ
pW  

We present two examples showing that the multi-anisotropic Sobolev 

space ( )Ωℜ
pW  corresponding to a non regular Newton polyhedron ℜ  may 

be non semilocal. The first example related to a bounded and the second 
to an unbounded domain. 

Example 1. Let 2=n  and ℜ  be the Newton polyhedron of multi-

indices ( ) ( ) ( ) ( ) .1,2,1,0,0,1,0,0 2
0N∈  It is easy to see that the 

quadrangle ℜ  is non regular (in the sense of Introduction) and the 
projection (2, 0) of the vertex (2, 1) on the axis 10α  does not belong to .ℜ  

Let ( ) ( ) ,, 2
34

121 xxxxuxu +==  and { 211 1,11 xx ≤−≤≤−=∆  

}.1≤  Then a simple computation shows that ( ) ( ) ( )uDuDuDu 1,21,00,1 ,,,  

belong to ( ),12 ∆L  and ( ) ( ).9
4

12
32

1
0,2 ∆∈/= − LxuD  
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Let ( ) ( ) ( ) 22110 ,, xxxvxvCv =/=/∆∈/ ∞  for .21∆∈x  Since ( ) ( ) 11,0 =/ xvD   

for ,21∆∈x  it follows that ( ) ( ) ( )( ) ( ) ( ) 9
4

9
4 32

1
1,01,2 =/=/ −xxvDxuxvD  

( ),12
32

1 ∆∈/− Lx  i.e., ( ),12 ∆∈// ℜWuv  which meanes that ( )12 ∆ℜW  is not 

semilocal. 

Example 2. Let ℜ  be as in Example 1, the function ( )1,10 −∈ ∞Cf  

being chosen such that 

( ) [ ( ) ( ) ( )] .025 22
1

1

≠′′+′+≡ ∫
−

dttfttfttffA  (2.5) 

Let also ( ) ( ) {( ) }.,1,,,, 21
2

212
2
1

2
1 ∞<<∞−<∈=Ω= xxExxxxfxyxu  

Then 

( ) ( ) [ ( ) ( )] 12
2
12

2
1

22
1

1
212

2
1

24
1

2

1
2

dxxxdxxfxdxdxxxfxu
x

L ∫∫∫∫
∞

∞−<Ω
Ω ==  

[ ( ) ] [ ( ) ] .1
2

1

1

2
1

1

1
122

2
1

2

1

2
1

1 2
2
11

∞<== ∫∫∫∫
−−<<

dxdrrfxdxdxxxfx
xxx

 

For ,0,1 uD  we have ( ) ( ) ( ),22 2
2
121

2
12

2
11

0,1 xxfxxxxxfxuD ′+=  where 

( ) [ ( ) ( )] ,12
2
1

2
2

2
1

11
21

2
2

2
11

2
2
11

∞<= ∫∫∫∫
<<Ω

dxxxdxxfdxdxxxfx
xxx

 

( ) [ ( ) ] .1
22

11
21

2
2

2
1

2
2

2
1

2
1

1

∞<′=′ ∫∫∫∫
<<Ω

dxdrrfrdxdxxxfxxx
rx

 

Thus, ( ) ( ).2
0,1 Ω∈ LuD  Obviously, ( ) ( ) ( ),, 2

2
1

4
121

1,0 xxf'xxxuD =  and so 
( ) ( ).2

1,0 Ω∈ LuD  For ( )uD 0,2  and ( ) ,1,2 uD  we have respectively, 

( ) ( ) ( ) ( ) ( ) ( ) ( ),4102, 2
2
1

2
2

2
12

2
12

2
12

2
121

0,2 xxfxxxxfxxxxfxxuD ′′+′+=  
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( ) ( ) [ ( ) ( ) ( ) ( ) ( )].41812, 2
2
1

2
2

2
11

2
12

2
12

2
1

2
121

1,2 xxfxxxxfxxxxfxxxuD ′′′+′′+′=  

Denoting by ( ) ( )( ) ( )3,2,1,, 11
2

2
111 ==== −− kkk

k rfrrhrxxxx  we 

have for each ,3,2,1=k  

( ) ( ) [ ( ) ] ,1
2

1

1

2
1

1

1
21

2
2

2
1

12
2

2
1

2
1 ∞<= ∫∫∫∫

−−

−

Ω

dxdrrhxdxdxxxhxxx kk
k  

i.e., ( ) ( ).2
1,2 Ω∈ LuD  As by the condition (2.5) 

( ) ( ) ,2
1

1
1

1
21

20,2 ∞== ∫∫∫
−Ω x

dxfAdxdxuD  

then ( ) ( ).2
0,2 Ω∈/ LuD  

Taking a function ( ),0 Ω∈/ ∞Cv  as in Example 1, where 

,121 Ω⊂∆⊂∆  we get ( )( ) ( ) ( ) ( ) vuDuDvuDvuvD x /+=/+′/=/ 0,21,20,21,2
2   

( )uD 1,2  for .21∆∈x  One can see as above that ( ) ( )Ω∈/ 2
1,2 LuDv  and 

since ( )uD 0,2  ( )Ω∈/ 2L  hence ( )( ) ( ),2
1,2 Ω∈// LuvD  i.e., ( )Ωℜ

2W  is not 

semilocal. 

3. Weighted Multi-Anisotropic Sobolev Spaces 

In this section, we consider a weighted multi-anisotropic Sobolev 

space ( )n
gpp EWW ℜℜ
δ

=δ ,,  with a weight function g, which is defined as 

follows: 

Let nN0∈α  be an arbitrary multi-index and ( )nECCg ∞∞ =∈  be 

any positive function such that (a) for some positive constants κ  and ακ  

( ) ( ) ( ) ,;1 nxx RxxgxgDexge ∈∀δ≤≤≤ δ
α

αδ
α−−− κκκ   (3.1) 

where ( ) ( )xgxg δ=δ  for any .0>δ  
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(b) Let 0>T  and { },: TxRxS n
T <∈=  then there exist positive 

numbers 1σ  and 2σ  such that for any 0>δ  and nRx ∈  

( ) ( ) ( ) ( ) ( ).sup,sup 21 xTgxgyxgxgyxg
GyGy

δδδ
∈

δδ
∈

σ≤−+σ≤+  (3.2) 

Note that the regularization (averaging) of function 

( )






≤

>
=

−

−

.1if

,1if

1 xe

xe
xH

x

 

(see, for instance, [4], Section 5) can be taken as a function g. 

Let ∞<< p1  and .0>δ  Denote by ( )n
gpp ELL
δ

=δ ,, :  the set of 

locally integrable functions in nE  with a bounded norms 

[ ( ) ( ) ] ,: 2
1

2,
22 dxxgxuugu np ELL δδ ∫==

δ
 (3.3) 

and for any completely regular polyhedron ℜ  with vertices in nN0  denote 

by ℜ
δ,pW  the set of functions δ∈ ,pLu  with a bounded norms 

( ) .: ,, δ
α

∈α
δ

α

∈α
∑∑ ==

δ ppW LuDLguDu
p

ℜℜ
ℜ  (3.4) 

Similarly to the result concerning non-weighted Sobolev spaces (see 
[2], Subsection 9.4 or [12], Theorem 2), the following result can be proved. 

Lemma 3.1. Let ℜ  be any completely regular polyhedron and 
nN0∈ν  be any interior point of .ℜ  Then for any 0>ε   there exists a 

number ( ) 0>εC  such that 

( ) ℜν
ℜ δδ ∈∀ε+ε≤

δδ ,, ,
,, pLWp WuuCuLuD

pp
  (3.5) 

(definitions of the corresponding norms see in (3.3) and (3.4)). 
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Lemma 3.2. Let ℜ  be any completely regular polyhedron. Then in 

,,
ℜ
δpW  one can introduce a norm 

( ) ,, pW LugDu p δ
α

∈α
∑=′

δ
ℜ

ℜ  

which is equivalent to the norm (3.4). 

Proof. By the Leibnitz’ formula, 

( ) [ ] .,
1

δ
ββ−α

βα

α

=β∈α
δ

α

∈α
δ

α

∈α
∑∑∑∑ += guDDCguDugD

ℜℜℜ
 (3.6) 

From (3.6), applying properties (3.1)-(3.2) of function δg  and Lemma 3.2, 

we obtain 

,, ,1 ,,
ℜ

ℜℜ
δ∈∀≤′

δδ pWW WuuCu
pp   (3.7) 

with a positive constant ( ).11 δ= CC  To prove the inverse inequality, we 

can rewrite the formula (3.6) in the form 

[ ] ( ) .,
1

δ
ββ−α

βα

α

=β∈α
δ

α

∈α
δ

α

∈α
∑∑∑∑ −= guDDCugDguD

ℜℜℜ
 (3.6') 

Since 0>β  and the polyhedron ℜ  is completely regular, all multi-

indices β−α  in the right-hand side of (3.6') are interior points of .ℜ  

Then for any 0>ε  we can use inequality (3.5) for the second sum in the 
right-hand side of (3.6'), i.e., there exist some positive constants 2C  and 

3C  independing on ε  such that for all ℜ
δ∈ ,pWu  

( ) .
,,, 32,

1
δδδ

ε+ε≤δ
ββ−α

βα

α

=β∈α
∑∑ ppp LWL uCCuCguDDC ℜ

ℜ
 

This (together with (3.6')) implies 
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( ) .
,,,, 32 δδδδ

ε+ε+′≤
pppp LWWW uCCuCuu ℜℜℜ  (3.8) 

Choose the number 0>ε  such that ,01 2 >ε− C  carry over the second 

term in the right-hand side of (3.8) to the left-hand side and divide both 
parts of received inequality by .01 2 >ε− C  Then we get 

,, ,54 ,,,
ℜℜℜ δ∈∀+′≤

δδδ pLWW WuuCuCu
ppp

 

with some positive constants 4C  and .5C  This (together with inequality 

(3.7)) completes the proof. 

Theorem 3.1. Let ℜ  be any completely regular polyhedron. The set 

( )nECC ∞∞ = 00  is dense in .,
ℜ
δpW  

Proof. Let { } ( ) ( ) ,0,,1:, 101, ≥ϕ∈ϕ<∈=∈ ∞
δ xSCxExSWu n

p
ℜ  

( ) 0,1 >ε=ϕ∫ dxx  and ( ) ( ).εϕε=ϕ −
ε xx n  Now we put 

( ) ( ) ( ) ( ) ( ) .dyyyxudyyyxuuxu n εϕ−ε=ϕ−=ϕ∗= ∫∫ −
εεε  

It is well known (see, for instance, [2], p. 5) that ∞
ε ∈ 0Cu  and 

0→− ε pLuu   as .0→ε  To complete the proof of the theorem we shall 

show that 

.0as0
,

→ε→−
δε ℜ

pWuu   (3.9) 

Since ( ) ( ) ,ε
α

ε
α = uDuD  we have 

( ) [ ( ) ]
ppp LLW guDuDuuDuu δε

αα

∈α
ε

α

∈α
ε −=−=− ∑∑ δδ

ℜℜ
ℜ

,,
 

( ) (( ) ) (( ) ) ( ) .
pp LL guDguDguDguD δε

α
εδ

α

∈α
εδ

α
δ

α

∈α

−+−≤ ∑∑
ℜℜ

  

(3.10) 
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Since ( ) pLguD ∈δ
α  for pLu ∈  and ,ℜ∈α  and a function in pL  is 

mean continuous (see, for instance, [2]), we get 

( ) (( ) ) .0as0 +→ε→− εδ
α

δ
α

∈α
∑ pLguDguD

ℜ
  (3.11) 

According to the inequality (3.10), the proof will be completed by 
showing that 

(( ) ) ( ) .0as0 +→ε→−≡ δε
α

εδ
α

∈α
ε ∑ pLguDguDA

ℜ
  (3.12) 

Since ( )ε∞
ε ∈ϕ SC0  for any 0>ε  hence 

( ) ( ) [ ( ) ( )] ( ) .
pLdyyxgyxgyxuDA εδδ

α

∈α
ε ϕ−−−= ∫∑

ℜ
 

In view of the inequality (3.2 ), taking ,ε=T  it follows that 

( ) ( ) ( ) ( ) .2 pLdyyyxgyxuDA εδ
α

∈α
ε ϕ−−εσ≤ ∫∑

ℜ
 

Applying here Young’s inequality, we get 

( ) .
12 LLp

guDA εδ
α

∈α
ε ϕεσ≤ ∑

ℜ
 

Since ℜ
δ∈ ,pWu  and 1

1
=ϕε L  for any ,0>ε  it follows then 0→εA  as 

,0→ε  i.e., the relation (3.12) is established. Moreover, the formula 
(3.11) together with (3.12) proves the relation (3.9), and then the 
theorem.  
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