Transnational Journal of Mathematical Analysis and Applications Vol. 4, Issue 1-2, 2016, Pages 17-35 ISSN 2347-9086 Published Online on December 30, 2016 © 2016 Jyoti Academic Press http://jyotiacademicpress.org

SOME WEAKER FORMS OF CONTINUITY IN BITOPOLOGICAL ORDERED SPACES

A. F. SAYED

Department of Mathematics Al-Lith University College Umm Al-Qura University P. O. Box 112, Al-Lith 21961 Makkah Al Mukarramah Kingdom of Saudi Arabia e-mail: dr.afsayed@hotmail.com

Abstract

The main purpose of the present paper is to introduce and study some weaker forms of continuity in bitopological ordered spaces. Such as pairwise *I*-continuous maps, pairwise *D*-continuous maps, pairwise *B*-continuous maps, pairwise *I*-open maps, pairwise *D*-open maps, pairwise *B*-open maps, pairwise *I*-closed maps, pairwise *D*-closed maps, and pairwise *B*-closed maps.

1. Introduction

Singal and Singal [4] initiated the study of bitopological ordered spaces. Raghavan ([2], [3]) and other authors have contributed to development and construct some properties of such spaces. In 2002, Veera Kumar [5] introduced *I*-continuous maps, *D*-continuous maps,

²⁰¹⁰ Mathematics Subject Classification: 54F05, 54E55.

Keywords and phrases: ordered topological space, increasing sets, decreasing sets, continuous maps, maps, pairwise continuous maps, pairwise open maps, pairwise closed maps.

Received June 9, 2014; Revised July 10, 2014

A. F. SAYED

B-continuous maps, *I*-open maps, *D*-open maps, *B*-open maps, *I*-closed maps, *D*-closed maps, and *B*-closed maps for topological ordered spaces together with their characterizations. Nachbin [1] initiated the study of topological ordered spaces in 1965. A topological ordered space is a triple (X, τ, \leq) , where τ is a topology on *X* and \leq is a partial order on *X*. In this paper, we introduce pairwise *I*-continuous maps, pairwise *D*-continuous maps, pairwise *B*-open maps, pairwise *I*-open maps, pairwise *D*-closed maps, and pairwise *B*-closed maps for bitopological ordered spaces together with their characterizations as a generalization of that were studied for topological ordered spaces by Veera Kumar [5].

2. Preliminaries

Let (X, \leq) be a partially ordered set (i.e., a set X together with a reflexive, antisymmetric, and transitive relation). For a subset $A \subseteq X$, we write

$$L(A) = \{ y \in X : y \le x \text{ for some } x \in A \},$$
$$M(A) = \{ y \in X : x \le y \text{ for some } x \in A \}.$$

In particular, if A is a singleton set, say $\{x\}$, then we write L(x) and M(x), respectively. A subset A of X is said to be decreasing (resp., increasing) if A = L(A) (resp., A = M(A)). The complement of a decreasing (resp., an increasing) set is an increasing (resp., a decreasing) set. A mapping $f : (X, \leq) \to (X^*, \leq^*)$ from a partially ordered set (X, \leq) to a partially ordered set (X^*, \leq^*) is increasing (resp., a decreasing) if $x \leq y$ in X implies $f(x) \leq^* f(y)$ (resp., $f(y) \leq^* f(x)$), where f is called an order isomorphism if it is an increasing bijection such that f^{-1} is also increasing.

A bitopological ordered space [4] is a quadruple consisting of a bitopological space (X, τ_1, τ_2) , and a partial order \leq on X; it is denoted as $(X, \tau_1, \tau_2, \leq)$. The partial order \leq said to be closed (resp., weakly closed) [2] if its graph $G(\leq) = \{(x, y) : x \leq y\}$ is closed in the product topology $\tau_i \times \tau_j$ (resp., $\tau_1 \times \tau_2$), where $i, j = 1, 2; i \neq j$, or equivalently, if L(x) and M(x) are τ_1 -closed, where i = 1, 2 (resp., L(x) is τ_1 -closed and M(x) is τ_2 -closed), for each $x \in X$.

For a subset *A* of a bitopological ordered space $(X, \tau_1, \tau_2, \leq)$,

- $$\begin{split} H_i^l(A) &= \bigcap \{F \mid F \text{ is } \tau_i \text{-decreasing closed subset of } X \text{ containing } A \}, \\ H_i^m(A) &= \bigcap \{F \mid F \text{ is } \tau_i \text{-increasing closed subset of } X \text{ containing } A \}, \\ H_i^b(A) &= \bigcap \{F \mid F \text{ is a closed subset of } X \text{ containing } A \text{ with } F = L(F) = M(F) \}, \end{split}$$
 - $O_i^l(A) = \bigcup \{ G \mid G \text{ is } \tau_i \text{-decreasing open subset of } X \text{ contained in } A \},$
 - $O_i^m(A) = \bigcup \{G \mid G \text{ is } \tau_i \text{-increasing open subset of } X \text{ contained in } A\},\$

 $O_i^b(A) = \bigcup \{G \mid G \text{ is both } \tau_i \text{-increasing and } \tau_i \text{-decreasing open}$ subset of *X* contained in *A*}.

Clearly, $H_i^m(A)(\text{resp.}, H_i^l(A), H_i^b(A))$ is the smallest τ_i -increasing (resp., τ_i -decreasing, both τ_i -increasing and τ_i -decreasing) closed set containing A. Moreover $\overline{A}_i \subseteq H_i^m(A) \subseteq H_i^b(A)$, where \overline{A}_i stands for the τ_i -closure of A in $(X, \tau_1, \tau_2, \leq)$, i = 1, 2. Further A is τ_i -decreasing (resp., τ_i -increasing) closed if and only if $A = H_i^m(A) = H_i^l(A)$.

A. F. SAYED

Clearly, $O_i^m(A)(\text{resp.}, O_i^l(A), O_i^b(A))$ is the largest τ_i -increasing (resp., τ_i -decreasing, both τ_i -increasing and τ_i -decreasing) open set contained in A. Moreover $O_i^b(A) \subseteq O_i^m(A) \subseteq A_i^o$ and $O_i^b(A) \subseteq O_i^l(A)$, where A_i^o denotes the τ_i -interior of A in $(X, \tau_1, \tau_2, \leq), i \neq j$. If A and B are two τ_1 subsets of a bitopological ordered space $(X, \tau_1, \tau_2, \leq),$ $i \neq j$ such that $A \subseteq B$, then $O_i^m(A) \subseteq O_i^m(B) \subseteq B_i^o$. $\Omega(O_i^m(X))$ (resp., $\Omega(O_i^l(X)), \Omega(O_i^b(X)))$ denotes the collection of all τ_i -increasing (resp., τ_i -decreasing, both τ_i -increasing and τ_i -decreasing) open subset of a bitopological ordered space $(X, \tau_1, \tau_2, \leq)$.

3. Pairwise *I*-continuous, Pairwise *D*-continuous and Pairwise *B*-continuous Maps

Definition 3.1. A function $f: (X, \tau_1, \tau_2, \leq) \to (X^*, \tau_1^*, \tau_2^*, \leq)$ is called a pairwise *I*-continuous (resp., a pairwise *D*-continuous, a pairwise *B*-continuous) map if $f^{-1}(G) \in \Omega(O_i^m(X))$ (resp., $f^{-1}(G) \in \Omega(O_i^l(X))$, $f^{-1}(G) \in \Omega(O_i^b(X))$), whenever *G* is an *i*-open subset of $(X^*, \tau_1^*, \tau_2^*, \leq)$, i = 1, 2.

It is evident that every pairwise x-continuous map is pairwise continuous for x = I, D, B and that every pairwise B-continuous map is both pairwise I-continuous and pairwise D-continuous.

Example 3.2. Let $X = \{a, b, c\}, \tau_1 = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}\}, \tau_2 = \{\emptyset, X, \{c\}\}$ and $\leq = \{(a, a), (b, b), (c, c), (a, b), (b, c), (a, c)\}$. Clearly, $(X, \tau_1, \tau_2, \leq)$ is a bitopological ordered space. Let f be the identity map from $(X, \tau_1, \tau_2, \leq)$ onto itself. $\{b\}$ is τ_1 -open and $\{c\}$ is τ_2 -open, but $f^{-1}(\{b\}) = \{b\}$ is neither a τ_1 -increasing nor a τ_1 -decreasing open set and also $f^{-1}(\{c\}) = \{c\}$ is neither a τ_2 -increasing nor a τ_2 -decreasing open set. Thus f is not pairwise x-continuous for x = I, D, B. However f is continuous.

The following example supports that a pairwise *D*-continuous map need not be a pairwise *B*-continuous map.

Example 3.3. Let $X = \{a, b, c\} = X^*, \tau_1 = \{0, X, \{a\}, \{b\}, \{a, b\}\} = \tau_1^*, \tau_2 = \{0, X, \{c\}\} = \tau_2^*, \leq = \{(a, a), (b, b), (c, c), (a, c)\}$ and $\leq^* = \{(a, a), (b, b), (c, c), (a, c)\}$ and $\leq^* = \{(a, a), (b, b), (c, c), (a, c), (a, b), (a, c), (b, c)\}$. Let g be the identity map from $(X, \tau_1, \tau_2, \leq)$ onto $(X^*, \tau_1^*, \tau_2^*, \leq), g$ is not pairwise *B*-continuous. However g is a pairwise *D*-continuous map.

The following example supports that a pairwise *I*-continuous map need not be a pairwise *B*-continuous map.

Example 3.4. Let $X = \{a, b, c\} = X^*, \tau_1 = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}\}, \tau_1^* = \{\emptyset, X^*, \{a\}\}, \tau_2 = \{\emptyset, X, \{c\}\}, \tau_2^* = \{\emptyset, X, \{b\}, \{c\}, \{b, c\}\}$ and $\leq = \{(a, a), (b, b), (c, c), (a, b), (a, c), (c, b)\} = \leq^*$. Define $h : (X, \tau_1, \tau_2, \leq) \rightarrow (X^*, \tau_1^*, \tau_2^*, \leq)$ by h(a) = b, h(b) = a, and h(c) = c, where h is pairwise *I*-continuous but not a pairwise *B*-continuous map.

Thus we have the following diagram:

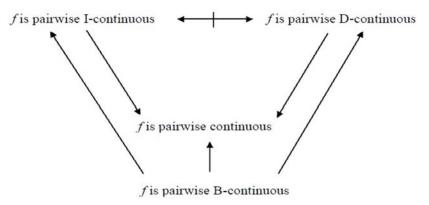


Figure 1.

For a function $f: (X, \tau_1, \tau_2, \leq) \to (X^*, \tau_1^*, \tau_2^*, \leq)$, where $P \to Q$ (resp., $P \nleftrightarrow Q$) represents P implies Q but Q need not imply P (resp., P and Q are independent of each other).

The following theorem characterizes pairwise *I*-continuous maps.

Theorem 3.5. For a function $f : (X, \tau_1, \tau_2, \leq) \rightarrow (X^*, \tau_1^*, \tau_2^*, \leq)$, the following statements are equivalent:

- (1) f is pairwise I-continuous.
- (2) $f(H_i^l(A)) \subseteq \overline{(f(A))}_i$ for any $A \subseteq X$, i = 1, 2.
- (3) $H_i^l(f^{-1}(B)) \subseteq f^{-1}(\overline{B})_i$ for any $B \subseteq X^*$, i = 1, 2.

(4) For every τ_i^* -closed subset K of $(X^*, \tau_1^*, \tau_2^*, \leq), f^{-1}(K)$ is a τ_i -decreasing closed subset of $(X, \tau_1, \tau_2, \leq), i = 1, 2$.

Proof. (1) \Rightarrow (2): Since $X^* \setminus \overline{(f(A))_i}$ is τ_i -open in X^* and f is pairwise *I*-continuous, then $f^{-1}(X \setminus \overline{(f(A))_i})$ is a τ_i -increasing open set in X. Then $X \setminus f^{-1}(X \setminus \overline{(f(A))_i})$ is a τ_i -decreasing closed subset of X. Since $X \setminus f^{-1}(X \setminus \overline{(f(A))_i}) = f^{-1}(\overline{(f(A))_i})$, then $f^{-1}(\overline{(f(A))_i})$ is a τ_i -decreasing closed subset of X. Since $A \subseteq f^{-1}(\overline{(f(A))_i})$ and is the smallest τ_i -decreasing closed set containing A, then $H_i^l(A) \subseteq f^{-1}(\overline{(f(A))_i})$. $f(f^{-1}(\overline{(f(A))_i}) \subseteq \overline{(f(A))_i}$. Thus $H_i^l(A) \subseteq \overline{(f(A))_i}$.

(2) \Rightarrow (3): Let $A = f^{-1}(B)$. Then $f(A) = f(f^{-1}(B)) \subseteq B$. This implies $(\overline{f(A)})_i \overline{B}_i$. Now $H_i^l(f^{-1}(B)) \subseteq H_i^l(A) \subseteq f^{-1}(f(H_i^l(A))) \subseteq f^{-1}(\overline{f(A)})_i$ [by (2) in this Theorem 3.5]. But $f^{-1}(\overline{f(A)})_i \subseteq f^{-1}(\overline{B}_i)$. Thus $H_i^l(f^{-1}(B)) \subseteq f^{-1}(\overline{B}_i)$. (3) \Rightarrow (4): $H_i^l(f^{-1}(K)) \subseteq f^{-1}(\overline{K}_i)$ for any τ_i^* -closed set K of $(X^*, \tau_1^*, \tau_2^*, \leq)$. Thus $f^{-1}(K)$ is a τ_i -decreasing closed in $(X, \tau_1, \tau_2, \leq)$, whenever K is a τ_i^* -closed set in $(X^*, \tau_1^*, \tau_2^*, \leq)$.

(4) \Rightarrow (1): Let G be a τ_i^* -open set in $(X^*, \tau_1^*, \tau_2^*, \leq)$. Then $f^{-1}(X \setminus (G))$ is a τ_i -decreasing closed set in $(X, \tau_1, \tau_2, \leq)$, since $X^* \setminus (G)$ is a closed set in $(X^*, \tau_1^*, \tau_2^*, \leq)$. But $X \setminus (f^{-1}(G)) = f^{-1}(X \setminus G)$. Thus $X \setminus (f^{-1}(G))$ is a τ_i -decreasing closed set in $(X, \tau_1, \tau_2, \leq)$. So $f^{-1}(G)$ is a τ_i -increasing open set in $(X, \tau_1, \tau_2, \leq)$. Thus f is pairwise I-continuous.

The following two theorems characterize pairwise D-continuous maps and pairwise B-continuous maps, whose proofs are similar to as that of the above Theorem 3.5.

Theorem 3.6. For a function $f : (X, \tau_1, \tau_2, \leq) \rightarrow (X^*, \tau_1^*, \tau_2^*, \leq)$, the following statements are equivalent:

- (1) f is pairwise D-continuous.
- (2) $f(H_i^m(A)) \subseteq \overline{(f(A))}_i$ for any $A \subseteq X$, i = 1, 2.
- (3) $H_i^m(f^{-1}(B)) \subseteq f^{-1}(\overline{B})_i$ for any $B \subseteq X^*$, i = 1, 2.

(4) For every τ_i^* -closed subset K of $(X^*, \tau_1^*, \tau_2^*, \leq), f^{-1}(K)$ is a τ_i -increasing closed subset of $(X, \tau_1, \tau_2, \leq), i = 1, 2$.

Theorem 3.7. For a function $f : (X, \tau_1, \tau_2, \leq) \rightarrow (X^*, \tau_1^*, \tau_2^*, \leq)$, the following statements are equivalent:

(1) f is pairwise B-continuous.

(2) $f(H_i^b(A)) \subseteq \overline{(f(A))}_i$ for any $A \subseteq X$, i = 1, 2.

A. F. SAYED

(3)
$$H_i^b(f^{-1}(B)) \subseteq f^{-1}(\overline{B})_i$$
 for any $B \subseteq X^*$, $i = 1, 2$.

(4) For every τ_i^* -closed subset K of $(X^*, \tau_1^*, \tau_2^*, \leq)$, $f^{-1}(K)$ is both τ_i -increasing and τ_i -decreasing closed subset of $(X, \tau_1, \tau_2, \leq)$, i = 1, 2.

Theorem 3.8. Let $f : (X, \tau_1, \tau_2, \leq_1) \rightarrow (y, \nu_1, \nu_2, \leq_2)$ and $g : (y, \nu_1, \nu_2, \leq_2) \rightarrow (Z, \eta_1, \eta_2, \leq_3)$ be any two mappings. Then

(1) $g \circ f : (X, \tau_1, \tau_2, \leq_1) \rightarrow (Z, \eta_1, \eta_2, \leq_3)$ is pairwise x-continuous for x = I, D, B.

(2) $g \circ f : (X, \tau_1, \tau_2, \leq_1) \to (Z, \eta_1, \eta_2, \leq_3)$ is pairwise x-continuous and g is pairwise continuous for x = I, D, B.

(3) $g \circ f : (X, \tau_1, \tau_2, \leq_1) \to (Z, \eta_1, \eta_2, \leq_3)$ is pairwise x-continuous and g is pairwise y-continuous for $x, y \in \{I, D, B\}$.

4. Pairwise *I*-open, Pairwise *D*-open and Pairwise *B*-open Maps

Definition 4.1. A function $f: (X, \tau_1, \tau_2, \leq) \to (X^*, \tau_1^*, \tau_2^*, \leq^*)$ is called a pairwise *I*-open (resp., a pairwise *D*-open, a pairwise *B*-open) map if $f(G) \in \Omega(O_i^m(X^*))$ (resp., $f(G) \in \Omega(O_i^l(X^*))$, $f(G) \in \Omega(O_i^b(X^*))$), whenever *G* is a τ_i -open subset of (X, τ_1, τ_2) , i = 1, 2.

It is evident that every pairwise x-open map is a pairwise open map for x = I, D, B and that every pairwise B-open map is both pairwise I-open and pairwise D-open.

The following example shows that a pairwise open map need not be pairwise x-open for x = I, D, B.

Example 4.2. Let $(X, \tau_1, \tau_2, \leq)$ and *f* be as in the Example 3.2, *f* is a pairwise open map but *f* is not pairwise *x*-open for x = I, D, B.

The following example shows that a pairwise *D*-open map need not be a pairwise *B*-open map.

Example 4.3. Let $X, X^*, \tau_1, \tau_2, \tau_1^*, \tau_2^* \leq \text{ and } \leq^*$ be as in the Example 3.3. Let θ be the identity map from $(X, \tau_1, \tau_2, \leq)$ onto $(X^*, \tau_1^*, \tau_2^*, \leq^*), \theta$ is pairwise *D*-open but not a pairwise *B*-open map.

The following example shows that a pairwise *I*-open map need not be a pairwise *B*-open map.

Example 4.4. Let $X, X^*, \tau_1, \tau_2, \tau_1^*, \tau_2^*, \leq$ and \leq^* be as in the Example 3.4. Define $\varphi : (X, \tau_1, \tau_2, \leq) \rightarrow (X^*, \tau_1^*, \tau_2^*, \leq^*)$ by $\varphi(a) = b$, $\varphi(b) = a$, and $\varphi(c) = c, \varphi$ is a pairwise *I*-open map but not a pairwise *B*-open map.

Thus we have the following diagram:

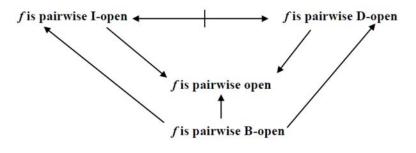


Figure 2.

For a function $f: (X, \tau_1, \tau_2, \leq) \to (X^*, \tau_1^*, \tau_2^*, \leq^*)$, where $P \to Q$ (resp., $P \nleftrightarrow Q$) represents P implies Q but Q need not imply P (resp., P and Q are independent of each other).

Before characterizing pairwise *I*-open (resp., pairwise *D*-open, pairwise *B*-open) maps, we establish the following useful lemma:

Lemma 4.5. Let A be any subset of a bitopological ordered space $(X, \tau_1, \tau_2, \leq)$. Then

(1)
$$X \setminus H_i^l(A) = O_i^m(X \setminus A), \quad i = 1, 2.$$

(2) $X \setminus H_i^m(A) = O_i^l(X \setminus A), \quad i = 1, 2.$
(3) $X \setminus H_i^b(A) = O_i^b(X \setminus A), \quad i = 1, 2.$

Proof. (1) $X \setminus H_i^l(A) = X \setminus \bigcap \{F | F \text{ is a } \tau_i \text{-decreasing closed subset}$ of X containing $A \} = \bigcup \{X \setminus F | F \text{ is a } \tau_i \text{-decreasing closed subset of } X$ containing $A \} = \bigcup \{G | G \text{ is a } \tau_i \text{-increasing open subset of } X \text{ contained in}$ $X \setminus A \} = O_i^m(X \setminus A).$

The proofs for (2) and (3) are analogous to that of (1) and so omitted.

The following theorem characterizes pairwise *I*-open functions.

Theorem 4.6. For any function $f : (X, \tau_1, \tau_2, \leq) \rightarrow (X^*, \tau_1^*, \tau_2^*, \leq)$, the following statements are equivalent:

- (1) f is a pairwise I-open map.
- (2) $f(A_i^o) \subseteq O_i^m(f(A))$ for any $A \subseteq X$, i = 1, 2.
- (3) $(f^{-1}(B))_i^o \subseteq f^{-1}(O_i^m(B))$ for any $B \subseteq X^*$, i = 1, 2.
- (4) $f^{-1}(H_i^l(B)) \subseteq H_i^l(f^{-1}(B))$ for any $B \subseteq X^*$, i = 1, 2.

Proof. (1) \Rightarrow (3): Since $(f^{-1}(B))_i^o$ is τ_i -open in X and f is pairwise I-open, then $f((f^{-1}(B))_i^o)$ is a τ_i -increasing open set in X^{*}. Also $f(f^{-1}(B))_i^o \subseteq f(f^{-1}(B)) \subseteq B$. Then $f(f^{-1}(B))_i^o \subseteq O_i^m(B)$ since $O_i^m(B)$ is the largest τ_i -increasing open set contained in B. Therefore $(f^{-1}(B))_i^o \subseteq f^{-1}(O_i^m(B))$.

 $\begin{array}{l} (3) \ \Rightarrow \ (4): \text{ Replacing } B \text{ by } X \smallsetminus B \text{ in } (3), \text{ we get } (f^{-1}(X \smallsetminus B))_i^o \subseteq f^{-1}(O_i^m(X \smallsetminus B)). \text{ Since } f^{-1}(X \setminus B) = X \smallsetminus (f^{-1}(B)), \text{ then } (X \smallsetminus (f^{-1}(B)))_i^o \subseteq f^{-1}(O_i^m(X \setminus B)). \text{ Now } X \smallsetminus (H_i^l(f^{-1}(B))) = O_i^m(X \smallsetminus (f^{-1}(B))) \subseteq (X \smallsetminus (f^{-1}(B)))_i^o \subseteq f^{-1}(O_i^m(X \smallsetminus (B))) = f^{-1}(X \smallsetminus (H_i^l(B))) = X \smallsetminus (f^{-1}(H_i^l(B))) \text{ using the above Lemma 4.5. Therefore } f^{-1}(H_i^l(B)) \subseteq H_i^l(f^{-1}(B)). \end{array}$

(4) \Rightarrow (3): All the steps in (3) \Rightarrow (4) are reversible.

(3) \Rightarrow (2): Replacing *B* by f(A) in (3), we get $(f^{-1}(f(A)))_i^o \subseteq f^{-1}(O_i^m(f(A)))$. (f(A))). Since $A_i^o \subseteq (f^{-1}(f(A)))_i^o$, then we have $A_i^o \subseteq f^{-1}(O_i^m(f(A)))$. This implies that $f(A_i^o) \subseteq f(f^{-1}(O_i^m(f(A)))) \subseteq O_i^m(f(A))$. Hence $f(A_i^o) \subseteq O_i^m(f(A))$.

(2) \Rightarrow (1): Let G be any τ_i -open subset of X. Then $f(G) = f(G_i^o) \subseteq O_i^m(f(G))$. So f(G) is a τ_i^* -increasing open set in X^* . Therefore f is a pairwise *I*-open map.

The following two theorems give characterizations for D-open maps and B-open maps, whose proofs are similar to as that of the above Theorem 4.6. **Theorem 4.7.** For any function $f : (X, \tau_1, \tau_2, \leq) \rightarrow (X^*, \tau_1^*, \tau_2^*, \leq)$, the following statements are equivalent:

(1) f is a pairwise D-open map.

(2)
$$f(A_i^o) \subseteq O_i^l(f(A))$$
 for any $A \subseteq X$, $i = 1, 2$.

- (3) $(f^{-1}(B))_i^o \subseteq f^{-1}(O_i^l(B))$ for any $B \subseteq X^*$, i = 1, 2.
- (4) $f^{-1}(H_i^m(B)) \subseteq H_i^m(f^{-1}(B))$ for any $B \subseteq X^*$, i = 1, 2.

Theorem 4.8. For any function $f : (X, \tau_1, \tau_2, \leq) \rightarrow (X^*, \tau_1^*, \tau_2^*, \leq)$, the following statements are equivalent:

(1) f is a pairwise B-open map.

(2)
$$f(A_i^o) \subseteq O_i^b(f(A))$$
 for any $A \subseteq X$, $i = 1, 2$.

- (3) $(f^{-1}(B))_i^o \subseteq f^{-1}(O_i^b(B))$ for any $B \subseteq X^*$, i = 1, 2.
- (4) $f^{-1}(H_i^b(B)) \subseteq H_i^b(f^{-1}(B))$ for any $B \subseteq X^*$, i = 1, 2.

Theorem 4.9. Let $f : (X, \tau_1, \tau_2, \leq_1) \rightarrow (y, \nu_1, \nu_2, \leq_2)$ and $g : (y, \nu_1, \nu_2, \leq_2) \rightarrow (Z, \eta_1, \eta_2, \leq_3)$ be any two mappings. Then

(1) $g \circ f : (X, \tau_1, \tau_2, \leq_1) \to (Z, \eta_1, \eta_2, \leq_3)$ is pairwise x-open if f is pairwise open and g is pairwise x-open for x = I, D, B.

(2) $g \circ f : (X, \tau_1, \tau_2, \leq_1) \to (Z, \eta_1, \eta_2, \leq_3)$ is pairwise x-open if both f and g are pairwise x-open for x = I, D, B.

(3) $g \circ f : (X, \tau_1, \tau_2, \leq_1) \to (Z, \eta_1, \eta_2, \leq_3)$ is pairwise x-open if f is pairwise y-open and g is pairwise x-open for $x, y \in \{I, D, B\}$.

Proof. Omitted.

5. Pairwise *I*-closed, Pairwise *D*-closed and Pairwise *B*-closed Maps

Definition 5.1. A function $f: (X, \tau_1, \tau_2, \leq) \to (X^*, \tau_1^*, \tau_2^*, \leq^*)$ is called a pairwise *I*-closed (resp., a pairwise *D*-closed, a pairwise *B*-closed) map if $f(G) \in \Omega(H_i^m(X^*))$ (resp., $f(G) \in \Omega(H_i^l(X^*))$, $f(G) \in \Omega(H_i^b(X^*))$), whenever *G* is a τ_i -open subset of (X, τ_1, τ_2) , where $\Omega(H_i^m(X^*))$ (resp., $COmega(H_i^l(X^*))$, $\Omega(H_i^b(X^*))$) is the collection of all τ_i -increasing (resp., τ_i -decreasing, both τ_i -increasing and τ_i -decreasing) closed subsets of $(X^*, \tau_1^*, \tau_2^*, \leq^*)$, i = 1, 2.

Clearly, every pairwise x-closed map is a pairwise closed map for x = I, D, B and every pairwise B-closed map is both pairwise I-closed and pairwise D-closed. The following example shows that a pairwise closed map need not be pairwise x-closed for x = I, D, B.

Example 5.2. Let $(X, \tau_1, \tau_2, \leq)$ and *f* be as in the Example 3.2, *f* is a pairwise closed map but *f* is not pairwise *x*-closed for x = I, D, B.

The following example shows that a pairwise I-closed map need not be a pairwise B-closed map.

Example 5.3. Let $X, X^*, \tau_1, \tau_2, \tau_1^*, \tau_2^*, \leq \text{ and } \leq^*$ be as in the Example 4.3, θ is pairwise *I*-closed but not a pairwise *B*-closed map.

The following example shows that a pairwise I-closed map need not be a pairwise B-closed map.

Example 5.4. Let $X, X^*, \tau_1, \tau_2, \tau_1^*, \tau_2^*, \leq, \leq^*$ and φ be as in the Example 4.4, φ is a pairwise *D*-closed map but not a pairwise *B*-closed map.

Thus we have the following diagram:

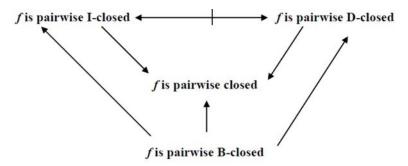


Figure 3.

For a function $f: (X, \tau_1, \tau_2, \leq) \to (X^*, \tau_1^*, \tau_2^*, \leq^*)$, where $P \to Q$ (resp., $P \nleftrightarrow Q$) represents P implies Q but Q need not imply P (resp., P and Q are independent of each other).

The following theorem characterizes I-closed maps.

Theorem 5.5. Let $f : (X, \tau_1, \tau_2, \leq) \to (X^*, \tau_1^*, \tau_2^*, \leq^*)$ be any map. Then f is pairwise I-closed if and only if $H_i^m(f(A)) \subseteq f(\overline{A_i})$ for every $A \subseteq X, i = 1, 2$.

Proof. Necessity: Since f is pairwise *I*-closed, then $f(\overline{A}_i)$ is a τ_i -increasing closed subset of X and $f(A) \subseteq f(\overline{A}_i)$. Therefore $H_i^m(f(A)) \subseteq f(\overline{A}_i)$ since $H_i^m(f(A))$ is the smallest τ_i -increasing closed set in X^* containing f(A).

Sufficiency: Let F be any τ_i -closed subset of X. Then $f(F) \subseteq H_i^m(f(F)) \subseteq f(\overline{F_i}) = f(F)$. Thus $f(F) = H_i^m(f(F))$. So f(F) is a τ_i -increasing closed subset of X^* . Therefore f is a pairwise I-closed map.

The following two theorems characterize pairwise D-closed maps and pairwise B-closed maps.

Theorem 5.6. Let $f : (X, \tau_1, \tau_2, \leq) \to (X^*, \tau_1^*, \tau_2^*, \leq^*)$ be any map. Then f is pairwise D-closed if and only if $H_i^l(f(A)) \subseteq f(\overline{A_i})$ for every $A \subseteq X, i = 1, 2$.

Proof. Omitted.

Theorem 5.7. Let $f: (X, \tau_1, \tau_2, \leq) \to (X^*, \tau_1^*, \tau_2^*, \leq^*)$ be any map. Then f is pairwise B-closed if and only if $H_i^b(f(A)) \subseteq f(\overline{A_i})$ for every $A \subseteq X, i = 1, 2$.

Proof. Omitted.

Theorem 5.8. Let $f : (X, \tau_1, \tau_2, \leq) \rightarrow (X^*, \tau_1^*, \tau_2^*, \leq^*)$ be a pairwise bijection map. Then

- (1) f is pairwise I-open if and only if f is pairwise D-closed.
- (2) f is pairwise I-closed if and only if f is pairwise D-open.
- (3) f is pairwise B-open if and only if f is pairwise B-closed.

Proof. (1) Necessity: Let F be any τ_i -closed subset of X. Then $f(X \setminus F)$ is a τ_i^* -increasing open subset of X^* since f is a pairwise I-open map and $(X \setminus F)$ is a τ_i -open subset of X. Since f is a pairwise

31

bijection, then we have $f(X \setminus F) = X \setminus (f(F))$. So f(F) is a τ_i^* -decreasing closed subset of X^* . Therefore f is a pairwise D-closed.

Sufficiency: Let G be any τ_i -open subset of X. Then $f(X \setminus G)$ is a τ_i -decreasing closed subset of X^* since f is a pairwise D-closed map and $(X \setminus G)$ is a τ_i -closed subset of X. Since f is a pairwise bijection, then we have that $f(X \setminus G) = X \setminus f(G)$. So f(G) is a τ_i -increasing open subset of X^* . Therefore f is a pairwise I-open map.

The proofs for (2) and (3) are similar to that of (1). \Box

Theorem 5.9. Let $f : (X, \tau_1, \tau_2, \leq_1) \rightarrow (y, \nu_1, \nu_2, \leq_2)$ and $g : (y, \nu_1, \nu_2, \leq_2) \rightarrow (Z, \eta_1, \eta_2, \leq_3)$ be any two mappings. Then

(1) $g \circ f : (X, \tau_1, \tau_2, \leq_1) \to (Z, \eta_1, \eta_2, \leq_3)$ is pairwise x-closed if f is pairwise closed and g is pairwise x-closed for x = I, D, B.

(2) $g \circ f : (X, \tau_1, \tau_2, \leq_1) \to (Z, \eta_1, \eta_2, \leq_3)$ is pairwise x-closed if both f and g are pairwise x-closed for x = I, D, B.

(3) $g \circ f : (X, \tau_1, \tau_2, \leq_1) \to (Z, \eta_1, \eta_2, \leq_3)$ is pairwise x-closed if f is pairwise y-closed and g is pairwise x-closed for $x, y \in \{I, D, B\}$.

Theorem 5.10. Let $f : (X, \tau_1, \tau_2, \leq) \rightarrow (X^*, \tau_1^*, \tau_2^*, \leq^*)$ be a pairwise bijection map. Then the following statements are equivalent:

- (1) f is a pairwise I-open map.
- (2) f is a pairwise D-closed map.
- (3) f^{-1} is a pairwise I-continuous.

Theorem 5.11. Let $f : (X, \tau_1, \tau_2, \leq) \rightarrow (X^*, \tau_1^*, \tau_2^*, \leq^*)$ be a pairwise bijection map. Then the following statements are equivalent:

- (1) f is a pairwise D-open map.
- (2) f is a pairwise I-closed map.
- (3) f^{-1} is a pairwise D-continuous.

Theorem 5.12. Let $f : (X, \tau_1, \tau_2, \leq) \rightarrow (X^*, \tau_1^*, \tau_2^*, \leq^*)$ be a pairwise bijection map. Then the following statements are equivalent:

- (1) f is a pairwise B-open map.
- (2) f is a pairwise B-closed map.
- (3) f^{-1} is a pairwise *B*-continuous.

Theorem 5.13. Let $f : (X, \tau_1, \tau_2, \leq) \rightarrow (X^*, \tau_1^*, \tau_2^*, \leq^*)$ be a pairwise *I-closed map and B, C \subset X^*. Then*

(1) If U is a τ_i -open neighbourhood of $f^{-1}(B)$, then there exists a τ_i -decreasing open neighbourhood V of B such that $f^{-1}(B) \subseteq f^{-1}(V) \subseteq U$, i = 1, 2.

(2) If $f^{-1}(B)$ and $f^{-1}(C)$ have disjoint τ_i -neighbourhoods, then $f^{-1}(B)$ and $f^{-1}(C)$ have disjoint τ_i -decreasing open neighbourhoods, i = 1, 2.

Proof. (1) Let U be a τ_i -open neighbourhood of $f^{-1}(B)$. Take $X^* \setminus V = f(X \setminus U)$. Since f is a pairwise I-closed map and $(X \setminus U)$ is a τ_i -closed set, then $X^* \setminus V = f(X \setminus U)$ is a τ_i -increasing closed subset of X^* . Thus V is an τ_i -decreasing open subset of X^* . Since $f^{-1}(B)U$,

then $X^* \setminus V = f(X \setminus U) \subseteq f(f^{-1}(X^* \setminus B)) \subseteq X^* \setminus B$. So $B \subseteq V$. Thus V is a τ_i^* -decreasing open neighbourhood of B. Further $X \setminus U \subseteq f^{-1}$ $(f(X \setminus U)) = f^{-1}(X^* \setminus V) = X^* \setminus (f^{-1}(V))$. Thus $f^{-1}(B) \subseteq f^{-1}(V) \subseteq U$.

Theorem 5.14. Let $f : (X, \tau_1, \tau_2, \leq) \rightarrow (X^*, \tau_1^*, \tau_2^*, \leq^*)$ be a pairwise *D*-closed map and *B*, $C \subseteq X^*$. Then

(1) If U is a τ_i -open neighbourhood of $f^{-1}(B)$, then there exists a τ_i -decreasing open neighbourhood V of B such that $f^{-1}(B) \subseteq f^{-1}(V) \subseteq U$, i = 1, 2.

(2) If $f^{-1}(B)$ and $f^{-1}(C)$ have disjoint τ_i -neighbourhoods, then $f^{-1}(B)$ and $f^{-1}(C)$ have disjoint τ_i -increasing open neighbourhoods, i = 1, 2.

Theorem 5.15. Let $f : (X, \tau_1, \tau_2, \leq) \rightarrow (X^*, \tau_1^*, \tau_2^*, \leq^*)$ be a pairwise *B*-closed map and *B*, $C \subseteq X^*$. Then

(1) If U is a τ_i -open neighbourhood of $f^{-1}(B)$, then there exists a τ_i -open neighbourhood V of B, which are both τ_i -increasing and τ_i -decreasing, such that $f^{-1}(B) \subseteq f^{-1}(V) \subseteq U$, i = 1, 2.

(2) If $f^{-1}(B)$ and $f^{-1}(C)$ have disjoint τ_i -neighbourhoods, then $f^{-1}(B)$ and $f^{-1}(C)$ have disjoint τ_i -open neighbourhoods, which are both τ_i -increasing and τ_i -decreasing, i = 1, 2.

References

- [1] L. Nachbin, Topology and Order, D. Van Nostrand Inc., Princeton, New Jersey, 1965.
- [2] T. G. Raghavan, Quasi-ordered bitopological spaces, The Mathematics Student XLI (1973), 276-284.
- [3] T. G. Raghavan, Quasi-ordered bitopological spaces II, Kyungpook Math. J. 20 (1980), 145-158.
- [4] M. K. Singal and A. R. Singal, Bitopological ordered spaces, The Mathematics Student XXXIX (1971), 440-447.
- [5] M. K. R. S. Veera Kumar, Homeomorphisms in topological ordered spaces, Acta Ciencia Indica XXVIII{M(1)} (2002), 67-76.