Transnational Journal of Mathematical Analysis and Applications Vol. 4, Issue 1-2, 2016, Pages 17-35 ISSN 2347-9086 Published Online on December 30, 2016 2016 Jyoti Academic Press http://jyotiacademicpress.org

SOME WEAKER FORMS OF CONTINUITY IN BITOPOLOGICAL ORDERED SPACES

A. F. SAYED

Department of Mathematics Al-Lith University College Umm Al-Qura University P. O. Box 112, Al-Lith 21961 Makkah Al Mukarramah Kingdom of Saudi Arabia e-mail: dr.afsayed@hotmail.com

Abstract

The main purpose of the present paper is to introduce and study some weaker forms of continuity in bitopological ordered spaces. Such as pairwise *I*-continuous maps, pairwise *D*-continuous maps, pairwise *B*-continuous maps, pairwise *I*-open maps, pairwise *D*-open maps, pairwise *B*-open maps, pairwise *I*-closed maps, pairwise *D*-closed maps, and pairwise *B*-closed maps.

1. Introduction

Singal and Singal [4] initiated the study of bitopological ordered spaces. Raghavan ([2], [3]) and other authors have contributed to development and construct some properties of such spaces. In 2002, Veera Kumar [5] introduced *I*-continuous maps, *D*-continuous maps,

²⁰¹⁰ Mathematics Subject Classification: 54F05, 54E55.

Keywords and phrases: ordered topological space, increasing sets, decreasing sets, continuous maps, maps, pairwise continuous maps, pairwise open maps, pairwise closed maps.

Received June 9, 2014; Revised July 10, 2014

18 A. F. SAYED

B-continuous maps, *I*-open maps, *D*-open maps, *B*-open maps, *I*-closed maps, *D*-closed maps, and *B*-closed maps for topological ordered spaces together with their characterizations. Nachbin [1] initiated the study of topological ordered spaces in 1965. A topological ordered space is a triple (X, τ, \leq) , where τ is a topology on *X* and \leq is a partial order on *X*. In this paper, we introduce pairwise *I*-continuous maps, pairwise *D*-continuous maps, pairwise *B*-continuous maps, pairwise *I*-open maps, pairwise *D*-open maps, pairwise *B*-open maps, pairwise *I*-closed maps, pairwise *D*-closed maps, and pairwise *B*-closed maps for bitopological ordered spaces together with their characterizations as a generalization of that were studied for topological ordered spaces by Veera Kumar [5].

2. Preliminaries

Let (X, \leq) be a partially ordered set (i.e., a set X together with a reflexive, antisymmetric, and transitive relation). For a subset $A \subseteq X$, we write

$$
L(A) = \{ y \in X : y \le x \text{ for some } x \in A \},
$$

$$
M(A) = \{ y \in X : x \le y \text{ for some } x \in A \}.
$$

In particular, if *A* is a singleton set, say $\{x\}$, then we write $L(x)$ and $M(x)$, respectively. A subset *A* of *X* is said to be decreasing (resp., increasing) if $A = L(A)$ (resp., $A = M(A)$). The complement of a decreasing (resp., an increasing) set is an increasing (resp., a decreasing) set. A mapping $f : (X, \leq) \to (X^*, \leq^*)$ from a partially ordered set (X, \leq) to a partially ordered set (X^*, \leq^*) is increasing (resp., a decreasing) if $x \leq y$ in *X* implies $f(x) \leq^* f(y)$ (resp., $f(y) \leq^* f(x)$), where *f* is called an order isomorphism if it is an increasing bijection such that f^{-1} is also increasing.

A bitopological ordered space [4] is a quadruple consisting of a bitopological space (X, τ_1, τ_2) , and a partial order \leq on X; it is denoted as $(X, \tau_1, \tau_2, \leq)$. The partial order \leq said to be closed (resp., weakly closed) [2] if its graph $G(\leq) = \{(x, y) : x \leq y\}$ is closed in the product topology $\tau_i \times \tau_j$ (resp., $\tau_1 \times \tau_2$), where *i*, $j = 1, 2$; $i \neq j$, or equivalently, if $L(x)$ and $M(x)$ are τ_1 -closed, where $i = 1, 2$ (resp., $L(x)$ is τ_1 -closed and $M(x)$ is τ_2 -closed), for each $x \in X$.

For a subset *A* of a bitopological ordered space $(X, \tau_1, \tau_2, \leq)$,

- $H_i^l(A) = \bigcap \{ F | F$ is τ_i -decreasing closed subset of *X* containing *A*}, $H_i^m(A) = \bigcap \{ F \mid F \text{ is } \tau_i\text{-increasing closed subset of } X \text{ containing } A \},$ $H_i^b(A) = \bigcap \{ F \mid F \text{ is a closed subset of } X \text{ containing } A \text{ with } i \in A \}$ $F = L(F) = M(F)$, $O_i^l(A) = \bigcup \{ G | G \text{ is } \tau_i\text{-decreasing open subset of } X \text{ contained in } A \},$
	-
	- $O_i^m(A) = \bigcup \{ G \mid G \text{ is } \tau_i\text{-increasing open subset of } X \text{ contained in } A \},$

 $O_i^b(A) = \bigcup \{ G \mid G \text{ is both } \tau_i\text{-increasing and } \tau_i\text{-decreasing open} \}$ subset of *X* contained in *A*}.

Clearly, $H_i^m(A)(\text{resp., } H_i^l(A), H_i^b(A))$ *l i* $\binom{m}{i}(A)$ (resp., $H_i^l(A)$, $H_i^b(A)$) is the smallest τ_i -increasing (resp., τ_i -decreasing, both τ_i -increasing and τ_i -decreasing) closed set containing *A*. Moreover $\overline{A}_i \subseteq H_i^m(A) \subseteq H_i^b(A)$, $\overline{A}_i \subseteq H_i^m(A) \subseteq H_i^b(A)$, where \overline{A}_i stands for the τ_i -closure of *A* in $(X, \tau_1, \tau_2, \leq)$, $i = 1, 2$. *Further A* is τ_i -decreasing $(\text{resp., } \tau_i\text{-increasing}) \text{ closed if and only if } A = H_i^m(A) = H_i^l(A).$

20 A. F. SAYED

Clearly, $O_i^m(A)(\text{resp., } O_i^l(A), O_i^b(A))$ *l i* $m_i^m(A)(\text{resp.}, O_i^l(A), O_i^b(A))$ is the largest τ_i -increasing (resp., τ_i -decreasing, both τ_i -increasing and τ_i -decreasing) open set contained in *A*. Moreover $O_i^b(A) \subseteq O_i^m(A) \subseteq A_i^o$ *m i* $O_i^b(A) \subseteq O_i^m(A) \subseteq A_i^o$ and $O_i^b(A) \subseteq O_i^l(A)$, $\binom{b}{i}(A)$ ⊆ where A_i^0 denotes the τ_i -interior of *A* in $(X, \tau_1, \tau_2, \leq)$, $i \neq j$. If *A* and *B* are two τ_1 subsets of a bitopological ordered space $(X, \tau_1, \tau_2, \leq),$ $i \neq j$ such that $A \subseteq B$, then $O_i^m(A) \subseteq O_i^m(B) \subseteq B_i^o$. $\Omega(O_i^m(X))$ *o i m i* $m_i^m(A) \subseteq O_i^m(B) \subseteq B_i^o$. $\Omega(O_i^m(X))$ (resp., $(O_i^l(X)), \, \Omega(O_i^b(X)))$ $\Omega(O_i^l(X)), \Omega(O_i^b(X)))$ denotes the collection of all τ_i -increasing (resp., τ_i -decreasing, both τ_i -increasing and τ_i -decreasing) open subset of a bitopological ordered space $(X, \tau_1, \tau_2, \leq)$.

3. Pairwise *I***-continuous, Pairwise** *D***-continuous and Pairwise** *B***-continuous Maps**

Definition 3.1. A function $f : (X, \tau_1, \tau_2, \leq) \to (X^*, \tau_1^*, \tau_2^*, \leq)$ is called a pairwise *I*-continuous (resp., a pairwise *D*-continuous, a pairwise *B*-continuous) map if $f^{-1}(G) \in \Omega(O_i^m(X))$ (resp., $f^{-1}(G) \in \Omega(O_i^l(X))$, $\sigma^{-1}(G) \in \Omega(O_i^m(X))$ (resp., $f^{-1}(G) \in \Omega$ $f^{-1}(G) \in \Omega(O_i^b(X)))$, whenever *G* is an *i*-open subset of $(X^*, \tau_1^*, \tau_2^*, \leq),$ $i = 1, 2.$

It is evident that every pairwise *x*-continuous map is pairwise continuous for $x = I$, *D*, *B* and that every pairwise *B*-continuous map is both pairwise *I*-continuous and pairwise *D*-continuous.

Example 3.2. Let $X = \{a, b, c\}, \tau_1 = \{0, X, \{a\}, \{b\}, \{a, b\}\},\$ $\tau_2 = \{0, X, \{c\}\}\$ and $\leq = \{(a, a), (b, b), (c, c), (a, b), (b, c), (a, c)\}.$ Clearly, $(X, \tau_1, \tau_2, \leq)$ is a bitopological ordered space. Let *f* be the identity map from $(X, \tau_1, \tau_2, \leq)$ onto itself. $\{b\}$ is τ_1 -open and $\{c\}$ is τ_2 -open, but $f^{-1}({b}) = {b}$ is neither a τ_1 -increasing nor a τ_1 -decreasing open set and also $f^{-1}({c}) = {c}$ is neither a τ_2 -increasing nor a τ_2 -decreasing open set. Thus *f* is not pairwise *x*-continuous for $x = I$, *D*, *B*. However *f* is continuous.

The following example supports that a pairwise *D*-continuous map need not be a pairwise *B*-continuous map.

Example 3.3. Let $X = \{a, b, c\} = X^*$, $\tau_1 = \{0, X, \{a\}, \{b\}, \{a, b\}\} = \tau_1^*$, ${\bf f }_{\ 2} = \{0, X, \{c\}\} = {\bf f }_{\ 2}^*, \leq \{ (a, a), (b, b), (c, c), (a, c) \} \ \text{ and } \leq^* = \{ (a, a), (b, b), (c, c), (c, c) \}$ $(c, c), (a, b), (a, c), (b, c)$. Let *g* be the identity map from $(X, \tau_1, \tau_2, \leq)$ onto $(X^*, \tau_1^*, \tau_2^*, \leq), g$ is not pairwise *B*-continuous. However *g* is a pairwise *D*-continuous map.

The following example supports that a pairwise *I*-continuous map need not be a pairwise *B*-continuous map.

Example 3.4. Let $X = \{a, b, c\} = X^*, \tau_1 = \{0, X, \{a\}, \{b\}, \{a, b\}\}, \tau_1^* = \{0, X^*,$ $\{\alpha\}\}, \tau_2 = \{\emptyset, X, \{c\}\}, \tau_2^* = \{\emptyset, X, \{b\}, \{c\}, \{b, c\}\} \text{ and } \leq \{(\alpha, \alpha), (b, \beta),$ $(c, c), (a, b), (a, c), (c, b)$ } = ≤^{*}. Define $h : (X, \tau_1, \tau_2, \leq) \rightarrow (X^*, \tau_1^*, \tau_2^*, \leq)$ by $h(a) = b$, $h(b) = a$, and $h(c) = c$, where *h* is pairwise *I*-continuous but not a pairwise *B*-continuous map.

Thus we have the following diagram:

Figure 1.

For a function $f : (X, \tau_1, \tau_2, \leq) \to (X^*, \tau_1^*, \tau_2^*, \leq)$, where $P \to Q$ (resp., $P \leftrightarrow Q$) represents P implies Q but Q need not imply P (resp., *P* and *Q* are independent of each other).

The following theorem characterizes pairwise *I*-continuous maps.

Theorem 3.5. *For a function* $f : (X, \tau_1, \tau_2, \leq) \to (X^*, \tau_1^*, \tau_2^*, \leq),$ *the following statements are equivalent*:

- (1) *f is pairwise I*-*continuous*.
- (2) $f(H_i^l(A)) \subseteq \overline{(f(A))_i}$ for any $A \subseteq X$, $i = 1, 2$.
- (3) $H_i^l(f^{-1}(B)) \subseteq f^{-1}(\overline{B})_i$ for any $B \subseteq X^*$, $i = 1, 2$.

(4) *For every* τ_i^* -*closed subset K of* $(X^*, \tau_1^*, \tau_2^*, \leq), f^{-1}(K)$ *is a* τ_i *-decreasing closed subset of* $(X, \tau_1, \tau_2, \leq), i = 1, 2$.

Proof. (1) \Rightarrow (2): Since $X^* \setminus \overline{(f(A))_i}$ is τ_i -open in X^* and *f* is pairwise *I*-continuous, then $f^{-1}(X \setminus \overline{(f(A))_i})$ is a τ_i -increasing open set in *X*. Then $X \setminus f^{-1}(X \setminus \overline{(f(A))_i})$ is a τ_i -decreasing closed subset of *X*. Since $X \setminus f^{-1}(X \setminus \overline{(f(A))_i}) = f^{-1}(\overline{(f(A))_i}), \text{ then } f^{-1}(\overline{(f(A))_i}) \text{ is a.}$ τ_i -decreasing closed subset of *X*. Since $A \subseteq f^{-1}(\overline{(f(A))_i})$ and is the smallest τ_i -decreasing closed set containing *A*, then $H_i^l(A) \subseteq f^{-1}$ $(\overline{(f(A))_i})$. $f(f^{-1}(\overline{(f(A))_i}) \subseteq \overline{(f(A))_i}$. Thus $H_i^l(A) \subseteq \overline{(f(A))_i}$.

(2) \Rightarrow (3): Let $A = f^{-1}(B)$. Then $f(A) = f(f^{-1}(B)) \subseteq B$. This implies $(\overline{f(A)})_i \overline{B}_i$. Now $H_i^l(f^{-1}(B)) \subseteq H_i^l(A) \subseteq f^{-1}(f(H_i^l(A))) \subseteq f^{-1}$ *l i* $i_l^l(f^{-1}(B)) \subseteq H_i^l(A) \subseteq f^{-1}(f(H_i^l(A))) \subseteq f^{-1}(\overline{f(A)})_i$ [by (2) in this Theorem 3.5]. But $f^{-1}(\overline{f(A)})_i \subseteq f^{-1}(\overline{B}_i)$. Thus $H_i^l(f^{-1}(B)) \subseteq f^{-1}(\overline{B}_i).$

(3) \Rightarrow (4): $H_i^l(f^{-1}(K)) \subseteq f^{-1}(\overline{K}_i)$ for any τ_i^* -closed set *K* of $(X^*, \tau_1^*, \tau_2^*, \leq)$. Thus $f^{-1}(K)$ is a τ_i -decreasing closed in $(X, \tau_1, \tau_2, \leq)$, whenever *K* is a τ_i^* -closed set in $(X^*, \tau_1^*, \tau_2^*, \leq)$.

(4) \Rightarrow (1): Let *G* be a τ_i^* -open set in $(X^*, \tau_1^*, \tau_2^*, \leq)$. Then $f^{-1}(X \setminus G)$ is a τ_i -decreasing closed set in $(X, \tau_1, \tau_2, \leq),$ since $X^* \setminus (G)$ is a closed set in $(X^*, \tau_1^*, \tau_2^*, \leq)$. But $X \setminus (f^{-1}(G)) = f^{-1}(X \setminus G)$. Thus $X \setminus (f^{-1}(G))$ is a τ_i -decreasing closed set in $(X, \tau_1, \tau_2, \leq)$. So *f*⁻¹(*G*) is a τ_i -increasing open set in $(X, \tau_1, \tau_2, \leq)$. Thus *f* is pairwise *I*-continuous. □

The following two theorems characterize pairwise *D*-continuous maps and pairwise *B*-continuous maps, whose proofs are similar to as that of the above Theorem 3.5.

Theorem 3.6. For a function $f: (X, \tau_1, \tau_2, \leq) \to (X^*, \tau_1^*, \tau_2^*, \leq),$ *the following statements are equivalent*:

- (1) *f is pairwise D*-*continuous*.
- (2) $f(H_i^m(A)) \subseteq \overline{(f(A))_i}$ for any $A \subseteq X$, $i = 1, 2$.
- (3) $H_i^m(f^{-1}(B)) \subseteq f^{-1}(\overline{B})_i$ for any $B \subseteq X^*$, $i = 1, 2$.

(4) *For every* τ_i^* -*closed subset K of* $(X^*, \tau_1^*, \tau_2^*, \leq), f^{-1}(K)$ *is a* τ_i *increasing closed subset of* $(X, \tau_1, \tau_2, \leq), i = 1, 2$.

Theorem 3.7. For a function $f: (X, \tau_1, \tau_2, \leq) \to (X^*, \tau_1^*, \tau_2^*, \leq),$ *the following statements are equivalent*:

(1) *f is pairwise B*-*continuous*.

 $(2) f(H_i^b(A)) \subseteq \overline{(f(A))_i}$ for any $A \subseteq X$, $i = 1, 2$.

24 A. F. SAYED

$$
(3) \ H_i^b(f^{-1}(B)) \subseteq f^{-1}(\overline{B})_i \ \text{for any } B \subseteq X^*, \quad i = 1, 2.
$$

(4) *For every* τ_i^* -closed subset K of $(X^*, \tau_1^*, \tau_2^*, \leq), f^{-1}(K)$ is both τ_i *-increasing and* τ_i *-decreasing closed subset of* $(X, \tau_1, \tau_2, \leq), i = 1, 2$.

Theorem 3.8. Let $f : (X, \tau_1, \tau_2, \leq_1) \rightarrow (y, \nu_1, \nu_2, \leq_2)$ and $g : (y, \nu_1, \nu_2, \leq_2)$ ν_2, \leq_2 \rightarrow $(Z, \eta_1, \eta_2, \leq_3)$ be any two mappings. Then

(1) $g \circ f : (X, \tau_1, \tau_2, \leq_1) \rightarrow (Z, \eta_1, \eta_2, \leq_3)$ *is pairwise x-continuous for* $x = I$, *D*, *B*.

(2) $g \circ f : (X, \tau_1, \tau_2, \leq_1) \rightarrow (Z, \eta_1, \eta_2, \leq_3)$ *is pairwise x-continuous* and g is pairwise continuous for $x = I$, D, B.

(3) $g \circ f : (X, \tau_1, \tau_2, \leq_1) \rightarrow (Z, \eta_1, \eta_2, \leq_3)$ *is pairwise x-continuous and g is pairwise y*-*continuous for* $x, y \in \{I, D, B\}.$

4. Pairwise *I***-open, Pairwise** *D***-open and Pairwise** *B***-open Maps**

Definition 4.1. A function $f : (X, \tau_1, \tau_2, \leq) \to (X^*, \tau_1^*, \tau_2^*, \leq^*)$ is called a pairwise *I*-open (resp., a pairwise *D*-open, a pairwise *B*-open) $\text{map if } f(G) \in \Omega(O_i^m(X^*)) \text{ (resp., } f(G) \in \Omega(O_i^l(X^*)), f(G) \in \Omega(O_i^b(X^*))),$ *l i m i* whenever *G* is a τ_i -open subset of (X, τ_1, τ_2) , $i = 1, 2$.

It is evident that every pairwise *x*-open map is a pairwise open map for $x = I$, *D*, *B* and that every pairwise *B*-open map is both pairwise *I*-open and pairwise *D*-open.

The following example shows that a pairwise open map need not be pairwise *x*-open for $x = I$, *D*, *B*.

Example 4.2. Let $(X, \tau_1, \tau_2, \leq)$ and *f* be as in the Example 3.2, *f* is a pairwise open map but *f* is not pairwise *x*-open for $x = I$, *D*, *B*.

The following example shows that a pairwise *D*-open map need not be a pairwise *B*-open map.

Example 4.3. Let $X, X^*, \tau_1, \tau_2, \tau_1^*, \tau_2^* \le \text{ and } \le^*$ be as in the Example 3.3. Let θ be the identity map from $(X, \tau_1, \tau_2, \leq)$ onto $(X^*, \tau_1^*, \tau_2^*, \leq^*)$, θ is pairwise *D*-open but not a pairwise *B*-open map.

The following example shows that a pairwise *I*-open map need not be a pairwise *B*-open map.

Example 4.4. Let $X, X^*, \tau_1, \tau_2, \tau_1^*, \tau_2^*, \leq$ and \leq^* be as in the Example 3.4. Define $\varphi : (X, \tau_1, \tau_2, \leq) \to (X^*, \tau_1^*, \tau_2^*, \leq^*)$ by $\varphi(a) = b$, $\varphi(b) = a$, and $\varphi(c) = c$, φ is a pairwise *I*-open map but not a pairwise *B*-open map.

Thus we have the following diagram:

Figure 2.

For a function $f : (X, \tau_1, \tau_2, \le) \to (X^*, \tau_1^*, \tau_2^*, \le^*)$, where $P \to Q$ (resp., $P \leftrightarrow Q$) represents P implies Q but Q need not imply P (resp., *P* and *Q* are independent of each other).

Before characterizing pairwise *I*-open (resp., pairwise *D*-open, pairwise *B*-open) maps, we establish the following useful lemma:

Lemma 4.5. *Let A be any subset of a bitopological ordered space* $(X, \tau_1, \tau_2, \leq)$. *Then*

(1)
$$
X \setminus H_i^l(A) = O_i^m(X \setminus A), \quad i = 1, 2.
$$

\n(2) $X \setminus H_i^m(A) = O_i^l(X \setminus A), \quad i = 1, 2.$
\n(3) $X \setminus H_i^b(A) = O_i^b(X \setminus A), \quad i = 1, 2.$

Proof. (1) $X \setminus H_i^l(A) = X \setminus \bigcap \{F | F \text{ is a } \tau_i\text{-decreasing closed subset}\}$ of *X* containing A } = $\bigcup \{X \setminus F | F$ is a τ_i -decreasing closed subset of *X* containing A } = \bigcup {*G*|*G* is a τ _{*i*}-increasing open subset of *X* contained in $X \setminus A$ = $O_i^m(X \setminus A)$.

The proofs for (2) and (3) are analogous to that of (1) and so omitted.

 \Box

The following theorem characterizes pairwise *I*-open functions.

Theorem 4.6. For any function $f : (X, \tau_1, \tau_2, \leq) \to (X^*, \tau_1^*, \tau_2^*, \leq),$ *the following statements are equivalent*:

- (1) *f is a pairwise I*-*open map*.
- $(2) f(A_i^o) \subseteq O_i^m(f(A))$ O_i^o \subseteq $O_i^m(f(A))$ for any $A \subseteq X$, $i = 1, 2$.
- (3) $(f^{-1}(B))_i^o \subseteq f^{-1}(O_i^m(B))$ $(-1)(B)$ ⁰_{*i*} \subseteq *f*⁻¹($O_i^m(B)$) for any $B \subseteq X^*$, *i* = 1, 2.
- $(4) f^{-1}(H_i^l(B)) \subseteq H_i^l(f^{-1}(B))$ *l* $I^{-1}(H_i^l(B)) \subseteq H_i^l(f^{-1}(B))$ for any $B \subseteq X^*, i = 1, 2$.

Proof. (1) \Rightarrow (3): Since $(f^{-1}(B))_i^o$ is τ_i -open in *X* and *f* is pairwise *I*-open, then $f((f^{-1}(B))_i^o)$ is a τ_i -increasing open set in X^* . Also $f(f^{-1}(B))_i^o \subseteq f(f^{-1}(B)) \subseteq B$. Then $f(f^{-1}(B))_i^o \subseteq O_i^m(B)$ $O_i^{m}(B)$ ⁰_{*i*} $\subseteq O_i^{m}(B)$ since $O_i^{m}(B)$ is the largest τ_i -increasing open set contained in *B*. Therefore $(f^{-1}(B))^o_i$ $\subseteq f^{-1}(O_i^m(B)).$

(3) \Rightarrow (4): Replacing *B* by *X* \ *B* in (3), we get $(f^{-1}(X \setminus B))_i^o \subseteq$ $f^{-1}(O_i^m(X \setminus B))$. Since $f^{-1}(X \setminus B) = X \setminus (f^{-1}(B))$, then $(X \setminus (f^{-1}(B)))_i^0$ $\subseteq f^{-1}(O_i^m(X \setminus B)).$ Now $X \setminus (H_i^l(f^{-1}(B))) = O_i^m(X \setminus (f^{-1}(B))) \subseteq (X \setminus B)$ $l_i^l(f^{-1}(B))) = O_i^m(X \setminus (f^{-1}(B))) \subseteq$ $(f^{-1}(B))$ _i² $\subseteq f^{-1}(O_i^m(X \setminus (B))) = f^{-1}(X \setminus (H_i^l(B))) = X \setminus (f^{-1}(H_i^l(B)))$ *l i m i* $(f^{-1}(B))_i^o \subseteq f^{-1}(O_i^m(X \setminus (B))) = f^{-1}(X \setminus (H_i^l(B))) = X \setminus (f^{-1})$ using the above Lemma 4.5. Therefore $f^{-1}(H_i^l(B)) \subseteq H_i^l(f^{-1}(B)).$ *l* $I^{-1}(H_i^l(B)) \subseteq H_i^l(f^{-1})$

(4) \Rightarrow (3): All the steps in (3) \Rightarrow (4) are reversible.

(3) \Rightarrow (2): Replacing *B* by *f*(*A*) in (3), we get $(f^{-1}(f(A)))_i^o \subseteq f^{-1}(O_i^m)$ $(f(A)))$. Since $A_i^o \subseteq (f^{-1}(f(A)))_i^o$, then we have $A_i^o \subseteq f^{-1}(O_i^m(f(A))).$ *o* $i^0 \subseteq f^-$ This implies that $f(A_i^o) \subseteq f(f^{-1}(O_i^m(f(A)))) \subseteq O_i^m(f(A)).$ *m i* o_i^o) \subseteq $f(f^{-1}(O_i^m(f(A)))) \subseteq O_i^m(f(A))$. Hence $f(A_i^o)$ $\subseteq O_i^m(f(A)).$

(2) ⇒ (1): Let *G* be any τ_i -open subset of *X*. Then $f(G) = f(G_i^o)$ ⊆ *O*^{*m*}($f(G)$). So $f(G)$ is a τ_i^* -increasing open set in X^* . Therefore *f* is a pairwise *I*-open map.

The following two theorems give characterizations for *D*-open maps and *B*-open maps, whose proofs are similar to as that of the above Theorem 4.6.

Theorem 4.7. *For any function* $f : (X, \tau_1, \tau_2, \leq) \to (X^*, \tau_1^*, \tau_2^*, \leq),$ *the following statements are equivalent*:

(1) *f is a pairwise D*-*open map*.

(2)
$$
f(A_i^o) \subseteq O_i^l(f(A))
$$
 for any $A \subseteq X$, $i = 1, 2$.

$$
(3) \ (f^{-1}(B))_i^o \subseteq f^{-1}(O_i^l(B)) \text{ for any } B \subseteq X^*, \quad i = 1, 2.
$$

(4)
$$
f^{-1}(H_i^m(B)) \subseteq H_i^m(f^{-1}(B))
$$
 for any $B \subseteq X^*$, $i = 1, 2$.

Theorem 4.8. For any function $f : (X, \tau_1, \tau_2, \leq) \to (X^*, \tau_1^*, \tau_2^*, \leq),$ *the following statements are equivalent*:

(1) *f is a pairwise B*-*open map*.

$$
(2) f(A_i^o) \subseteq O_i^b(f(A)) \text{ for any } A \subseteq X, \quad i = 1, 2.
$$

$$
(3) \ (f^{-1}(B))_i^o \subseteq f^{-1}(O_i^b(B)) \ \text{for any} \ B \subseteq X^*, \quad i = 1, 2.
$$

(4)
$$
f^{-1}(H_i^b(B)) \subseteq H_i^b(f^{-1}(B))
$$
 for any $B \subseteq X^*$, $i = 1, 2$.

Theorem 4.9. Let $f : (X, \tau_1, \tau_2, \leq_1) \rightarrow (y, \nu_1, \nu_2, \leq_2)$ and $g : (y, \nu_1, \nu_2, \leq_2)$ ν_2, \leq_2 \rightarrow $(Z, \eta_1, \eta_2, \leq_3)$ be any two mappings. Then

(1) $g \circ f : (X, \tau_1, \tau_2, \leq_1) \to (Z, \eta_1, \eta_2, \leq_3)$ *is pairwise x-open if f is pairwise open and g is pairwise x-open for* $x = I$, *D*, *B*.

(2) $g \circ f : (X, \tau_1, \tau_2, \leq_1) \rightarrow (Z, \eta_1, \eta_2, \leq_3)$ *is pairwise x-open if both* f *and* g *are pairwise* x -*open for* $x = I$, D , B .

(3) $g \circ f : (X, \tau_1, \tau_2, \leq_1) \to (Z, \eta_1, \eta_2, \leq_3)$ *is pairwise x-open if f is pairwise y-open and g is pairwise x-open for* $x, y \in \{I, D, B\}.$

Proof. Omitted. □

5. Pairwise *I***-closed, Pairwise** *D***-closed and Pairwise** *B***-closed Maps**

Definition 5.1. A function $f : (X, \tau_1, \tau_2, \leq) \to (X^*, \tau_1^*, \tau_2^*, \leq^*)$ is called a pairwise *I*-closed (resp., a pairwise *D*-closed, a pairwise *B*-closed) $\text{map if } f(G) \in \Omega(H_i^m(X^*)) \text{ (resp., } f(G) \in \Omega(H_i^l(X^*)), f(G) \in \Omega(H_i^b(X^*))),$ *l i* $\binom{m}{i}(X^*))$ (resp., $f(G) \in \Omega(H_i^l(X^*)), f(G) \in \Omega(H_i^b(X^*))),$ whenever *G* is a τ_i -open subset of (X, τ_1, τ_2) , where $\Omega(H_i^m(X^*))$ $(\mathrm{resp.,}\; \mathrm{Comega}(H^{l}_i(X^*)),\, \Omega(H^{b}_i(X^*)))$ $\text{resp., } \text{Comega}(H^l_i(X^*)), \, \Omega(H^b_i(X^*)) \text{ is the collection of all }\, \tau_i\text{-increasing}$ (resp., τ_i -decreasing, both τ_i -increasing and τ_i -decreasing) closed subsets of $(X^*, \tau_1^*, \tau_2^*, \leq^*)$, $i = 1, 2$.

Clearly, every pairwise *x*-closed map is a pairwise closed map for $x = I$, *D*, *B* and every pairwise *B*-closed map is both pairwise *I*-closed and pairwise *D*-closed. The following example shows that a pairwise closed map need not be pairwise *x*-closed for $x = I$, *D*, *B*.

Example 5.2. Let $(X, \tau_1, \tau_2, \leq)$ and *f* be as in the Example 3.2, *f* is a pairwise closed map but *f* is not pairwise *x*-closed for $x = I$, *D*, *B*.

The following example shows that a pairwise *I*-closed map need not be a pairwise *B*-closed map.

Example 5.3. Let $X, X^*, \tau_1, \tau_2, \tau_1^*, \tau_2^*, \leq$ and \leq^* be as in the Example 4.3, θ is pairwise *I*-closed but not a pairwise *B*-closed map.

The following example shows that a pairwise *I*-closed map need not be a pairwise *B*-closed map.

Example 5.4. Let $X, X^*, \tau_1, \tau_2, \tau_1^*, \tau_2^*, \leq, \leq^*$ and φ be as in the Example 4.4, ϕ is a pairwise *D*-closed map but not a pairwise *B*-closed map.

Thus we have the following diagram:

Figure 3.

For a function $f : (X, \tau_1, \tau_2, \leq) \to (X^*, \tau_1^*, \tau_2^*, \leq^*)$, where $P \to Q$ (resp., $P \nleftrightarrow Q$) represents P implies Q but Q need not imply P (resp., *P* and *Q* are independent of each other).

The following theorem characterizes *I*-closed maps.

Theorem 5.5. *Let* $f : (X, \tau_1, \tau_2, \leq) \to (X^*, \tau_1^*, \tau_2^*, \leq^*)$ *be any map. Then f is pairwise I-closed if and only if* $H_i^m(f(A)) \subseteq f(\overline{A}_i)$ for every $A \subseteq X$, $i = 1, 2$.

Proof. Necessity: Since *f* is pairwise *I*-closed, then $f(\overline{A}_i)$ is a τ_i -increasing closed subset of *X* and $f(A) \subseteq f(\overline{A}_i)$. Therefore $H_i^m(f(A))$ $\subseteq f(\overline{A}_i)$ since $H_i^m(f(A))$ is the smallest τ_i -increasing closed set in X^* containing $f(A)$.

Sufficiency: Let *F* be any τ_i -closed subset of *X*. Then $f(F) \subseteq$ $H_i^m(f(F)) \subseteq f(\overline{F_i}) = f(F)$. Thus $f(F) = H_i^m(f(F))$. So $f(F)$ is a τ_i -increasing closed subset of X^* . Therefore *f* is a pairwise *I*-closed map.

The following two theorems characterize pairwise *D*-closed maps and pairwise *B*-closed maps.

Theorem 5.6. Let $f : (X, \tau_1, \tau_2, \leq) \to (X^*, \tau_1^*, \tau_2^*, \leq^*)$ be any map. *Then f is pairwise D-closed if and only if* $H_i^l(f(A)) \subseteq f(\overline{A}_i)$ for every $A \subseteq X$, $i = 1, 2$.

Proof. Omitted. □

Theorem 5.7. *Let* $f : (X, \tau_1, \tau_2, \leq) \to (X^*, \tau_1^*, \tau_2^*, \leq^*)$ *be any map. Then f is pairwise B-closed if and only if* $H_i^b(f(A)) \subseteq f(\overline{A}_i)$ for every $A \subseteq X$, $i = 1, 2$.

Proof. Omitted. □

Theorem 5.8. Let $f : (X, \tau_1, \tau_2, \leq) \rightarrow (X^*, \tau_1^*, \tau_2^*, \leq^*)$ be a pairwise *bijection map*. *Then*

- (1) *f is pairwise I*-*open if and only if f is pairwise D*-*closed*.
- (2) *f is pairwise I*-*closed if and only if f is pairwise D*-*open*.
- (3) *f is pairwise B*-*open if and only if f is pairwise B*-*closed*.

Proof. (1) Necessity: Let *F* be any τ_i -closed subset of *X*. Then *f*($X \setminus F$) is a τ_i^* -increasing open subset of X^* since *f* is a pairwise *I*-open map and $(X \setminus F)$ is a τ_i -open subset of *X*. Since *f* is a pairwise

 \Box

bijection, then we have $f(X \setminus F) = X \setminus (f(F))$. So $f(F)$ is a τ_i^* -decreasing closed subset of X^* . Therefore *f* is a pairwise *D*-closed.

Sufficiency: Let *G* be any τ_i -open subset of *X*. Then $f(X \setminus G)$ is a τ_i -decreasing closed subset of X^* since f is a pairwise D-closed map and $(X \setminus G)$ is a τ_i -closed subset of X. Since f is a pairwise bijection, then we have that $f(X \setminus G) = X \setminus f(G)$. So $f(G)$ is a τ_i -increasing open subset of X^* . Therefore *f* is a pairwise *I*-open map.

The proofs for (2) and (3) are similar to that of (1). \Box

Theorem 5.9. *Let* $f : (X, \tau_1, \tau_2, \leq_1) \to (y, \nu_1, \nu_2, \leq_2)$ and $g : (y, \nu_1, \nu_2, \leq_2)$ ν_2, \leq_2 \rightarrow $(Z, \eta_1, \eta_2, \leq_3)$ be any two mappings. Then

(1) $g \circ f : (X, \tau_1, \tau_2, \leq_1) \rightarrow (Z, \eta_1, \eta_2, \leq_3)$ *is pairwise x-closed if f is pairwise closed and g is pairwise* x *-closed for* $x = I$, *D*, *B*.

(2) $g \circ f : (X, \tau_1, \tau_2, \leq_1) \rightarrow (Z, \eta_1, \eta_2, \leq_3)$ *is pairwise x-closed if both f and g are pairwise x-closed for* $x = I$, *D*, *B*.

(3) $g \circ f : (X, \tau_1, \tau_2, \leq_1) \rightarrow (Z, \eta_1, \eta_2, \leq_3)$ *is pairwise x-closed if f is pairwise y*-*closed and g is pairwise x*-*closed for* $x, y \in \{I, D, B\}$.

Theorem 5.10. Let $f : (X, \tau_1, \tau_2, \leq) \to (X^*, \tau_1^*, \tau_2^*, \leq^*)$ be a pairwise *bijection map*. *Then the following statements are equivalent*:

- (1) *f is a pairwise I*-*open map*.
- (2) *f is a pairwise D*-*closed map*.
- (3) f^{-1} *is a pairwise I-continuous.*

Theorem 5.11. *Let* $f : (X, \tau_1, \tau_2, \leq) \to (X^*, \tau_1^*, \tau_2^*, \leq^*)$ *be a pairwise bijection map*. *Then the following statements are equivalent*:

- (1) *f is a pairwise D*-*open map*.
- (2) *f is a pairwise I*-*closed map*.
- (3) f^{-1} *is a pairwise D-continuous.*

Theorem 5.12. *Let* $f : (X, \tau_1, \tau_2, \leq) \to (X^*, \tau_1^*, \tau_2^*, \leq^*)$ *be a pairwise bijection map*. *Then the following statements are equivalent*:

- (1) *f is a pairwise B*-*open map*.
- (2) *f is a pairwise B*-*closed map*.
- (3) f^{-1} *is a pairwise B-continuous.*

Theorem 5.13. Let $f : (X, \tau_1, \tau_2, \leq) \to (X^*, \tau_1^*, \tau_2^*, \leq^*)$ be a pairwise *I*-*closed map and B,* $C \subseteq X^*$ *. Then*

(1) *If U is a* τ_i -*open neighbourhood of* $f^{-1}(B)$, *then there exists a* τ_i *·decreasing open neighbourhood V of B such that* $f^{-1}(B) \subseteq f^{-1}(V) \subseteq U$, $i = 1, 2.$

(2) *If* $f^{-1}(B)$ *and* $f^{-1}(C)$ *have disjoint* τ_i -*neighbourhoods*, *then* $f^{-1}(B)$ *and* $f^{-1}(C)$ *have disjoint* τ_i *-decreasing open neighbourhoods*, $i = 1, 2.$

Proof. (1) Let *U* be a τ_i -open neighbourhood of $f^{-1}(B)$. Take $X^* \setminus V = f(X \setminus U)$. Since *f* is a pairwise *I*-closed map and $(X \setminus U)$ is a τ_i -closed set, then $X^* \setminus V = f(X \setminus U)$ is a τ_i -increasing closed subset of X^* . Thus *V* is an τ_i -decreasing open subset of X^* . Since $f^{-1}(B)U$,

then $X^* \setminus V = f(X \setminus U) \subseteq f(f^{-1}(X^* \setminus B)) \subseteq X^* \setminus B$. So $B \subseteq V$. Thus *V* is a τ_i^* -decreasing open neighbourhood of *B*. Further $X \setminus U \subseteq f^{-1}$ $(f(X \setminus U)) = f^{-1}(X^* \setminus V) = X^* \setminus (f^{-1}(V))$. Thus $f^{-1}(B) \subseteq f^{-1}(V) \subseteq U$. \Box

Theorem 5.14. *Let* $f : (X, \tau_1, \tau_2, \leq) \to (X^*, \tau_1^*, \tau_2^*, \leq^*)$ *be a pairwise D*-*closed map and* $B, C \subseteq X^*$ *. Then*

(1) *If U is a* τ_i -*open neighbourhood of* $f^{-1}(B)$ *, then there exists a* τ_i *·decreasing open neighbourhood V of B such that* $f^{-1}(B) \subseteq f^{-1}(V) \subseteq U$, $i = 1, 2.$

(2) *If* $f^{-1}(B)$ *and* $f^{-1}(C)$ *have disjoint* τ_i -neighbourhoods, then $f^{-1}(B)$ *and* $f^{-1}(C)$ *have disjoint* τ_i -*increasing open neighbourhoods*, $i = 1, 2.$

Theorem 5.15. *Let* $f : (X, \tau_1, \tau_2, \leq) \to (X^*, \tau_1^*, \tau_2^*, \leq^*)$ *be a pairwise B*-*closed map and B*, $C \subseteq X^*$ *. Then*

(1) *If U is a* τ_i *-open neighbourhood of* $f^{-1}(B)$ *, then there exists a* τ*ⁱ* -*open neighbourhood V of B*, *which are both* τ*ⁱ* -*increasing and* τ_i -decreasing, such that $f^{-1}(B) \subseteq f^{-1}(V) \subseteq U$, $i = 1, 2$.

(2) *If* $f^{-1}(B)$ *and* $f^{-1}(C)$ *have disjoint* τ_i -*neighbourhoods, then* $f^{-1}(B)$ *and* $f^{-1}(C)$ *have disjoint* τ_i -*open neighbourhoods*, *which are both* τ_i *increasing and* τ_i *decreasing, i* = 1, 2.

References

- [1] L. Nachbin, Topology and Order, D. Van Nostrand Inc., Princeton, New Jersey, 1965.
- [2] T. G. Raghavan, Quasi-ordered bitopological spaces, The Mathematics Student XLI (1973), 276-284.
- [3] T. G. Raghavan, Quasi-ordered bitopological spaces II, Kyungpook Math. J. 20 (1980), 145-158.
- [4] M. K. Singal and A. R. Singal, Bitopological ordered spaces, The Mathematics Student XXXIX (1971), 440-447.
- [5] M. K. R. S. Veera Kumar, Homeomorphisms in topological ordered spaces, Acta Ciencia Indica XXVIII{M(1)} (2002), 67-76.

g