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Abstract 

We give a survey of geometric methods used in papers and books by V. I. Arnold 
and V. V. Kozlov. They are methods of different normal forms, of different 
polyhedra, of small denominators and of asymptotic expansions. 

1. Introduction 

In paper (Khesin and Tabachnikov [44]), there was given a short 
description of main achievements of Arnold. Below in Sections 2-4, we 
give some additions to several sections of this paper. In Sections 5, 6, 8, 
and 9, we discuss two kinds of normal forms in papers by Arnold and by 
Kozlov. 
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Logarithmic branching solutions to Painlevé equations is discussed in 
Section 7. 

In this paper, all the formulas denoted as ( )∗n  refer to the formulas 

(n) in the cited papers. 

2. On the Last Paragraph at Page 381 of Khesin et al. ([44]) 
Devoted to Small Divisors 

Arnold’s theorem on stability of the stationary point in the 
Hamiltonian system with two degrees of freedom in Arnold [1] had wrong 
formulation (see Bruno ([14], § 12, Section IVd)). Then Arnold added one 
more condition in his theorem Arnold [2], but its proof was wrong because 
it used the wrong statement (see Bruno [17, 18]). All mathematical world 
was agreed with my critics except Arnold. On the other hand, in the first 
proof of the same theorem by Moser [55] there was a similar mistake (see 
Bruno [14], § 12, Section IVe)). But in Siegel et al. [63], Moser corrected 
his proof after my critics, published in Bruno ([14], § 12, Section IVe). 

Concerning the KAM theory. In 1974, I developed its generalization 
via normal forms: Bruno ([15, 16, 20], Part II). But up-to-day almost 
nobody understands my generalization. Some connections with my 
approach see in the book Broer et al. [11]. 

3. On the Last Paragraph at page 384 of Khesin et al. ([44])  
Concerning Higher-Dimensional Analogue  

of Continued Fraction 

The paper Lauchand [53] “Polyèdre d’Arnol’d et ...” by Lauchand was 
presented to C. R. Acad. Sci. Paris by Arnold in 1993. See also preprint 
Lauchand [54]. When I saw the article I published the paper Bruno et al. 
[22] “Klein polyhedrals ...” (1994), because so-called “Arnold polyhedra” 
were proposed by Klein [45, 46] one hundred years early. Moreover, they 
were introduced by Skubenko [62] as well. In 1994-2000, I and 
Parusnikov ([56, 57, 59]) studied Klein polyhedra from algorithmical view 
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point and found that they do not give a basis for algorithm generalizing 
the continued fraction. So in 2003, I proposed another approach and 
another sole polyhedron, which give a basis for the generalization in 3 
and any dimensions (see Bruno [26, 27]; Bruno et al. [30]; Bruno [31, 32, 
38, 39, 40]; Parusnikov [58]). Now, there are a lot of publications on the 
Klein polyhedra and their authors following after Arnold [9] wrongly 
think that the publications are on generalization of the continued 
fraction. 

4. On the Last two Paragraphs at page 395 of Khesin et al. ([44]) 
Devoted to the Newton Polygon 

In that text the term “Newton polygon” must be replaced by “Newton 
polyhedron”. In contemporary terms, Newton introduced support and one 
extreme edge of the Newton open polygon for one polynomial of two 
variables. The full Newton open polygon was proposed by Puiseux [61] 
and by Briot and Bouquet [10] for one ordinary differential equation of 
the first order. Firstly, a polyhedron as the convex hull of the support was 
introduced in my paper Bruno [12] for an autonomous system of n ODEs. 
During 1960-1969, Arnold wrote 3 reviews on my works devoted to 
polygons and polyhedrons for ODEs with sharp critics “of the geometry of 
power exponents” (see my book Bruno ([23], Chapter 8, Section 6)). Later 
in 1974, he introduced the name “Newton polyhedron” (see Gindikin 
[43]), made the view that it is his invention and never gave references on 
my work. Now I have developed “Universal Nonlinear Analysis” which 
allows to compute asymptotic expansions of solutions to equations of any 
kind (algebraic, ordinary differential and partial differential): Bruno [36]. 

5. On Non-Hamiltonian Normal Form 

In my paper Bruno [13] and my candidate thesis “Normal form of 
differential equations” in 1966, I introduced normal forms in the form of 
power series. It was a new class of them. Known before normal forms 
were either linear (Poincare [60]) or polynomial (Dulac [41]). An official 
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opponent to my thesis was Kolmogorov. He estimated very high that new 
class of normal forms. Arnold put my normal form into his books ([5, 8], § 23) 
without reference on my publication and named it as “Poincare-Dulac 
normal form”. So, readers of his book attributed my normal form to 
Arnold. I saw several articles where my normal form was named as 
Arnold’s. 

6. On Canonical Normalizing Transformation 

In Arnold et al. ([6, 7], Chapter 7, § 3, Subsection 3.1) a proof of 
Theorem 7 is based on construction of a generating function qPF ,=  

( )qPSl ,+  in mixed coordinates ., qP  Transformation from old 

coordinates QP,  to new coordinates qp,  is given by the formulae 

., P
FQq

Fp
∂
∂=

∂
∂=  (1) 

Here ( )qPSl ,  is a homogeneous polynomial in P and q of order l. 

According to (1), the transformation from coordinates QP,  to 

coordinates qp,  is given by infinite series, which are results of the 

resolution of the implicit equations (1). Thus, the next to the last 
sentence on page 272 (in Russian edition) “The normalizing 
transformation is constructed in the polynomial form of order 1−L  in 
phase variables” is wrong. Indeed that property has the normalizing 
transformation computed by the Zhuravlev-Petrov method: Bruno et al. 
[28]; Zhuravlev et al. [64]. 

7. On Branching Solutions of Painlevé Equations 

In Kozlov et al. ([50], Chapter I, § 4, Example 1.4.6), the Painlevé 
equations are successive considered. In particularly, there was find the 
expansion 

( ) ,
0

1 k
k

k
τττ xx ∑

∞

=

−=  (2) 
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of a solution to the fifth Painlevé equation. The series (2) is considered 
near the point .0=τ  After the substitution ,log t=τ  we obtain the 
series 

( ) ,loglog
0

1 txttx k
k

k
∑
∞

=

−=  (3) 

which has a sense near the point ,1=t  where log .0=t  However, from 

the last expansion (3), authors concluded that 0=t  is the point of the 
logarithmic branching the solution ( ).tx  It is wrong, because the 

expansion (3) does not work for 0=t  as ∞=0log  and the expansion (3) 

diverges. That mistake is in the first edition of the book Kozlov et al. [50] 
and was pointed out in the paper Bruno et al. [24], but it was not 
corrected in the second “corrected” edition of the book by Kozlov et al. [51] 
and in its English translation Kozlov et al. [52]. 

A similar mistake is there in consideration of the sixth Painlevé 
equation. There for a solution to the sixth Painlevé equation, it was 
obtained the expansion (2). After the substitution ( )( ),1log −= ttτ  it 

takes the form 

( ) ( )( ) ( )( ).1log1log
0

1 −−= ∑
∞

=

− ttxtttx k
k

k
 

As the expansion (2) has a sense near the point ,0=τ  the last expansion 

has a sense near points ( ) ,251 ±=t  because in them ( ) 11 =−tt  and 

.0=τ  Thus, the conclusion in the book, that points 0=t  and 1=t  are 
the logarithmic branching points of the solution, is non correct. The 
mistake was point out in the paper of Bruno et al. [25], but it was 
repeated in the second edition of the book by Kozlov et al. [51] and its 
English translation Kozlov et al. [52]. Indeed solutions of the Painlevé 
equations have logarithmic branching, see Bruno et al. [33, 34]; Bruno 
[37]. 
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8. On Integrability of the Euler-Poisson Equations 

In the paper by Kozlov [47], Theorem 1 on nonexistence of an 
additional analytic integral was applied in § 3 to the problem of motion of 
a rigid body around a fixed point. The problem was reduced to a 
Hamiltonian system with two degrees of freedom and with two 
parameters ., yx  The system has a stationary point for all values of 

parameters. Condition on existence of the resonance 3 : 1 was written as 

Equation ( )∗6  on parameters ., yx  Then, the second order form of the 

Hamiltonian function was reduced to the simplest form by a linear 
canonical transformation 

( ) ( ).,,,,,, 21212121 ppqqyyxx →   (4) 

Condition of vanishing the resonant term of the fourth order in the 

obtained Hamiltonian function was written as Equation ( )∗7  on ., yx  

System of Equations ( )∗6  and ( )∗7  was considered for 

,1and0
+

>> x
xyx  

where the system has two roots 

.2,7and1,3
4 ==== yxyx  (5) 

They correspond to two integrable cases 1=y  and 2=y  of the initial 
problem. It was mentioned in Theorem 3. But in the whole real plane 

( )yx,  the system of Equations ( )∗6  and ( )∗7  has roots (5) and three 

additional roots 

;2,9
17;1,3

16 =−==−= yxyx  (6) 

.9,0 == yx  (7) 

Roots (6) belong to integrable cases 1=y  and .2=y  But the root (7) is 
out of them. Indeed the transformation (4) is not defined for .0=x  If to 
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make an additional analysis for ,0=x  then for resonance 3 : 1 one 
obtains two points: (7) and 

.9
1,0 == yx  (8) 

In both these points, the resonant term of the fourth order part of the 
Hamiltonian function vanishes. But points (7) and (8) are out of the 
integrable cases 1=y  and ;2=y  they contradict to statement of 

Theorem 3 Kozlov [47]. The paper Kozlov [47] was repeated in the books 
Kozlov ([48, 49], Chapter VI, § 3, Section 3). A non-Hamiltonian study of 
the problem see in the paper Bruno ([29], Section 5). Nonintegrability at 
the points (7) and (8) was shown in Bruno [35]. 

9. On Normal forms of Families of Linear  
Hamiltonian Systems 

Real normal forms of families of linear Hamiltonian systems were 

given in Galin ([42], § 2), where formula ( )∗16  wrongly indicated the 

normal form corresponding to the elementary divisor :2lλ  the third sum 

in the formula ( )∗16  has to be omitted. The indicated mistake was 

reproduced in the first three Russian editions of the book Arnold ([3], 
Appendix 6) and in its English translation Arnold ([4], Appendix 6). 
Discussions of that see in the paper Bruno [19] and in the book Bruno 
([21], Chapter I, Section 6, Notes to Subsection 1.3). 

10. Conclusion 

Sections 2-4 were sent to Notices of the AMS for publication as a 
letter to the editor. But Editor S. G. Krantz rejected it. I consider that as 
one more case of the scientific censorship in the AMS. 
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