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Abstract 

This paper concerns the study of the numerical approximation for the following 
initial-boundary value problem: 
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where [ ) [ )∞→∞ ,0,0:f  is a 1C  convex, nondecreasing function, ( ) ,∞<
σ
σ∞

∫ f
d  

0x  is a fixed point in the domain, ,2
1

0 =x  and λ  is a positive parameter. 

Under some assumptions, we prove that the solution of a discrete form of the 
above problem blows up in a finite time and estimate its numerical blow-up 
time. We also show that the numerical blow-up time in certain cases converges 
to the real one when the mesh size tends to zero. Finally, we give some 
numerical experiments to illustrate our analysis. 

1. Introduction 

We consider the following initial-boundary value problem for a 
semilinear heat equation of the form: 

( ) ( ) ( )( ) ( ) ( ) ( ),,01,0,,,,, 0 Ttxtxuftxutxu xxt ×∈λ=−   (1) 

( ) ( ) ( ),,0,0,1,0 Tttutu ∈==   (2) 

( ) ( ) ( ),1,0,00, 0 ∈≥= xxuxu   (3) 

which models the temperature distribution of a large number of physical 
phenomena from physics, chemistry, and biology. The particularity of the 
problem describes in (1)-(3) is that it represents a model in physical 
phenomena where the reaction is driven by the temperature at a single 
site. This kind of phenomena is observed in biological systems and in 
chemical reaction diffusion processes in which the reaction takes place 
only at some local sites. For instance, the above model is appropriate to 
describe: 
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(i) The influence of defect structures on a catalytic surface. 

(ii) The temperature in a solid-fuel combustion scenario where the 
heat that is input into the system is localized, say as in a laser focused on 
one spot in the domain. 

(iii) Chemical reaction-diffusion processes in which, due to effect of 
catalyst, the reaction takes place only at a single site. 

(iv) A heat stationary source which can support an explosive reaction. 
A stationary source provides a continuous supply of heat to the same 
environment. 

(v) The ignition of a combustible medium with damping, where either 
a heated wire or a pair of small electrodes supplies a large amount of 
energy to every confined area. 

For more physical motivation, see [4], [5], and [25]. Here 

[ )∞,0:f [ )∞→ ,0  is a 1C  convex, nondecreasing function, ( ) ,∞<
σ
σ∞

∫ f
d    

λ  is a positive parameter (which is called the scaled Damköhler number 
in the combustion theory). The initial data 0u  is a function which is 

bounded and symmetric. In addition, ( ) ( ( )) 02
1

00 ≥λ+′′ ufxu  in ( ).1,0  

The interval ( )T,0  is the maximal time interval of existence of the 

solution u. The time T may be finite or infinite. When T is infinite, then 
we say that the solution u exists globally. When T is finite, then the 
solution u develops a singularity in a finite time, namely, 

( ) ,,lim ∞=⋅ ∞→
tu

Tt
 

where ( ) ( ) .,max, 10 txutu x≤≤∞ =⋅  In this last case, we say that the 

solution u blows up in a finite time, and the time T is called the blow-up 
time of the solution u. The local in time existence and uniqueness of the 
solution u have been proved (see [8], [9], [27]). 
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The theoretical study of blow-up of solutions for localized semilinear 
heat equations has been the subject of investigations of many authors 
(see [8], [9], [12], [22]-[25], and the references cited therein). Under the 
assumptions given in the Introduction of the present paper, the authors 
have proved that the solution u of (1)-(3) blows up globally in a finite time 
on the whole interval ( ),1,0  and the blow-up time is estimated (see [9], [25]). 

In the present paper, we are interested in the numerical study using the 
discrete form of (1)-(3). We give some assumptions under which the 
solution of the discrete problem blows up in a finite time and estimate its 
numerical blow-up time. We also show that the numerical blow-up time 
converges to the theoretical one when the mesh size goes to zero. 
Previously, some authors have used semidiscrete and discrete schemes to 
study the phenomenon of blow-up, but only the case where the reaction 
term ( )( )txuf ,0λ  is replaced by ( )( )txuf ,  has been taken into account 

(see [7], [10], [11], [17]). 

In this paper, we are interested in the numerical study of the above 
problem. Our aim is to build an explicit scheme in which the discrete 
solution reproduces the properties of the continuous one. 

2. Full Discretization of the Blowing-up Solutions 

We start by the construction of an adaptive scheme as follows. Let I 
be a positive integer, and consider the grid ,0, Iiihxi ≤≤=  where 

.1 Ih =  Approximate the solution u of (1)-(3) by the solution        

( ) =n
hU ( ( ) ( ) ( ) )Tn

I
nn UUU ,,, 10 …  of the following discrete equations: 

( ) ( ) ( ( ) ) ,11,2 −≤≤λ=δ−δ IiUfUU nn
i

n
it k   (4) 

( ) ( ) ,0,00 == n
I

n UU   (5) 

( ) ,11,00 −≤≤≥ϕ= IiU ii   (6) 



BLOW-UP OF POSITIVE SOLUTIONS FOR A … 57

where k  is the integer part of the number ,2I  

( )
( ) ( ) ( )
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2
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U

n
i

n
i

n
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i  

( )
( ) ( )

,11,
1

−≤≤
∆
−

=δ
+

Iit
UU

U
n

n
i

n
in

it  

,10,0,0,,0,00 −≤≤>ϕδ≤≤ϕ=ϕ=ϕ=ϕ +
− kiIi iiIiI  

.1
h

ii
i

ϕ−ϕ
=ϕδ ++  

In order to permit the discrete solution to reproduce the properties of the 
continuous one when the time t approaches the blow-up time T, we need 
to adapt the size of the time step so that we take 

{
( ( ) )

},,3min
2

∞

=∆ n
h

n
Uf

ht τ  

with ( ).1,0∈τ  

Let us notice that the restriction on the time step ensures the 
nonnegativity of the discrete solution. 

To facilitate our discussion, we need to define the notion of numerical 
blow-up. 

Definition 2.1. We say that the solution ( )n
hU  of the explicit scheme 

blows up in a finite time if ( ) ,lim ∞=∞∞→
n

hn U  and the series nn t∆∑∞
=0  

converges. The quantity nn t∆∑∞
=0  is called the numerical blow-up time 

of the discrete solution. 

Our paper is organized in the following manner. In the next section, 
we prove some results about the discrete maximum principle for localized 
parabolic problems. In the fourth section, we prove that the solution of 
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the discrete problem blows up in a finite time and estimate its numerical 
blow-up time. In the fifth section, we give a result about the convergence 
of numerical blow-up times in some cases where the blow-up occurs. 
Finally, in the last section, we give some numerical results to illustrate 
our analysis. 

3. Properties of the Discrete Solution 

In this section, we give some lemmas about the discrete maximum 
principle for localized parabolic problems and reveal certain properties 
concerning the discrete solution. 

The following lemma is a discrete form of the maximum principle for 
localized parabolic problems. 

Lemma 3.1. Let ( )na  and ( )n
hV  be two sequences such that ( )na  is 

nonnegative and 

( ) ( ) ( ) ( ) ,0,11,02 ≥−≤≤≥−δ−δ nIiVaVV nnn
i

n
it k  (7) 

( ) ( ) ,0,0,00 ≥≥≥ nVV n
I

n  (8) 

( ) .0,00 IiVi ≤≤≥  (9) 

Then ( ) ,0,0,0 >≤≤≥ nIiV n
i  when .2

2htn ≤∆  

Proof. A straightforward computation shows that 

( ) ( ) ( ) ( ) ( ) ( ) ( ) .11,21 12212
1 −≤≤∆+

∆
+

∆
−+

∆
≥ +−

+ IiVatV
h
tV

h
tV

h
tV nn

n
n

i
nn

i
nn

i
nn

i k  

The choice of nt∆  implies that .021 2 ≥
∆

−
h
tn  If ( ) ,0≥n

hV  then using an 

argument of recursion, we easily see that ( ) .01 ≥+n
hV  This ends the 

proof.   
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An immediate consequence of the above result is the following 
comparison lemma. Its proof is straightforward. 

Lemma 3.2. Let ( ) ( ),, n
h

n
h WV  and ( )na  be three sequences such that 

( )na  is nonnegative and 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ),22 nnn
i

n
it

nnn
i

n
it WaWWVaVV kk −δ−δ≤−δ−δ  

,0,11 ≥−≤≤ nIi  

( ) ( ) ( ) ( ),,00
n

I
n

I
nn WVWV ≤≤  

( ) ( ) .0,00 IiWV ii ≤≤≤  

Then ( ) ( ) 0,0, >≤≤≤ nIiWV n
i

n
i  when .2

2htn ≤∆  

The lemma below reveals some properties of the discrete solution. 

Lemma 3.3. The discrete solution ( )n
hU  of (4)-(6) obeys the following 

relations: 

( ) ( ) ( ) .10,0,0, −≤≤≥δ≤≤= +
− kiUIiUU n

i
n

iI
n

i  (10) 

Proof. Introduce the vector ( )n
hV  defined as follows: 

( ) ( ) ( ) .0,0, ≥≤≤−= − nIiUUV n
iI

n
i

n
i  

A routine calculation reveals that 

( ) ( ) ( ) ( ) ( ) ,0,11,21 12212
1 ≥−≤≤

∆
+

∆
−+

∆
= +−

+ nIiV
h
tV

h
tV

h
tV n

i
nn

i
nn

i
nn

i  

( ) ( ) ,0,0,00 ≥== nVV n
I

n  

( ) .0,00 IiVi ≤≤=  
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Using an argument of recursion, we easily note that ( ) ,0,0 ≥= nV n
h  and 

the first part of the lemma is proved. In order to prove the second one, we 
proceed as follows. Set 

( ) ( ) ( ) .10,1 −≤≤−= + kiUUW n
i

n
i

n
i  

We remark that 

( ) ( ) .010 ≥= nn UW  (11) 

On the other hand, it is easy to check that ( ) ( )nn UU kk =+1  if I is odd, and 

( ) ( )nn UU 11 −+ = kk  if I is even. This implies that 

( )

( ) ( )

( ) ( )
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Obviously 

( ) ( ) .0,20,2 ≥−≤≤δ=δ niWW n
i

n
it k  (12) 

Making use of the above relations, we arrive at 

( ) ,0,00 ≥≥ nW n  

( ) ( ) ( ) ( ) ( ) ,0,21,21 12212
1 ≥−≤≤

∆
+

∆
−+

∆
= +−

+ niW
h
tW

h
tW

h
tW n

i
nn

i
nn

i
nn

i k  

( ) ( ) ( ) ( ) ,evenisif0,31 1222
1

1 InW
h
tW

h
tW nnnnn ≥

∆
−+

∆
= −−

+
− kkk  

( ) ( ) ( ) ( ) ,oddisif0,21 1222
1

1 InW
h
tW

h
tW nnnnn ≥

∆
−+

∆
= −−

+
− kkk  

( ) .11,00 −≤≤≥ kiWi  
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We deduce by induction that 

( ) .0,11,0 ≥−≤≤≥ niW n
i k  

This completes the proof.   

The above lemma says that, if the initial data of the discrete solution 
is symmetric in space, then the discrete solution also obeys this property. 
In addition, if the initial data is nondecreasing in space, then the discrete 
solution also verifies this assertion. These properties imply that the 
discrete solution attains its maximum at the node .kx  

The following lemma is a discrete version of Green’s formula. 

Lemma 3.4. Let hU  and 1+∈ I
hV R  such that ,0,0,0 00 === VUU I  

.0=IV  Then, we have 

.2
1

1

2
1

1
ii

I

i
ii

I

i
UVVU δ=δ ∑∑

−

=

−

=

 

Proof. A straightforward computation reveals that 

,2
11

2
10012

1

1

2
1

1 h
VUVU

h
VUVUUVVU IIII

ii

I

i
ii

I

i

−−
−

=

−

=

−
+

−
+δ=δ ∑∑  

and the result follows using the assumptions of the lemma.   

4. The Blow-up Solutions 

In this section, under some assumptions, we show that the solution of 
the discrete problem blows up in a finite time and estimate its numerical 
blow-up time. We need the following lemmas: 

Lemma 4.1. Let a and b be two positive numbers. Then, we have 

( ) ( ) ( ) .111

0
σ
σ+≤

+ ∫∑
∞∞

=
f
d

bafbnaf an
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Proof. We observe that 

( ) ( ) ( )( ) ,1
1

0

1

00 ++
≥

+
=

+ ∫∑∫∑∫
+∞

=

+∞

=

∞

nbaf
dx

bxaf
dx

bxaf
dx n

nn

n

nn
 

because ( )sf  is nondecreasing for .0≥s  We deduce that 

( ) ( )( ) ( ) ( ) .11
1

1

000 bnafafnbafbxaf
dx

nn
+

+−=
++

≥
+ ∑∑∫

∞

=

∞

=

∞
 

On the other hand, by a change of variables, we see that ( )bxaf
dx
+∫

∞

0
 

( ) ,1
σ
σ= ∫

∞

f
d

b a
 which implies that 

( ) ( ) ( ) .111

0
σ
σ+≤

+ ∫∑
∞∞

=
f
d

bafbnaf an
 

This ends the proof.   

Lemma 4.2. We have 

( ) ( ) .1sin2tan
1

1
=ππ∑

−

=

hihI

i
 

Proof. We observe that 

( ) ( ( ) ) ,
1
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where .1−=j  Using the fact that ,1=Ih  we deduce that 
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or equivalently, 

( ) ( ).2cotanImsin
22

221

1

h

ee

eehi hjhj

hjhjI

i

π=
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+=π
ππ
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−
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This implies that 

( ) ( ) ,1sin2tan
1

1
=ππ∑

−

=

hihI

i
 

and the proof is complete.   

The statement of our first result on blow-up is the following. 

Theorem 4.1. Suppose that ( ) 00 >f  and ( ) .
0 σ

σ= ∫
∞

f
dA  Let 

( ) .cos22
2h

h
h

π−=ρ  If ,Ahρ>λ  then the solution ( )n
hU  of (4)-(6) blows up 

in a finite time, and its numerical blow-up time t
hT ∆  is estimated as 

follows: 

( ) ( ) ( ) ,
σ
σ

′ρ−λ
+≤ ∫

∞
∆

f
d

ABfT
Bh

t
h τ

ττ  

where ( ) ( ) i
I
i hihB ϕππ= ∑ −
=

sin2tan1
1  and { ( ) }.,3min

2
ττ Bfh=′  

Proof. Introduce the sequence nv  defined as follows: 

( ) ( ) ( ) .0,sin2tan
1

1
≥ππ= ∑

−

=

nUhihv n
i

I

i

n  

A straightforward computation reveals that 

( ) ( ) ( ) .0,sin2tan
1

1
≥δππ=δ ∑

−

=

nUhihv n
it

I

i

n
t  

Making use of (4), we arrive at 

( ) ( ) ( ) ( ) ( ) ( ( ) ) .0,sin2tansin2tan
1

1

2
1

1
≥ππλ+δππ=δ ∑∑

−

=

−

=

nUfhihUhihv n
I

i

n
i

I

i

n
t k  
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We observe that 

( ) ( ).sinsin2 hihi h πρ−=πδ  

Exploiting Lemma 2.4, we derive the following equality: 

( ( ) ) ( ) ( ) .0,sin2tan
1

1
≥ππλ+ρ−=δ ∑

−

=

nhihUfvv
I

i

nn
h

n
t k  (13) 

With the help of Lemma 3.2, we see that 

( ( ) ) .0, ≥λ+ρ−=δ nUfvv nn
h

n
t k  (14) 

Invoking Lemma 2.3, we note that ( ) ( ) .0, ≥≥=∞ nvUU nnn
h k  We infer 

from (14) that 

( ) ( ( ) ) ,0, ≥λ+ρ−≥δ nUfUv nn
h

n
t kk  

which implies that 

( ( ) ) (
( )

( ( ) )
) .0,1 ≥

λ

ρ
−λ≥δ n

Uf
U

Ufv n

n
hnn

t
k

k
k  (15) 

We observe that 

( ) ( ) ( ) ,supsup
0000 tf

t
f
d

f
d

t

t

t ≥≥

∞
≥

σ
σ≥

σ
σ ∫∫  

because ( )sf  is nondecreasing for .0≥s  According to (15), we get 

( ( ) ) ( ) ,0,1 ≥
λ

ρ
−λ≥δ nAUfv hnn

t k  

or equivalently, 

( ) ( ( ) ) .0,1 ≥∆ρ−λ+≥+ nUftAvv n
nh

nn
k  (17) 
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Recalling that ( ) ( ),nn
h UU k=∞  we note that 

( ( ) ) { ( ( ) ) }.,3min
2

τnn
n UfhUft kk =∆  

Due to (17), we get ,0,1 ≥≥+ nvv nn  and by induction, we arrive at 

.0,0 ≥≥ nvvn  

Since ( ) ,0vvU nn ≥≥k  we deduce that 

( ( ) ) { ( ) } .ττ ′=≥∆ ,3min 0
2

vfhUft n
n k  

Exploiting (17), we derive the following estimate: 

( ) ,0,1 ≥′ρ−λ+≥+ nAvv h
nn τ   (18) 

and by induction, we see that 

( ) .0,0 ≥′ρ−λ+≥ nnAvv h
n τ   (19) 

This implies that ( )
∞

n
hU  goes to infinity as n approaches infinity 

because ( ) .nn
h vU ≥∞  Now, let us estimate the numerical blow-up time 

of ( ).n
hU  The restriction on the time step ensures that ≤∆∑∞

= nn t0  

( ( ) )
.0

∞

∞
=∑ n

h
n Uf

τ  Due to (19) and the fact that ( ) ,nn
h vU ≥∞  we get 

( ( ) )
.0

00 τ
τ

′ρ−λ+
≤∆ ∑∑

∞

=

∞

= nAvf
t

hn
n

n
 

Invoking Lemma 3.1, we discover that 

( ) ( ) ( ) .00
0

σ
σ

′ρ−λ
+≤∆ ∫∑

∞∞

=
f
d

Avf
t

vh
n

n
τ

ττ  
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Since ,0vB =  then the above estimate may be rewritten in the following 
manner: 

( ) ( ) ( ) .
0

σ
σ

′ρ−λ
+≤∆ ∫∑

∞∞

=
f
d

ABft
Bh

n
n

τ
ττ  

Use the fact that the quantity on the right hand side of the above 
inequality is finite to complete the rest of the proof.   

If ( ) 00 =f  and ,0>B  then Theorem 3.1 remains valid when A is 

replaced by ( ) .Bf
B  In fact, we observe that ,00 >δ vt  and we claim that 

0>δ n
tv  for .0>n  To prove the claim, we argue by contradiction. 

Assume that there exists 1≥N  such that 0>δ n
tv  for ,0 Nn <≤  but 

.0≤δ N
tv  

This implies that ,0vvN ≥  and 
( ) ( )0

0

vf
v

vf
v

N

N
≤  because ( )sf

s  is 

nonincreasing for .0>s  

Consequently, we get ( ) (
( )

) ,010 0

0
>

λ

ρ
−λ≥δ≥

vf
vvfv hNN

t  which is a 

contradiction and the claim is proved. Since 0>δ n
tv  for ,0>n  we 

deduce that ( ) 0vvU nn ≥≥k  for ,0>n  and 
( )

( ( ) ) ( ( ) ) ( ) .0

0

Bf
B

vf
v

Uf
U

n

n
=≤

k

k  

This implies that 

( ( ) ) ( ( ) ) ,0for1 >
λ
ρ

−λ≥δ nBf
BUfv hnn

t k  

or equivalently, 

( ( ) ) ( ) .0for1 >
λ

ρ
−λ≥δ nAUfv hnn

t k  

Now, reasoning as in the proof of Theorem 3.1, we arrive at the desired 
result. 
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Remark 4.1. Using (18), we deduce by induction that 

( ) ( ) ., qnqnAvv h
qn ≥′−ρ−λ+≥ τ   (20) 

Thanks to (20), the restriction on the time step leads us to 

( ( ) ( ) )
.

τ
τ

′−ρ−λ+
≤∆=− ∑∑

∞

=

∞

=

∆

qnAvf
ttT

h
q

qn
n

qn
q

t
h  

It follows from Lemma 3.1 that 

( ) ( ) ( ) .
σ
σ

′ρ−λ
+≤− ∫

∞
∆

f
d

Avf
tT

qvhqq
t

h τ
ττ  

If we pick ,2h=τ  then we note that { ( ) },1,3min Bf=
′
τ
τ  which implies 

( ).1O=
′τ
τ  

In the sequel, we choose .2h=τ  

The following theorem renders an upper bound of the numerical 
blow-up time when blow-up occurs. 

Theorem 4.2. Assume that the discrete solution ( )n
hU  of (4)-(6) blows 

up in a finite time. Then its numerical blow-up time t
hT ∆  is estimated as 

follows 

( ( ) ) ( ) ( ) ,1
13 1

2

σ
σ

λ
+

λ++ϕ
+≥ ∫

∞

λ++ϕ∞

∆

∞
f
d

Nf
NhT

Nh
t

h
h ττ

τ  

where N is the first integer such that 

( ) .3
2h

Nf h
≤

λ+ϕ ∞ τ
τ  

Proof. We observe that 

( )
( ) ( ) ( )

,0,0
2

2
112 ≥≤

+−
=δ −+ n

h
UUU

U
nnn

n kkk
k  
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and making use of (4), we deduce that 

( ) ( )
( ( ) ) .0,

1
≥λ≤

∆
−+

nUft
UU n

n

nn

k
kk  

The above inequality may be rewritten as follows: 

( ) ( ) ( ( ) ) .0,1 ≥∆λ+≤+ nUftUU n
n

nn
kkk  

Since {
( ( ) )

},,3min
2

∞

=∆ n
h

n
Uf

ht τ  we deduce that 

( ) ( ) ,0,1 ≥λ+≤+ nUU nn τkk  

and by induction, we arrive at 

( ) ( ) .0,0 ≥λ+ϕ=λ+≤ ∞ nnnUU h
n ττkk  

Now, let us estimate the numerical blow-up time. We have 

{ ( ) },,3min
2

00
τ

τ
λ+ϕ

≥∆
∞

∞

=

∞

=
∑∑ nf

ht
hn

n
n

 

which implies that 

( ) .3
1

2

0
τ

τ
λ+ϕ

+≥∆
∞

∞

+=

∞

=
∑∑ nf

Nht
hNn

n
n

 

Since 

( ) ( ( ) ) ,1
01

ττ
τ

τ
τ

λ+λ++ϕ
=

γ+ϕ ∞

∞

=∞

∞

+=
∑∑ nNfnf hnhNn

 

then employing Lemma 3.1, we arrive at the desired result.   

When ( ),hoh =ϕ ∞  then using Theorems 3.1 and 3.2, we easily 

derive the following estimates: 

.forlim 2
20

A
A

ATA t
hh

π≥λ
π−λ

≤≤
λ

∆
→
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Apply Taylor’s expansion to obtain 

( ) ,as11
1

1 2

2 ∞→λ
λ

+
λ

π+=

λ
π−

oA
A

 

which implies that 

( ) .as1lim0 22

22

0
∞→λ

λ
+

λ

π≤
λ

−≤ ∆
→

oAAT t
hh

 

5. Convergence of the Blow-up Time 

In this section, under some conditions, we show that the discrete 
solution blows up in a finite time and its numerical blow-up time 
converges to the real one when the mesh size goes to zero. In order to 
prove this result, we firstly show that the discrete solution approaches 
the continuous one on any interval [ ] [ ]τ−× T,01,0  with ( )T,0∈τ  as 

the parameter h goes to zero. 

The result on the convergence of the discrete solution to the 
theoretical one is stated in the following theorem: 

Theorem 5.1. Suppose that the problem (1)-(3) has a solution 

([ ] [ ])τ−×∈ TCu ,01,02,4  with ( ).,0 T∈τ  Assume that the initial data 

at (6) satisfies 

( ) ( ) .010 →=−ϕ ∞ hasouhh  

Then, the problem (4)-(6) admits a unique solution ( )n
hU  for h sufficiently 

small, ,0 Jn ≤≤  and the following relation holds: 

( ) ( ) ( ( ) ) ,00sup 2
0

→+−ϕ=− ∞∞
≤≤

hashuOtuU hhnh
n

hJn
 

where J is any quantity satisfying the inequality τ−≤∆∑ −
=

Tt j
J
j

1
0  and 

.1
0 j

n
jn tt ∆= ∑ −
=
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Proof. For each h, the problem (4)-(6) has a solution ( ).n
hU  Let 

JN ≤  be the greatest value of n such that 

( ) ( ) .for1 NntuU nh
n

h <<− ∞  (21) 

Since ,2,4Cu ∈  then there exists a positive constant R such that 

[ ]
( ) .,sup

,0
Rtu

Tt
≤⋅ ∞

−∈ τ
 

An application of the triangle inequality gives 

( ) ( ) ( ) ( ) .for1 NnRtuUtuU nh
n

hnh
n

h <+≤−+≤ ∞∞∞  (22) 

Use Taylor’s expansion to obtain 

( ) ( ) ( ( )) ( ) ( ),~,2,~
12,,,

2
2

nitt
n

nixxxxnninit txuttxuhtxuftxutxu ∆
+−=λ−δ−δ k  

.,11 NnIi <−≤≤  

Let ( ) ( ) ( )nh
n

h
n

h tuUe −=  be the error of discretization. From the mean 

value theorem, we get 

( ) ( ) ( ( ) ) ( ) ( ) ( ),~,2,~
12

2
2

nitt
n

nixxxx
nnn

i
n

it txuttxuhefee ∆
−=ξ′λ−δ−δ kk  

,,11 NnIi <−≤≤  

where ( )n
kξ  is an intermediate value between ( )ntxu ,k  and ( ).nUk  Since 

( ) ( )txutxu ttxxxx ,,,  are bounded and ( ),2hOtn =∆  then there exists a 

positive constant M such that 

( ) ( ) ( ( ) ) ( ) .,11,22 NnIiMhefee nnn
i

n
it <−≤≤≤ξ′λ−δ−δ kk  (23) 

Set ( )1+′λ= RfL  and introduce the vector ( )n
hV  defined as follows 

( ) ( ) ( ( ) ) .,0,0 21 NnIiMhueV hh
tLn

i
n <≤≤+−ϕ= ∞

+  
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A straightforward computation gives 

( ) ( ) ( ( ) ) ( ) ,,11,22 NnIiMhVfVV nnn
i

n
it <−≤≤+ξ′λ>δ−δ kk  (24) 

( ) ( ) ( ) ( ) ,,,00 NneVeV n
I

n
I

nn <>>  (25) 

( ) ( ) .0,00 IieV ii ≤≤>  (26) 

It follows from Lemma 2.2 that ( ) ( ).n
h

n
h eV ≥  In the same way, we also 

prove that ( ) ( ),n
h

n
h eV −≥  which implies that 

( ) ( ) ( ) ( ( ) ) .,0 21 NnMhuetuU hh
tL

nh
n

h
n <+−ϕ≤− ∞

+
∞  (27) 

Let us show that .JN =  Suppose that .JN <  If we replace n by N in 
(27) and use (21), we find that 

( ) ( ) ( ) ( ( ) ).01 21 MhuetuU hh
TL

Nh
N

h +−ϕ≤−≤ ∞
+

∞  

Since the term on the right hand side of the second inequality goes to 
zero as h goes to zero, we deduce that ,01 ≤  which is a contradiction and 
the proof is complete.   

Now, we are in a position to prove the main result of this section. 

Theorem 5.2. Suppose that the problem (1)-(3) has a solution u which 

blows up globally in a finite time T such that [( ] ][ ).,01,02,4 TCu ×∈  

Assume that the initial data at (6) satisfies 

( ) ( ) .010 →=−ϕ ∞ hasouhh  

Under the assumption of Theorem 3.1, the problem (4)-(6) admits a unique 

solution ( )n
hU  which blows up in a finite time ,t

hT ∆  and the following 

relation holds: 

.lim
0

TT t
hh

=∆
→
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Proof. We know from Remark 3.1 that 
τ
τ
′
 is bounded. Letting 

,20 T<ε<  there exists a positive constant R such that 

( ) ( ) ( ) .2
ε<

σ
σ

′ρ−λ
+ ∫

∞

f
d

ARf Rh τ
ττ  (28) 

Since u blows up globally at the time T, then we observe that huI
i∑ −
=

1
1  

( ) ii tx ϕ,  also blows up at the time T. This implies that there exist     

∈0T ( )TT ,2
ε−  and ( ) 00 >εh  such that ( ) Rtxhu ii

I
i 2,1

1 ≥ϕ∑ −
=

 for 

[ ) ( ).,, 00 ε≤∈ hhTTt  Let q be a positive integer such that ∑ −
=

= 1
0

q
nqt  

[ )TTtn ,0∈∆  for ( ).0 ε≤ hh  Invoking Theorem 4.1, we see that the problem 

(4)-(6) has a unique solution ( )n
hU  which obeys ( ) ( ) RtuU nh

n
h <− ∞  for 

( )., 0 ε≤≤ hhqn  This implies that 

( ) ( ) ( ) ( ).,2, 0

1

1
ε≤=−≥−−ϕ≥ ∞

−

=
∑ hhRRRtuUtxhuv qh

q
hiqi

I

i

q  

An application of Theorem 3.1 shows that ( )n
hU  blows up at the time .t

hT ∆  

It follows from Remark 3.1 and (28) that 

( ) ( ) ( ) ,2
ε≤

σ
σ

′ρ−λ
+≤− ∫

∞
∆

f
d

Avf
tT

qvhqq
t

h τ
ττ  

because Rvq ≥  for ( ).0 ε≤ hh  We deduce that for ( ),0 ε≤ hh  

,22 ε=ε+ε≤−+−≤− ∆∆ t
hqq

t
h TttTTT  

and the proof is complete.   
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6. Numerical Experiments 

In this section, we give some computational experiments to illustrate 
our analysis. Firstly, we take the explicit scheme defined in (4)-(6). 

( ) ( ) ( ) ( ) ( )
( ( ) ) ,11,

2
2

11
1

−≤≤λ+
+−

=
∆
− −+

+

IiUf
h

UUU
t

UU n
n

i
n

i
n

i
n

n
i

n
i

k  (29) 

( ) ( ) ,0,00 == n
I

n UU  (30) 

( ) ,11,00 −≤≤≥ϕ= IiU ii  (31) 

where k  is the integer part of the number ,0,2 ≥nI we take 

{
( ( ) )

},,3min
2

∞

=∆ n
h

n
Uf

ht τ  

with ( ).1,0∈τ  

Secondly, we use the implicit scheme below 

( ) ( ) ( ) ( ) ( )
( ( ) ) ,11,

2
2

1
1

11
1

1
−≤≤λ+

+−
=

∆
− +

−
++

+
+

IiUf
h

UUU
t

UU n
n

i
n

i
n

i
n

n
i

n
i

k  

( ) ( ) ,0,0 11
0 == ++ n

I
n UU  

( ) ,0,0 IiU ii ≤≤ϕ=  

where .0≥n  As in the case of the explicit scheme, here, we pick 

( ( ) )
,

∞

=∆ n
h

n
Uf

t τ  

for the explicit scheme, the problem described in (4)-(6) my be written as 
follows: 
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( ) ( ) ( ) ( ( ) ),121 n
n

n
in

n
i

n
i UftUtUU k∆λ+δ∆+= ++  

( ) ( )
( ) ( ) ( )

( ( ) ),
2

2
111 n

n

n
i

n
i

n
i

n
n

i
n

i Uft
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UUU
tUU k∆λ+

+−
∆+= −++  

( ) ( ) ( ) ( ) ( )( ) ( ( ) ),21 1122
1 n

n
n

i
n

i
nn

i
nn

i UftUU
h
tU

h
tU k∆λ++

∆
+

∆
−= −+

+  

( ) ( ( ) ) ( ) ( ) ( ( ) ) ( ( ) ).21 12212
1 n

n
n

i
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i
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i
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i UftU
h
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h
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+

∆
−+

∆
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For ( ) ( ( ) ) ( ) ( ) ( ( ) ) ( ( ) ).21,1 021222
1

1
n

n
nnnnnnn UftU

h
tU

h
tU

h
tUi k∆λ+

∆
+

∆
−+

∆
== +  

For ( ) ( ) ( ) ( ( ) ) ( ( ) ),21,1 2212
1

1
n

n
nnnnn UftU

h
tU

h
tUi k∆λ+

∆
+

∆
−== +  

lead us to the linear system below 

( ) ( ) ( ),n
h

n
h

n
h FUA =  

where ( )n
hA  is an II ×  tridiagonal matrix defined as follows: 

( ) .
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Let us notice that for the above implicit scheme, existence and 
nonnegativity of the discrete solution are also guaranteed using standard 
methods (see [2]). In the following tables, in rows, we present the 
numerical blow-up times, the numbers of iterations, CPU times, and the 
orders of the approximations corresponding to meshes of 16, 32, 64, 128, 
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256. We take for the numerical blow-up time ,1
0 j

n
jn tt ∆= ∑ −
=

 which is 

computed at the first time when .10 16
1

−
+ ≤− nn tt  The order (s) of the 

method is computed from 

(( ) ( ))
( ) .2log

log 224 hhhh TTTTs −−
=  

Numerical experiments for ( ( ) ) ( ( ) )2nn UUf kk λλ =  and ( ) ( )ihxu πsin0, =  

First Case. .50=λ  

Table 1. Numerical blow-up times, numbers of iterations, CPU times 
(seconds), and orders of the approximations obtained with the explicit 
Euler method 

I nt  n CPU time s 

16 0.023213 179 – – 

32 0.021860 638 – – 

64 0.021510 2390 1 1.95 

128 0.021475 9060 1 2.00 

256 0.021434 34380 4 1.99 

Table 2. Numerical blow-up times, numbers of iterations, CPU times 
(seconds), and orders of the approximations obtained with the implicit 
Euler method 

I nt  n CPU time s 

16 0.023178 177 – – 

32 0.021850 630 – – 

64 0.021681 2361 1 2.01 

128 0.021486 8944 1 2.01 

256 0.021437 33916 7 2.00 
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Second Case. .100=λ  

Table 3. Numerical blow-up times, numbers of iterations, CPU times 
(seconds), and orders of the approximations obtained with the explicit 
Euler method 

I nt  n CPU time s 

16 0.013572 97 – – 

32 0.011178 326 – – 

64 0.010552 1199 1 1.94 

128 0.010394 4523 1 1.99 

256 0.010354 17140 2 1.99 

Table 4. Numerical blow-up times, numbers of iterations, CPU times 
(seconds), and orders of the approximations obtained with the implicit 
Euler method 

I nt  n CPU time s 

16 0.014361 96 – – 

32 0.011347 322 – – 

64 0.010593 1185 1 2.01 

128 0.010404 4485 2 2.00 

256 0.010356 16924 3 1.98 
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Numerical experiments for ( ( ) )
( )

( ) 00,, == xueUf
nUn k

k λλ  

First Case. .10=λ  

Table 5. Numerical blow-up times, numbers of iterations, CPU times 
(seconds), and orders of the approximations obtained with the explicit 
Euler method 

I nt  n CPU time s 

16 0.115474 66 – – 

32 0.111975 247 1 – 

64 0.111383 974 2 2.00 

128 0.111411 3886 14 2.00 

256 0.111512 70333 109 1.97 

Table 6. Numerical blow-up times, numbers of iterations, CPU times 
(seconds), and orders of the approximations obtained with the implicit 
Euler method 

I nt  n CPU time s 

16 0.117007 63 – – 

32 0.112997 204 1 – 

64 0.111002 930 2 2.00 

128 0.110378 3285 14 2.00 

256 0.110613 68535 109 1.97 
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Second Case. .50=λ  

Table 7. Numerical blow-up times, numbers of iterations, CPU times 
(seconds), and orders of the approximations obtained with the explicit 
Euler method 

I nt  n CPU time s 

16 0.024352 16 – – 

32 0.021216 49 – – 

64 0.020338 181 1 2.01 

128 0.020101 707 1 1.99 

256 0.020023 1008 10 2.04 

Table 8. Numerical blow-up times, numbers of iterations, CPU times 
(seconds), and orders of the approximations obtained with the implicit 
Euler method 

I nt  n CPU time s 

16 0.021664 15 – – 

32 0.020429 45 – – 

64 0.020120 174 1 2.01 

128 0.020042 689 1 1.99 

256 0.020023 979 10 2.04 

Third Case. .100=λ  

Table 9. Numerical blow-up times, numbers of iterations, CPU times 
(seconds), and orders of the approximations obtained with the explicit 
Euler method 

I nt  n CPU time s 

16 0.013967 10 – – 

32 0.011137 27 – – 

64 0.010311 93 1 2.01 

128 0.010083 356 1 1.99 

256 0.010022 402 10 2.04 
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Table 10. Numerical blow-up times, numbers of iterations, CPU times 
(seconds), and orders of the approximations obtained with the implicit 
Euler method 

I nt  n CPU time s 

16 0.012998 9 – – 

32 0.011689 22 – – 

64 0.010299 86 1 2.01 

128 0.010025 306 1 1.99 

256 0.010012 389 10 2.04 

Remark 6.1. The above tables reveal that, when λ  increases, then 
the numerical blow-up time of the discrete solution goes to that of the 
solution ( )tα  of the following differential equation: 

( ) ( )( ) ,0, >αλ=α′ ttft  

( ) ,0 0 ∞=α u  

as λ  goes to infinity. A similar result has been established theoretically 
by Friedman and Lacey in [13]. 

In the following, we also give some plots to illustrate our analysis. In 
Figures 1 to 10, we can appreciate that the discrete solution blows up 
globally. Let us notice that, theoretically, we know that the continuous 
solution blows up globally under the assumptions given in the 
introduction of the present paper (see [9], [30]). 
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Figure 1. Evolution of the discrete solution, source ( )
( )

,
,2

1 tu
euf λ=  

( ) ,00,,50 ==λ xu  (implicit scheme). 

 

Figure 2. Evolution of the discrete solution, source ( )
( )

,
,2

1 tu
euf λ=  

( ) ,00,,50 ==λ xu  (explicit scheme). 
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Figure 3. Evolution of the discrete solution, source ( )
( )

,
,2

1 tu
euf λ=  

( ) ,00,,100 ==λ xu  (implicit scheme). 

 

Figure 4. Evolution of the discrete solution, source ( )
( )

,
,2

1 tu
euf λ=  

( ) ,00,,100 ==λ xu  (explicit scheme). 
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Figure 5. Evolution of the discrete solution, source ( ) ( ( )) ,,2
1 2tuuf λ=  

( ) ( )xxu π==λ sin0,,50  (implicit scheme). 

 

Figure 6. Evolution of the discrete solution, source ( ) ( ( )) ,,2
1 2tuuf λ=  

( ) ( )xxu π==λ sin0,,50  (explicit scheme). 
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Figure 7. Evolution of the discrete solution, source ( ) ( ( )) ,,2
1 2tuuf λ=  

( ) ( )xxu π==λ sin0,,100  (implicit scheme). 

 

Figure 8. Evolution of the discrete solution, source ( ) ( ( )) ,,2
1 2tuuf λ=  

( ) ( )xxu π==λ sin0,,100  (explicit scheme). 
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Figure 9. Source ( )
( )

( ) .00,,10,
,2

1
==λλ= xueuf

tu
 

 

Figure 10. Source ( )
( )

( ) .00,,25,
,2

1
==λλ= xueuf

tu
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Figure 11. Source ( )
( )

( ) .00,,50,
,2

1
==λλ= xueuf

tu
 

 

Figure 12. Source ( )
( )

( ) .00,,100,
,2

1
==λλ= xueuf

tu
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