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Abstract

The boundedness for the multilinear operators associated to some integral
operators on Triebel-Lizorkin and Lebesgue spaces are obtained. The operators
include Littlewood-Paley operators, Marcinkiewicz operators, and Bochner-

Riesz operator.

1. Introduction

As the development of singular integral operators, their commutators
and multilinear operators have been well studied (see [1-7]). From [2, 13],
we know that the commutators and multilinear operators generated by
the singular integral operators and the Lipschitz functions are bounded

on the Triebel-Lizorkin and Lebesgue spaces. The purpose of this paper is
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to introduce some multilinear operators associated to certain non-
convolution type integral operators and prove the boundedness properties
for the multilinear operators on the Triebel-Lizorkin and Lebesgue
spaces. The operators include Littlewood-Paley operators, Marcinkiewicz

operators, and Bochner-Riesz operator.
2. Notations and Theorem

In this paper, we will study a class of multilinear operators

associated to some nonconvolution type integral operators as following.
Let m; be the positive integers (j =1, ---, 1), my +---+m; = m and

A; be the functions on R"(j =1, ---, ). Set

Ry a(Aj % y) = Aj(®) = Y 2D A;(3) (x -y

lof<m
Let F,(x, y) define on R" x R" x [0, + ). Set
B = [ Fie 5)f0)dy.

and

!
szlij+l(Aj; x, y)

. - Fy(x, y)f(v)dy,
B [ =]

FAD @ = |

for every bounded and compactly supported function f. Let H be the
Banach space H = {h : |h| < «} such that, for each fixed x € R", F,(f)(x)

and FA(f)(x) may be viewed as a mapping from [0, + ) to H. Then, the

multilinear operator associated to F; is defined by

TA(F) (x) = | FA(F) ()],
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where F, satisfies: for fixed ¢ > 0 and 0 < 8 < n,

IF,(x, y)| < Clx — 5%,
and
IF, (5, x) - Fy(z, )| < Cly — 2*|x — 2/ 75+,
if 2y - 2| < |x — 2|. We define that T(f) (x) = |F,(f) (x)]|.
Note that when m = 0, T# is just the multilinear commutator of T

and A (see [8-11, 16]). While when m > 0, it is non-trivial generalizations

of the commutators. It is well known that multilinear operators are of
great interest in harmonic analysis and have been widely studied by

many authors (see [2-6]). The purpose of this paper is to study the

boundedness properties for the multilinear operator T4 on Triebel-
Lizorkin and Lebesgue spaces. In Section 4, some applications of

Theorem in this paper are given.

First, let us introduce some notations. Throughout this paper, @ will

denote a cube of R"™ with sides parallel to the axes. For a locally

integrable function f, the sharp function of fis defined by

(x) - Sup |Q|J. |f(y) ledy,

where, and in what follows, fg = |Q|_1 _[ Qf(x)dx. It is well-known that

(see [14, 15])

f@wwMMﬂM)My

For1<p<owand 0 <n<n,let

1/p
M 160 = s b [ oy
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For >0 and p >1, let F 5’ “ be the homogeneous Triebel-Lizorkin
space (see [13]). The Lipschitz space /\B is the space of functions f such
that

I, = sup [ARF G| /AP < oo,
x,heR"
h#0

where A]}'l denotes the k-th difference operator (see [13]).

Now we can state our theorem as following:

Theorem. Let 0 < B < min(1//, ¢ /1) and D*A; € Ag for all a with
la| =m; and j =1, -, 1. Suppose that T is bounded from L'(R") to
L*(R") forany 0<8<n,1<r<n/8and1/r-1/s=23/n. Then

(@) T4 is bounded from LP(R") to Fqlﬁ’ “(R™) forany 0 <& < n,
l<p<n/d1/p-1/q=358/n;

(b) T4 is bounded from LP(R") to LY(R") for any 0 <& < n - I,
l<p<n/(@+IB)and1/p-1/q=G+IB)/n

3. Proof of Theorem

To prove the theorem, we need the following lemmas:

Lemma 1 (see [13]). For 0 < B < 1,1 < p < o, we have

1

sgp—lef(x) — foldx

Wleg= ~ e i

P

~
~

sup irgf|Q|1+B/nJ.Q|f(x) - c|dx

€@ P
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Lemma 2 (see [13]). For 0 < B <1,1 < p < o0, we have
1 1 (1 o, )P
||b||A[3 ~ sngIQw(x) - bQ|dx ~ Sng(@ IQ|b(x) - bQ| dxj .

Lemma 3 (see [13]). For b e Ag, 0 <B<1,0<n<n and 1 <r < x,

we have
16~ g gl < Clol [QLP/" /" b, ().

Lemma 4 (see [1]). Suppose that 1 <r <p<n/& and 1/q=1/p -
n/n. Then

"M‘r],r(f)"Lq < C"f"Lp

Lemma 5 (see [5]). Let A be a function on R" and D*A € LY(R™)

for |o| = m and some q > n. Then

1/q
1
R, (A; x, y) < Clx — ™ (N— - D“A(2)|qd2J ,
| | | az;n |Qx, v)| J‘Q(x,y)l

where @(x, y) is the cube centered at x and having side length 5vn lx — 3.

Proof of Theorem (a). We first prove the sharp estimate for T4 as
following:

1

G | 7)) = Colds < M, (1) )

for 1 <r < p<n/& and some constant C,. Without loss of generality,

we may assume [ = 2. Fix a cube @ = Q(xo, d) and ¥ € Q. Let Q=5

~ 1
VnQ and Aj(x) = Aj(x) - Y. —(D"A})gx%, then R, (4; x, y) = Ry,

loj=m
(Aj; x, y) and D“A; = D“A; - (D®A;)g for |o| = m;. We write, for

fi = frg and fo = fon\Qy
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2 ~
szlijﬂ(Aj; x, y)

e — o™

FAD @) =

Rn

Fy(x, y)f(y)dy

2 ~
szlijn(Aj; x, ¥)
- IR"

m Fy(x, y)fa(y)dy
[x =5l

2 ~
Jo 0
+
Rn

e — o™

Fy(x, y)fi(y)dy

S LJ' Ry, (Ag; x, 3)(x =)™
0!,1! n

‘Otl‘=m]_ |x_y|m

D™ A, (y)F,(x, ) (y)dy

- 1J~ Ry, (Ay3x,5)(x - )"
Rn

og! |x—y|m

D*2 Ay (v)F, (x, y)f, (v)dy

loeg|=ms

+ 1 J’ (x — y)M1*2 DM A, (y)D*2 Ay (y)
Rn

oq!loo! m
jar=my, Jogl=mg 12 [ =5

x F't(x9 y)fl(y)dy,
then

TA() (x) - TA(fy) (x)

= [IEA D @l - 1B () (o)l

2 ~
A ; ij(A'§ X, y)
< |FA(F) (x) - FA(fy) (x0)] < J' H1=1 j

. - Fy(x, YA ()dy
B v =]

1 Ry, (Ag; %, y)(x — y)™ ~
D) P R DA, (3)F,(x, 9 (3)dy
logl=mg x-)
1 R, (Aj; x, y)(x—y)2 -
) 2 sl DR AR A0
lagl=mg %" x =)y
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(x — y)M*2 DM A, (y)D*2 Ay(y)

log|=my, log|=mg R e — o™

+C

Fy(x, )i (y)dy

TA(fy) (x) - TA(fy) (xo )

+|

= L(x) + Iy(x) + Ig(x) + Iy (x) + I5(x),
thus

1 .

QT Jol () =T ) o Yt

2 ~
R}’l

) IQIH—ZB/” Q Fy(x, y)f(y)dy|dx

e — o™

C J’ Ry, (Ag; x, y)(x = y)*
Q

1 ~
* Qo D™ Ay ()F, (x, y)A (y)dy|dx

ot~ e = o

Ry, (A x, SR
jRn i 2)le =) D2 Ay (y)Fy (x, )fi (v)dy||dx

r o |
|Q|1+2[3/n Q

loeg|=mo | - ylm
P SR
|Q|1+2|3/n
x — o +o9 Dalg DO,QA
Doy = Jaglemy * & e = 5]

+ WJQ\T“(&)@)— TA(f,) (o) d

:ZIl+Iz+IS+I4+I5.

Now, let us estimate I, Iy, I3, I4, and I5, respectively. First, by

Lemma 5 and Lemma 2, we get, for x € @ and y € (:),
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IA

| R (Ajs 2, )] < Cle = 5]™ D sup| D*A;(x) - (D*A;)g]

\a\:meQ

IA

Clx = o"|QP" 3" 14,

jaf=m

thus, by the (L', L°)-boundedness of 7 with 1<r<n/8 and

1/s =1/r-38/n, we obtain, using Hélder’s inequality,

2
I SCH[ Z ||D°‘J'AJ-||AB ﬁIQIT(fl)(x)Idx

=1 \(x]\=m]

1/s
<o[]| 3 109ah, | ([ e wra]

j=1 \aj\:mj

' 1/r
<o[]| 3 agl;, | e[ ey

J=1\Jajl=m;

1/r
<c[] 2. ID™ 4515, (IQII ,a/nj. i) dyj

j=1 \otj\:mj

<c[]| 3 IpYasl;, M, () @)

j=1 \0,]\=m]

For I, using Lemma 3 and Hélder’s inequality, we get, for 1 <r <n /8

and1/s=1/r-35/n,

I <C Y [D®4], > o |1+B/nj (D™ Ay f,) (x)] dx

loeg|=mg o |=my

<C D ID™ A > [T(D™A - (DAY pslQ P

log|=mg \01\=m1



BOUNDEDNESS FOR MULTILINEAR INTEGRAL ... 25

<C Y D% Al QP Y (DM A - (DU Al

|ag[=mg |a1[=m
2
a; ~

<c[]| 2 Ip%al;, M5, (N ().
j=1\|ajl=m;
For I, similar to the proof of Iy, we get

2

a; ~
<c[] > Ip TAjl;, (Mo, (F)(F).
j=1 \a]\=m]

Similarly, for I, set r =sug for 1<s<n/§, uy, g, ug >1,1/py +

1/pg+1/pug=1and 1/t =1/s-38/n, we obtain

1 ~ ~
nsc L [ T A A )

oy =1 Taiz |=ms, €]

. - - 1/t
se Y ([ ron & A s

log [=my, |og [=mg

. 1/s
<c > |Q|2B/”1/t( Rn|D°‘1211(x)1)°‘222(x)f1(x)|sdx]

log [=my, [ag [=mg

. _ 1/sm
<c ¥ |Q|—2B/”[|% @|DalAl<x>|8“1de

log [=my, [ag [=mg

1 B 1/sug 1 1/sug
(gl gty

2
< CH[ > ||D“fAJ-||AB} My (1) (2).

|ajl=m;
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For Iy, we write

FA(R) () - FA(fy) (x0)

2

_ jRn(Ft(x, UEICHN) o UG SPRTAN

| — y|m lxo — y|m j=1

Rm2 (Ag; x, ¥)

m Fy(xo, ¥)fo(y)dy
xo —

+ .[R” (le(fll; %, ¥) = Ry, (A1 %o, »))
\ By (A3 %0, )
)

m Fy(xq, y)f2(y)dy
[0 — 5

+ J.Rn (Rm2 (22; X, y)_ Rm2(52’ X0, y)

= Y ) P AR

o [=my

R, (Ag; x, y)(x — y)™ R, (As; x0, v)(xg — y)™
» m2( 2 y)(x - y) Fy(x, y)- m2(2 0> ¥)(x0 = ¥)

Fy(xg, ) |dy
e — o™ o — o™

- Z OLLZ! J‘RnDaQ Ay () ()

log[=mg

Ry, (Ap; %, y)(x — y)*2 R (A;; xo, ¥)(xg — y)*2
my (A1 %, ¥) (6 = ) Fy(x. y) my (A15 %0, ¥) (¥ — )

lx — 5™ leo — o™

_ o +og _ o +og
+ '1 "[ (x y) Ft(x7 y)_ (xo y) ‘F;f(x07 y)
Oq1.09! n m m
102 SR - g = 9]

'Ft(x07 y)]dy

log [=my,|ag|=mg

x D1 Ay (y)D*2 Ay (y)fo(y)dy
=104 1@ 4 18 4 W 4 1) 4 19,

By Lemma 5 and the following inequality, for b e /\B,

1 p p
_ < . _ < R _
o) = gl < 1y [ iyl = Py < bl e — ol + @)
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we get

| R (A 2, 3)] < Z |D%A 5, (b = ]+ @)™ P

|a[=m

Note that |x — y| ~ |xg — 3| for x € @ and y € R" \ Q, we obtain, by the

condition of F;,

s

|x0

2
e — o] o — xq[° .
: CJ.R"\Q[lx |m+n+1—8 * _ y|m+n+8—5 glRmJ (Aj’ x, y)l |f(y)|dy

gcﬁ[ >, ||D°‘1Aj||AB]

j=1\Jaj[=m;

0
[ = xo| e = xo|*
+ d
X ];J.lelQ\zk (lx |n+1—5—2[3 y|n+£_5_2[3 |f(y)| y

=Y lxo —

=1 \a]\=m]

2
< CH( Z "DonjAj”/_\BJ |Q|2I3/n
i

R e o

2
< CH( Z "DOUA]”/\B] |Q|2[3/n
J

=1 \a]\=m]

1/r
3 g [W s é|f<y>|’dyj

2
H[ 2 ”DajAjn/\B]|Q|2B/nMs,r(f)(x)-

=1 \a]\ =m;



28 JIASHENG ZENG

For I é2), by the formula (see [5]):

~ ~ 1 ~
By (Ajs 2 3) = By (A3 20, ) = 3, r Ry (DA 2, 30 ) (8 = )",

Inl<m;

and by Lemma 5, we get

2 o0
@) wql o = xo
< e T 30 10" Ay (3] g g gt 01

\a\=mj =

<[] X 1D%a;l;, | 1@ M (1) (®).

j=1 \a\:mj

Similarly,

2
12§] < cH[ > Ip°4, ||ABJ QPP My (1) ®).

j=1 \a\:mj

For I é4), similar to the estimates of I S) and I é2), we obtain

e Y | =) Fy(x, 9) (9 = ) Fy(eo, v)

e =t D] I MV ko - o™ |

x| Rypy (Ag; x, )| [ DA (y)||£(3)] dy

oy [=my

% ||(x0 - Y)al Ft(xo,

0. I pos 7, () 1 )y
|x0 - y|




BOUNDEDNESS FOR MULTILINEAR INTEGRAL ... 29

2
H[ Z ”DOLA "/\B\] |Q|2B/HZ(2k(2B -1) +2k(2B s))
|

J al=m

1/r
1 r
x [W Lk@lf(y)l dyj

2
: Cﬂ( 2. 1074 M Q" M, () (%).

al=m;

Similarly,

LRE cH[ 2 1D 4 ] Q" M, () (®).
\

al=m

For IéG), we get

119)) < ¢ [ = )M* 2 Fy(x, ) (g = 9)M 72 Fy(x0, )|
’ BNG| ol o — o

oy |=my,ag[=mg

x | DA, (y)| | D*2 A (y)|| £(3)] dy

0

e Y Y ( o= xol k-l
o [=m, |og [=mg k=0 21a\2'Q @\ | _y|n+1_6 |’CO_3’|n+£_8

x | D™ A (y)| | D2 Ay ()| |f (y)| dy

( > nD“fAJ-uAﬁJ

|auj|=m;

o [

<C

Il
—_

J

o0
e = xo] e = x0[°
x + f(y)dy
];_[21»+1Q\2k [ _ y|n+17572[3 |x0 _ y|n+87572[3 | |

=1

o
\.:M

{ ||DajAj||/\B}|Q|QB/nM5,r(f)(x)-
|ajl=m;
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Thus

T4(R) (=)= TA(R) (o)l = € Y ID Al QP My, (1) (x),

|o[=m
and

Iy<Cy | DAl Ms, - (F) (x).

jo]=m

We now put these estimates together, and taking the supremum over all

Q such that ¥ € @, and using Lemmas 1 and 4, we obtain
2
A oj
IT4 (g2 < LT D0 1D A5, | IF1e-
j=1\|ajl[=m;
This completes the proof of (a).

For (b), by using the same argument as in proof of (a), we obtain
1 - 2
o
@ ] TN - TAR) e < CTT| Y ID™ Ay | Moo (1),
j=1 \(xj\=mj

thus, we get the sharp estimate of 7y as following:

2

# a;
T4 <[] D 1D 4l | Moz ().
j=1 \a]\=mJ

Now, using Lemma 4, we get

2
174 < ANTAE)F e < CH[ D ID%i 4, M | M55, (Pl o
j=1 :

\otj =m;

\
2

<c[| 20 1% 4l [ Ifl-
j=1 \0,]\=m]

This completes the proof of (b) and the theorem.
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4. Applications

Now we give some applications of results in this paper.
Application 1. Littlewood-Paley operator.
Fixed 0<8<n,e>0 and p> Bn+2-23)/n Let y be a fixed

function which satisfies:

(1) [ o (x)dx = 0;

(2) plx)] < CQA + |x|)—(n+1—a);
(3) e + )~ 9] < o+ [xl) 157 when 2] < [a].

We denote that T(x)={(y,t)e R'! :|jx—y <t} and the
characteristic function of I'(x) by xr(y). The Littlewood-Paley multilinear

operators are defined by

t

g (f)(x) = [ [ 1A d’*jm,

S @) - { JJ o F O M}m,

tn+1

and

tn+l

n 1/2
g (N ) = { [l =) 1m0 M} ,
where

l
szlij+1(Aj; x, ¥)

R e — o™

l
| PRTICE D

R v = 2™

FAD ) = Vi = ) (3)d,

FA(f) (x, y) = J fWw:(y — 2)dz,
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and y,(x) =t Op(x /t) for t >0. Set F,(f)(y)=f*v,(y). We also
define that

2 i)
t b

NERINCGE

506 = ([] R0 Mjm,

tn+1

and

t i 9 dydt 2
gu(f)(x)=U jwl(mj IE(F) (5) tml} ,

which are the Littlewood-Paley operators (see [15]). Let H be the space

H- {h ] = [ [ :|h(t)|2dt /tjl/z < oo},

or

1/2
H = {h Rl = [”R”“ I (y, t)|2dydt/t”+1j < oo},

then for each fixed x € R", F;A(f)(x) and FA(f)(x, y) may be viewed as
the mapping from [0, +») to H, and it is clear that

g () @) = [FAR @), go(F)(x) = | F(F) ()],

SHN @) = o FAN @ 2], Sy () E) = B O )],

and

[t ]Wﬂ(f)(y)

t+|x -y

nu/2
W - |(py) FANE ). ) -

It is easily to see that glf, S,f‘, and gﬁ‘ satisfy the conditions of

Theorem (see [8, 10, 11]), thus Theorem holds for g,f, Slfl, and gf.
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Application 2. Marcinkiewicz operator.
Fixed 0 <8 <n, A > max(l, 2n/(n+2-23)) and 0 <y <1. Let Q

be homogeneous of degree zero on R with I Snle(x’)dc(x')z 0

Assume that Q e Lip, (S "~1) The Marcinkiewicz multilinear operators

are defined by

WA () @) = [ [ 1A P dt] "

n+3

A0 = [[ 1w ) dyd'f}/ ,

and
dvd 1/2

ux(f)(x)—{”le[mj [FA ) @, ) ;L;} ,
where

4 Hi lij+1(Aj§x, y) Q(x y)

F; = = — d ’

A () jx_m T o ()
and

!
| | Ry (A5 9, 2)
j=1 " Qy - 2)
z|”7671 f(z)dz=.

FA (), 9) = |

ly—2l<t ly — 2™ ly -

Set

Q@ - [ E fo

e—ylst |x —

We also define that

>

ol ) = ([ 17 w1 % "
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st =([[ 1RG4 ]1/2,

tn+3

and

ni 1/2
() (&) = [ [[nlii=) 1000 fyd;j ,

which are the Marcinkiewicz operators (see [16]). Let H be the space

H- {h ] = U:|h(t)|2dt/t3Jl/2 < oo},

or

H - {h T ( [ S t>|2dydt/t”+3jl/2 < oo}

Then, 1t is clear that
o (N @) = [FA O @ mal) () = [EE ),
(@) = fireFA N @ )| 1s() @) = i F ) O],

and

[;l]nmﬂ*‘m(x, ) .

|-y

[;lngﬂ(f) )

W () () = RS

o (F) (x) =

It is easily to see that pé, pg, and p‘f satisfy the conditions of Theorem

(see [8, 10, 11]), thus Theorem holds for p4, u§, and pil.
Application 3. Bochner-Riesz operator.

Let &> (n-1)/2 BY(f)(&) = (1-#*[f*)2f(€) and B(z)=t"B°
(2/t) for t > 0. Set

l
szlij+1(Aj; x, y)

, — B (x - y)f(y)dy.
R e = o

B (D) = |
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The maximal Bochner-Riesz multilinear operator are defined by

BA.(f)(x) = stgngsi‘xf) (x)].

We also define that

Bs..(f)(x) = stgng?(f)(x)l,

which i1s the maximal Bochner-Riesz operator (see [12]). Let H be the
space H = {h : |h|| = sup |h(t)| < }, then
t>0

BSL(F) () = B (N @), B (x) = [BY(F) ().

It is easily to see that Bé‘?* satisfies the conditions of Theorem, thus

Theorem holds for Bgf*.
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