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Abstract 

In this paper, we discuss the notions of operators P and T in PT symmetric 
quantum theory. Using the definition of operator T, we classify it into two types 
and study their influence on PT symmetry. Based on the operator T, we discuss 
the characters and forms of operator P in 22 ×  and 33 ×  quantum systems. 

1. Introduction 

The PT symmetric quantum theory was put forward by professor 
Bender et al. in 1998 [1], they pointed out that non-Hermitian 
Hamiltonian posses real eigenvalues provided they respect unbroken PT 
symmetry. PT symmetry refers to the parity - time symmetry, where P 
and T stand for parity and time reversal, respectively. Recently, there 
has been a great deal of interest in studying PT-symmetric quantum 



XIAOYU LI et al. 2

theory [2-11]. In standard quantum mechanics the observable is 
represented by Hermitian operators, but in PT-symmetric quantum 
system there mainly discuss non-Hermitian Hamiltonian. 

In this paper, from the angle of mathematics, we analyze operators P 
and T of the PT-symmetric quantum theory and discuss their forms and 
characters. We then discuss the forms of operator P when the non-
Hermitian Hamiltonian satisfies PT symmetry. 

2. Basic Concepts 

In this section, we discuss the basic concepts of operator P, operator     
T and PT symmetry. In quantum mechanics, x̂  stands for coordinate 
operator and p̂  stands for momentum operator, their algorithm are as 
follows: 

( ) ( ) ( ),,,ˆ txxftxfx =  

( ) ( ) ( ).,,ˆ txfxitxfp
∂
∂−=  

We call operate P parity operator [3], if it satisfies xPxP ˆˆ −=  and 

.ˆˆ pPpP −=  We call operate T time inversion operator [3], if it satisfies 

,ˆˆ,ˆˆ pTpTxTxT −=−=  and ( ),1−=−= iiTiT  which was conjugate 

linear operator. It is easy to know that operators P and T are all projection 

operators, namely, ITP == 22  (identify operator). Meanwhile, operator 
P commutates to operator [ ] .0,: =−= TPPTTPT  

If H is an nn ×  square matrix, and 

,PTHPTHH PT ==   (1) 

then we say that H is PT-symmetric operator [1]. 

Using commutator, formula (1) can be rewritten as 

[ ] .or0, PTHHPTPTHHPTPTH ==−=   (2) 
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3. Operators T and P 

This section presents the forms of operators P and T using their 
definitions. 

3.1. Classification of operator T and its influence on PT symmetry 

From the definition of operator T, we can easily know that it is anti-
linear, namely, conjugate linear. Therefore, operator T can be classified 
into the following two types. 

Definition 1. For any vector ( ) nt
n Cxxx ∈,,, 21 "  (t means the 

transpose), we call operator T is the first type operator T, if it satisfies 
the following condition: 
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where x  represents the complex conjugate of x, denoted by .1T  If the 

operator T satisfies the following condition: 
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we say that T is the second type operator T, denoted by .2T  Obviously, 

.2
2

2
1 ITT ==  

Next, we discuss the influence of the classification of operator T on 
PT symmetry. 
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Theorem 1. Assuming that H is a Hamiltonian of 22 ×  quantum 
system, if H meets PT symmetry, then HPHP =  no matter 1TT =  or 

.2TT =  

Proof. Suppose that 

.,,,, C∈

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







= dcba

dc

ba
H  

Since H meets PT symmetry, if ,1TT =  then ,11 HPTHPT =  hence 

.2
111 HPHPTHTPT ==   (3) 

For any ( ) ,, 2C∈tyx  we have 
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then .11 HTHT =  From (3), we have 

.HPHP =   (4) 

Similarly, if ,2TT =  we have 

.2
222 HPHPTHTPT ==   (5) 

For any ( ) ,, 2C∈tyx  we have 
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Hence, ,22 HHTT =  then from (5), we have .HPHP =  
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Theorem 2. In finite dimensional space, any operator P, which is 
commutate to operator T, is a real matrix. 

Proof. Since any linear transformation can be presented by square 
matrix, we assume that 
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For operator ,1T  we have 
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Note that ,011 =− PTPT  from (7) and (8), we have 

.,,2,1,, njiaa ijij "==  

Hence, operator P is a real matrix. 
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For operator ,2T  we have 
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Note that ,022 =− PTPT  so by (9) and (10), we have 

.,,2,1,, njiaa ijij "==  

So the operator P is a real matrix. 

3.2. Operator P in 22 ×  quantum system 

From Theorem 2, we know that any operator P in 22 ×  and 33 ×  
system is a real matrix, we may assume that the general form of operator 
P in 22 ×  system is as follows: 
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so 
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If ,0=b  then ,122 == da  we have 
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If ,0≠b  then ,da −=  we have 
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So the concrete forms of operator P are (14) and (15) in 22 ×  system. 
In particular, if operator P is a real symmetric matrix, then it has the 
following expressions: 
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3.3. Operator P in 33 ×  quantum system 

We can also discuss the operator P in 33 ×  system using a similar 
way of 3.2. If the operator P in 33 ×  system is the following real 
symmetric matrix: 
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For ,2 IP =  we have the following equations: 
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The above Equations (18) is a six-member quadratic equation group, 
which calculation is complex. With the aid of software program, the 
results of Equations (18) can be calculated. The following is the firstly 
three solutions we select as an example: 
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where 1≤z  and .R∈z  
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4. Conclusion 

We first discuss the general forms of operators P and T according to 
their definitions, we then classify the operator T into two types. Next we 
prove that HPHP =  no matter the types of operator T in finite 
dimensional space with the Hamiltonian H meets PT symmetry for the 
same operator P. Finally, we conclude that the operator P commutate to 
operator T must be a real matrix, and we present the concrete forms of 
operator P in 22 ×  and 33 ×  quantum systems. 
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