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Abstract 

Let I be an ideal of a commutative ring R with an ideal expansion δ  and 

( ) { ( ) ( )IxyIRxIZ δ∈δ∈=δ :\  for some ( )}.\ IRy δ∈  In this paper, we 

introduce and investigate an ideal-based divisor-zero-δ  graph of R, denoted by 

( ) .IδΓ  It is the (undirected) graph with vertices ( ) ,IZδ  and for distinct 

( ) ,, IZyx δ∈  the vertices x and y are adjacent if and only if ( ) .Ixy δ∈  An 

ideal-based zero-divisor graph of a commutative ring, denoted by ( ) ,RIΓ  is the 

undirected graph with vertices { xyIRx :\∈ I∈  for some },\ IRy ∈  and 

distinct vertices x and y are adjacent if and only if .Ixy ∈  This is due to 

Redmond [9]. In the case =δ  the identity function, ( ) ( ) .RI IΓ=Γδ  
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1. Introduction 

In the literature, there are many papers on assigning a graph to a 
ring (see, for example, [1-6, 9]). Among the most interesting graphs are 
the zero-divisor graphs, because these involve both ring theory and graph 
theory. By studying these graphs, we can gain a broader insight into the 
concepts and properties that involve both graphs and rings. The concept 
of the zero-divisor graph of commutative ring R was first introduced by 
Beck [6], where he was mainly interested in colourings. In his work, all 
elements of the ring were vertices of the graph. This investigation of 
colorings of a commutative ring was then continued by Anderson and 
Naseer in [1]. Let ( )RZ  be the set of zero-divisors of R. In [2], Anderson 

and Livingston associated a graph ( )RΓ  to R, with vertices ( ) { },0\RZ  the 

set of nonzero-divisors of R, and for distinct ( ) { },0\, RZyx ∈  the vertices 

x and y are adjacent if and only if .0=xy  

Throughout this work, all rings are assumed to be commutative with 
nonzero identity. Let R be a commutative ring with ( )RId  its set of 

ideals. An ideal expansion is a function δ  which assigns to each ideal I of 
R another ideal ( )Iδ  of R, such that ( ),II δ⊆  and LJ ⊆  implies      

( )Jδ ( )Lδ⊆  for all ideals I, J, and L of R (so ( ) II =δ0  and ( ) II =δ1  for 

every ideal I of R are ideal expansions [8]). Let ( )∗δ RZ  be the set of        

divisor-zero-δ  elements in R that are not elements of { }( ).0δ  We say that 

Rx ∈  is divisor-zero-δ  if { }( )0δ∈xy  for some { }( )0δ∈/y  [7]. In [7], the 

present authors introduced the divisor-zero-δ  graph of a commutative 

ring R, denoted by ( ).IδΓ  It is the graph with vertices all elements of 

( ) ,∗δ RZ  and two distinct vertices ( )∗δ∈ RZyx,  are adjacent if and only 

if { }( ).0δ∈xy  Clearly, if δ  is the identity function, then divisor-zero-δ  

elements are exactly the ordinary zero-divisor elements, then ( ) ( ).RI Γ=Γδ  

In this paper, we will generalize this notion by replacing elements whose 
product lies in { }( )0δ  with elements whose product lies in some ideal ( )Iδ  

of R. Indeed, we define an undirected graph ( )IδΓ  with vertices 
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( ) { ( ) ( )IxyIRxIZ δ∈δ∈=δ :\  for some ( )},\ IRy δ∈  where distinct 

vertices x and y are adjacent if and only if ( ).Ixy δ∈  This definition was 

motivated from [8]. Here is a brief summary of our paper. A number of 
basic results concerning the ideal-based divisor-zero-δ  graph of 

commutative rings are given. For example, we show that ( )IδΓ  is 

connected with ( ( )) .3diam ≤Γδ I  Furthermore, if ( )IδΓ  contains a cycle, 

then ( ( )) .4gr ≤Γδ I  Also, we study ( )IδΓ  for some classes of rings which 

generalize valuation domains to the context of rings with divisors.-zero-δ  

In these cases, we completely characterize the diameter and girth of the 
graph ( )IδΓ  of such rings (see Sections 2, 3, 4). 

In order to make this paper easier to follow, we recall in this section 
various notions which will be used in the sequel. For a graph ,Γ  let ( )TE  

and ( )TV  denote the set of all edges and vertices, respectively. We recall 

that a graph is connected if there exists a path connecting any two 
distinct vertices. At the other extreme, we say that Γ  is totally 
disconnected if no two vertices of Γ  are adjacent. The distance between 
two distinct vertices a and b, denoted by ( ),, bad  is the length of a 

shortest path connecting them ( ( ) 0, =aad  and ( ) ∞=bad ,  if there is no 

such path). The diameter of graph ,Γ  denoted by ( ),diam Γ  is equal to 

( ) ( ){ }.,:,sup TVbabad ∈  A graph is complete if it is connected with 

diameter less than or equal to one. The girth of graph ,Γ  denoted by 
( )Γgr  is the length of a shortest cycle in ,Γ  provided Γ  contains a cycle; 

otherwise, ( ) .gr ∞=Γ  

2. Some Basic Properties of ( )IδΓ  

A commutative ring R with an ideal expansion δ  is called a              
domain-δ  if whenever { }( ) ( ),,0 Rbaab ∈δ∈  then either { }( )0δ∈a  or 

{ }( )0δ∈b  [7]. Given an expansion δ  of a ideals, a proper ideal I of a ring 

R is called primary-δ  if whenever Iab ∈  and ,Ia ∈/  then { }( )0δ∈b  [8]. 
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Remark 2.1. Let R be a commutative ring with identity. Clearly, the 
function ,δ  where ( ) RI =δ  for every ideal I of R, is an expansion of 

ideals. Then ( ) .0/=Γδ I  So throughout this paper, we shall assume unless 

otherwise stated, that ( ) RI =/δ  for every proper ideal I of R. 

Theorem 2.2. Let I be an ideal of a commutative ring R with an ideal 
expansion .δ  Then the following hold: 

(1) If { },0=I  then ( ) ( ).RI Γ=Γδ  

(2) If I is a primary-δ  ideal of R, then ( ) .0/=Γδ I  

(3) ( ) 0/=Γδ I  if and only if ( )Iδ  is a prime ideal of R. 

Proof. (1) It is clear. 

(2) Let I be a primary-δ  ideal of R. Then Ixy ∈  implies 

( )IIx δ⊆∈  or ( ).Iy δ∈  Hence, the vertex set of ( )IδΓ  is empty. 

(3) Let ( )Iδ  be a prime ideal of R. Then ( )Ixy δ∈  implies ( )Ix δ∈  or 

( ).Iy δ∈  Hence, the vertex set of ( )IδΓ  is empty. Conversely, suppose 

that ( ) .0/=Γδ I  Therefore, if ( )IRx δ∈ \  and ( )Ixy δ∈  for some ,Ry ∈  

we must have ( )Iy δ∈  (otherwise, x is a vertex of ( )IδΓ ). Thus ( )Iδ  is a 

prime ideal of R.   

By an argument like that in [9, Theorem 2.4], we have the following 
theorem: 

Theorem 2.3. Let R be a commutative ring R with an ideal expansion 
.δ  Then ( )IδΓ  is connected and ( ( )) .3diam ≤Γδ I  

Proof. Let ( )IZyx δ∈,  be distinct. If ( ),Ixy δ∈  then ( ) .1, =δ yxd  

So we may assume that ( ).Ixy δ∈/  If ( ),, 22 Iyx δ∈  then yxyx −−  is a 

path of length 2 since ( )Iδ  is an ideal; thus ( ) .2, =δ yxd  If ( )Ix δ∈2  

and ( ),2 Iy δ∈/  then there exists ( ) { }yxIZb ,\δ∈  with ( ).Iby δ∈  If ∈bx  

( ),Iδ  then ybx −−  is a path of length 2. If ( ),Ibx δ∈/  then ybxx −−  is 
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a path of length 2. In either case, ( ) .2, =δ yxd  A similar argument holds 

if ( )Iy δ∈2  and ( ).2 Ix δ∈/  Thus, we may assume that 22,, xyxy  ( ).Iδ∈/  

Hence there exist ( ) { }yxIZba ,\, δ∈  with ( )., Ibyax δ∈  If ,ba =  then 

yax −−  is a path of length 2. So we may assume that .ba ≠  If 
( ),Iab δ∈  then ybax −−−  is a path of length 3, and hence 

( ) .3, ≤δ yxd  If ( ),Iab δ∈/  then yabx −−  is a path of length 2; thus 

( ) .2, =δ yxd  Hence ( ) ,3, ≤δ yxd  and thus ( ( )) .3diam ≤Γδ I   

Theorem 2.4. Let R be a commutative ring R with an ideal expansion 
.δ  If ( )IδΓ  contains a cycle, then ( ( )) .4gr ≤Γδ I  

Proof. Suppose not. Assume that ( )IδΓ  contains a cycle −− 10 xx  

0xxn −−"  such that ( ( )) ( ) ( )IxxnI ji δ∈/≥>Γδ ,4so4gr  for all  

{ }nji ,,1,0, "∈  with 2≥− ji  and ( ).1 Ixx ii δ∈+  We split the proof 

into three cases. 

Case 1. 011 xxx n ≠−  and .11 nn xxx ≠−  Then ( )Ixx n δ∈0  and 

( )Ixx n δ∈/−11  since ,22 ≥−n  and we have ( )Ixxx n δ∈−110  since ( )Iδ  

is an ideal of R. Similarly, ( ).11 Ixxx nn δ∈−  So 0110 xxxxx nn −−− −  is a 

cycle of length 3. 

Case 2. .011 xxx n =−  Then ( ).110
2
0 Ixxxx n δ∈= −  We claim that 

there is an element y of R such that ( )Iyx δ∈/0  and .00 xyx ≠  Suppose 

not. Then for every ,Ry ∈  either ( )Iyx δ∈0  or .00 xyx =  Take .3xy =  

Then by assumption, ( )Ixx δ∈/30  and 030 xxx ≠  (if ,030 xxx =  then 

( ),20 Ixx δ∈  a contradiction), which is a contradiction. So, there is a Ry ∈  

such that ( )Iyx δ∈/0  and .00 xyx ≠  If ,10 xyx ≠  then ( );10 Iyxx δ∈  

thus we have 0010 xyxxx −−−  is a cycle. Similarly, if ,10 xyx =  then 

nxyx ≠0  and ( ).000 Iyxxyxxn δ∈=  Thus 000 xyxxx n −−−  is a        

3-cycle in ( ).IδΓ  
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Case 3. .11 nn xxx =−  This necessarily forces ( )Ixn δ∈2  and there 

exists an element y of R such that ( )Iyxn δ∈/  and .nn xyx ≠  If ,nn xyx ≠  

then nnnn xxyxx −−− −1  is a cycle of length 3, and if ,nn xyx =  then 

nnn xyxxx −−− 0  is a 3-cycle in ( ).IδΓ  Thus every case leads to a 

contradiction.   

3. Chained Rings 

In this section, we continue the investigation of ( )IδΓ  when R a 

commutative chained ring with an ideal expansion .δ  We say that a ring 
R is a chained ring if the (principal) ideals of R are linearly ordered (by 
inclusion), equivalently, if either xyyx or  for all ., Ryx ∈  

Definition 3.1. Let I be an ideal of a commutative ring R with an 
ideal expansion .δ  An Rx ∈  is said to be potent-Iδ  if there exists a 

positive integer n such that ( ).Ian δ∈  

One can easily show that if δ  is the identity mapping and { },0=I  

then potent-Iδ  elements are exactly the ordinary nilpotent elements. 

The set of all potent-Iδ  elements of R is denoted by ( ).nil Iδ  Clearly, 

( ) ( ).nil III δ⊆δ⊆  Set ( ) ( ) ( ).\nilnil III δ= δ
∗

δ  

Proposition 3.2. Let I be an ideal of a commutative ring R with an 
ideal expansion .δ  Then the following hold: 

(1) ( )Iδnil  is an ideal of R with ( ) ( ).nil IZI δ
∗

δ ⊆  

(2) If ( )IZδ  is an ideal of R, then ( )IZδ  is prime. 

Proof. (1) Let ( )Iyx δ∈ nil,  and .Rr ∈  Then ( )Iyx mn δ∈,  for 

some positive integers n, m. So, there are integers mnaaa +,,, 10 …  such 

that 

( ) ( ),0 Iyayxaxayx mn
mn

mn
m

mnmn δ∈++++=− +
+

++ ""  
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and hence ( ).nil Iyx δ∈−  Since ( ) ( ),Ixrrx nnn δ∈=  we conclude that 

( ).nil Irx δ∈  Thus ( )Iδnil  is an ideal of R. Finally, let ( ) .nil ∗
δ∈ Ix  Let 

n ( )2≥n  be the least positive integer such that ( ).Ixn δ∈  As 

( ),1 Ixn δ∈/−  ( )Ix δ∈/  and ( ),1 Ixxn δ∈−  we conclude that ( ),IZxn
δ∈  

as required. 

(2) Let Ryx ∈,  such that ( ).IZxy δ∈  Then there exists Rz ∈  such 

that ( )Iz δ∈/  and ( ).Ixyz δ∈  Therefore, if ( ),Iyz δ∈  then ( ).IZy δ∈  If 

( ),Iyz δ∈/  then ( ).IZx δ∈  Thus ( )IZδ  is a prime ideal of R.   

Theorem 3.3. Let I be an ideal of a commutative ring R with an ideal 
expansion .δ  Then the following hold: 

(1) If ( )Ix ∗
δ∈ nil  and ( ),IZy δ∈  then ( ) 1, =δ yxd  in ( ).IδΓ  

(2) Let ( ) ( ),nil\ IIZx δδ∈  and let ( )∗δ∈ Iy nil  such that nzyx  for 

some positive integers n and ( ).\ IZRz δ∈  Then ( ) 2, ≤δ yxd  in ( ).IδΓ  

(3) If ( )Iδnil  is a prime ideal of R, then ( ( )) ( )IIV δδΓ nil\  is totally 

disconnected. 

Proof. (1) We may assume that yx ≠  and ( ).Ixy δ∈/  Since 

( )IZy δ∈  and ( ),Ixy δ∈/  there is a ( ) { }xIZz \δ∈  such that ( ).Izy δ∈  

Let n be the least positive integer such that ( )Izxn δ∈  since 

( ) .nil ∗
δ∈ Ix  If ,1=n  then yzx −−  is a path of length 2 from x to y. If 

,2≥n  then yzxx n −− −1  is a path between x and y. Thus ( ) .2, ≤δ yxd  

(2) We may assume that yx ≠  and ( ).Ixy δ∈/  Since ( ) \IZx δ∈  

( )Iδnil  and ( ),Ixy δ∈/  there is a ( ) { }yxIZw ,\δ∈  such that ( ).Ixw δ∈  

Since nzyx  with ( ),Iz δ∈/  we get ( ).Iwzyn δ∈  If ( ),Iwyn δ∈/  then 

( ),IZz δ∈  a contradiction. So, we conclude that ( ).Iwyn δ∈  Let m be 
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the least positive integer such that ( ).Iwym δ∈  If ,1=m  then 

ywx −−  is a path of length 2 from x to y. If ,2≥m  then ywyx m −− −1  

is a path between x and y. Thus ( ) 2, ≤δ yxd  in ( ).IδΓ  

(3) Assume that ( )Iδnil  is a prime ideal of R, and let x and y be two 

distinct elements of ( ( )) ( ).nil\ IIV δδΓ  Suppose that ( );Ixy δ∈  hence 

either x or y belong to ( ),nil Iδ  which is a contradiction.   

Compare the next result with [3, Lemma 4.2]. 

Proposition 3.4. Let I be an ideal of a commutative chained ring R 

with an ideal expansion ( ) { ( )},:, 2 IxRxIN δ∈∈=δ δ  and ., Ryx ∈  

(1) If ( ),Ixy δ∈  then either ( )INx δ∈  or ( ).INy δ∈  

(2) If ( ),, INyx δ∈  then ( ).Ixy δ∈  

(3) If ( ) ( ),\, INIZyx δδ∈  then ( ).Ixy δ∈/  

(4) If ( ),IZx δ∈  then ( )Ixy δ∈  for some ( ) ,∗δ∈ INy  where 

( ) ( ) ( ).\ IININ δ= δ
∗

δ  

(5) If ( ),,,, 21 Ixxx n δ∈"  then there is a ( )∗δ∈ INy  such that 

( )Iyxi δ∈  for every integer .1, nii <<  

(6) ( )INδ  is an ideal of R. 

(7) ( )INδ  is a prime ideal of R if and only if ( ) ( ).nil IIN δδ =  

Proof. (1) We may assume that .yx  Then axy =  for some ;Ra ∈  

hence ( ).2 Iaxyy δ∈=  Thus ( ).INy δ∈  

(2) We may assume that .yx  Then axy =  for some ;Ra ∈  hence 

( ).2 Iaxxy δ∈=  

(3) Follows from case (1) above. 
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(4) If ( ).INx δ∈  then let .xy =  If ( ) ( ),\ INIZx δδ∈  then there 

exists Ry ∈  with ( )Iy δ∈/  such that ( ).Ixy δ∈  By case (3) above, we 

must have ( ) .∗δ∈ INy  

(5) Since R is a chained ring, there is an integer ,1, njj ≤≤  such 

that ij xx  for all .1, nii ≤≤  By case (4) above, there exists ( )∗δ∈ INy  

such that ( );Iyx j δ∈  hence ( )Iyxi δ∈  for all .1, nii ≤≤  

(6) Let ( )INyx δ∈,  and .Rr ∈  Then ( ) ( );222 Irxxr δ∈=  so      

∈rx ( ).INδ  Now we need only show that ( ).INyx δ∈+  By assumption, 

( ),, 22 Iyx δ∈  and ( )Ixy δ∈  by part (2); so ( ) ( ).2222 Ixyyxyx δ∈++=+  

Thus ( )INδ  is an ideal of R. 

(7) Let ( )INδ  is a prime ideal of R. Since the inclusion 

( ) ( )IIN δδ ⊆ nil  is clear, we will prove the reverse inclusion. Let 

( ).nil Ix δ∈  Then ( )Ixn δ∈  for some positive integer n. Let ( )3≥mm  

be the least positive integer such that ( ),Ixm δ∈  and let .mxy =  Then 

( );22 Ixy m δ∈=  hence ( )INδ  prime gives ( ),INx δ∈  and so we have 

equality. Conversely, assume that ( )INxy δ∈  for some ., Ryx ∈  Then 

by part (1) above, either ( ) ( )IINx δδ =∈ nil2  or ( ) ( );nil2 IINy δδ =∈  

thus either ( )INx δ∈  or ( ),INy δ∈  as needed.   

Theorem 3.5. Let I be an ideal of a commutative chained ring R with 

an ideal expansion δ  and ( ) { ( )}.: 2 IxRxIN δ∈∈=δ  Then ( ( )) ( )INIV δδΓ \  

is totally disconnected. 

Proof. Apply Proposition 3.4.  

Compare the next theorem with [3, Lemma 4.5]. 

Theorem 3.6. Let I be an ideal of a commutative chained ring R with 
an ideal expansion .δ  Then ( ( )) .2diam ≤Γδ I  
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Proof. If ( ) ,1=δ IZ  then ( ( )) .0diam =Γδ I  So we may assume that 

( ) .2≥δ IZ  Let ( )IZyx δ∈,  with .yx ≠  If ( ),, INyx δ∈  then 

( )Ixy δ∈  by Proposition 3.4 (2), and thus ( ) .1, =δ yxd  If ( )INx δ∈  and 

( ),INy δ∈/  then ( )Iyz δ∈  for some ( )∗δ∈ INz  by Proposition 3.4 (4), 

and ( )Ixz δ∈  by Proposition 3.4 (2); hence yzx −−  is a path from x to 

y. Thus ( ) .2, ≤δ yxd  Finally, let ( )., INyx δ∈/  Then ( )Iyzxz δ∈,  by 

Proposition 3.4 (5). Thus ( ) ,2, ≤δ yxd  and hence ( ( )) .2diam ≤Γδ I   

Theorem 3.7. Let I be an ideal of a commutative chained ring R with 
an ideal expansion .δ  If ( ) { },0≠δ IZ  then exactly one of the following 

three cases must occur: 

(1) ( ) .1=δ IZ  In this case, ( ( )) .0diam =Γδ I  

(2) ( ) 2≥δ IZ  and ( ) ( ).IZIN δδ =  In this case, ( ( )) .1diam =Γδ I  

(3) ( ) 2≥δ IZ  and ( ) ( ).IZIN δδ ⊂  In this case, ( ( )) .2diam =Γδ I  

Proof. This follows directly from Proposition 3.4 and Theorem 3.6.   

Theorem 3.8. Let I be an ideal of a commutative chained ring R with 
an ideal expansion .δ  Then exactly one of the following four cases must 
occur: 

(1) ( ) .1=δ IN  In this case, ( ( )) .gr ∞=Γδ I  

(2) ( ) 2=δ IN  and ( ) ( ).IZIN δδ =  In this case, ( ( )) .gr ∞=Γδ I  

(3) ( ) 2=δ IN  and ( ) ( ).IZIN δδ ⊂  In this case, ( ( )) .3gr =Γδ I  

(4) ( ) .3≥δ IN  In this case, ( ( )) .3gr =Γδ I  

Proof. (1) Let ( ) { }.xIN =∗
δ  If ( ) ( ),IZIN δ

∗
δ =  then ( ( )) .gr ∞=Γδ I  

If ( ) ( ),IZIN δ
∗

δ ⊂  then ( )IδΓ  is a star graph with center x by parts (3) 

and (4) of Proposition 3.4. Thus ( ( )) .gr ∞=Γδ I  

(2) By hypothesis, ( ) ;2=δ IZ  hence ( ( )) .gr ∞=Γδ I  
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(3) Let ( ) { }., yxIN =∗
δ  If ,xy −≠  then ( ) ( )Ixyyxyx δ∈++=+ 2222  

(note that by Proposition 3.4 (2), ( );Ixy δ∈  so ( ) ( ).2 Iyx δ∈+  It follows 

that ( ) .∗δ∈+ INyx  Thus, either xyx =+  or ,yyx =+  a contradiction. 

So, we may assume that .xy −≠  If ( ) ( ) ,\ ∗
δδ∈ INIZz  then 

xzyx −−−  is a triangle since by Proposition 3.2 (4), ( );, Iyzxz δ∈  so 

( ( )) .3gr =Γδ I  

(4) If ( ) ,3≥δ IN  then ( ( )) 3gr =Γδ I  by Proposition 3.4 (2).   

4. Domainlike-δ  Rings 

In this section, we investigate the properties of ( ),IδΓ  where R is a 

domainlike-δ  ring with an ideal expansion .δ  We say that a ring R is 

domainlike-δ  rings if ( ) ( ) .nil ∗
δδ = IIZ  

Proposition 4.1. Let I be an ideal of a commutative ring R with an 

ideal expansion .δ  If ( )∗δ∈ Iyx nil,  are distinct with ( ),Ixy δ∈/  then 

there is a path of length 2 from x to y in ( ) ( ).nil IZI δ
∗

δ ⊆  

Proof. Since ( )Ixy δ∈/  and ( ) ,nil ∗
δ∈ Ix  let ( )2≥nn  be the least 

positive integer such that ( ).Iyxn δ∈  Also, since ( )Iyxn δ∈/−1  and 

( ) ,nil ∗
δ∈ Iy  let ( )2≥mm  be the least positive integer such that 

( ).1 Iyx mn δ∈−  Then ( ) .nil11 ∗
δ

−− ∈ Iyx mn  Thus yyxx mn −− −− 11  is a 

path of length 2 from x to y in ( ) .nil ∗
δ I    

Theorem 4.2. Let I be an ideal of a commutative domainlike-δ  ring 

R with an ideal expansion .δ  Then ( ( )) .2diam ≤Γδ I  

Proof. Apply Proposition 4.1.   
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Lemma 4.3. Let I be an ideal of a commutative ring R with an ideal 
expansion .δ  If ( ) 3≥δ IZ  and there exist ( )IZba δ∈,  such that 

( ),,, 22 Ibaab δ∈  then ( ( )) .3gr =Γδ I  

Proof. By assumption, if ( ( )) ,1diam =Γδ I  then there exist ,, 21 xx  

and 3x  in ( )IZδ  such that ( );,, 133221 Ixxxxxx δ∈  hence 321 xxx −−  

1x−  is a cycle of length 3. So, we may assume that ( ( )) .1diam >Γδ I  

Then there exists some ( ) { }baIZc ,\δ∈  such that (without loss of 

generality) ( )Iac δ∈  and ( ).Ibc δ∈/  Since ( )Iδ  is an ideal of R, we have 

( ),baa +  ( ) ( ).Ibab δ∈+  Now show that ( ) ( ).Iba δ∈/+  Suppose not. 

Since ( )bac +  ( ),Iδ∈  we have ( ) ( ),Iacbacacacbcbc δ∈−+=−+=  

and this is a contradiction. So ( ).IZba δ∈+  Thus ababa −+−−  is a 

cycle of length 3, as required.   

Lemma 4.4. Let I be an ideal of a commutative ring R with an ideal 

expansion ,δ  and let ( )IZba δ∈,  such that ( )Ibaab δ∈33,,  and 

( )., 22 Iba δ∈/  Then ( ( )) .3gr =Γδ I  

Proof. By hypothesis, ( ),2 Iab δ∈  and ab ≠2  (otherwise, ( ),24 Iab δ∈=  

a contradiction). Similarly, bb ≠2  and .02 ≠b  Thus bbab −−− 2  is a 
3-cycle in ( ),IδΓ  and hence ( ( )) .3gr =Γδ I    

Lemma 4.5. Let I be an ideal of a commutative ring R with an ideal 

expansion ,δ  and let ( )IZa δ∈  such that ( )Ian δ∈  and ( )Ian δ∈/−1  for 

some .4≥n  Then ( ( )) .3gr =Γδ I  

Proof. Let ( )IZa δ∈  such that ( )Ian δ∈  and ( )Ian δ∈/−1  for some 

.5≥n  If ,n>k  then ( ).Ia δ∈k  Then 3123 −−−− −−− nnnn aaaa  is a    

3-cycle in ( ),IδΓ  and hence ( ( )) .3gr =Γδ I  If there exists ( )IZa δ∈      

with ( )Ia δ∈4  and ( ),3 Ia δ∈/  then consider the element .32 aa +  If 

,332 aaa =+  then ( ),3 Ia δ∈  a contradiction. Thus .332 aaa ≠+  
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Similarly, .232 aaa ≠+  Clearly, 032 ≠+ aa  and .02 ≠a  If 

( ),32 Iaa δ∈+  then ( );43 Iaa δ∈+  hence ( ),3 Ia δ∈  a contradiction. 

So, ( ).32 Iaa δ∈/+  Thus, we get the cycle ( ) 23232 aaaaa −+−−  with 

length 3. Thus ( ( )) .3gr =Γδ I    

Theorem 4.6. Let I be an ideal of a commutative domainlike-δ  ring 

R with an ideal expansion .δ  If ( )IδΓ  contains a cycle, then 

( ( )) .3gr =Γδ I  

Proof. Since ( )IδΓ  contains a cycle, ( ) 3≥δ IZ  and ( ( )) .0diam ≠Γδ I  

So by Theorem 4.2, either ( ( )) 1diam =Γδ I  or ( ( )) .2diam =Γδ I  If 

( ( )) ,1diam =Γδ I  then there exist ,, 21 xx  and 3x  in ( )IZδ  such that 

( );,, 133221 Ixxxxxx δ∈  hence 1321 xxxx −−−  is a cycle with length 3, 

and so ( ( )) .3gr =Γδ I  

For reminder of the proof, we will assume that ( ( )) .2diam =Γδ I  As 

( )IδΓ  contains a cycle and ( ( )) ,2diam =Γδ I  we may assume that 

( ) ,4≥δ IZ  let ( ).IZa δ∈  Since ( ) ( ) ,nil ∗
δδ = IIZ  there exists a positive 

integer ( )2≥nn  such that ( ),Ian δ∈  but ( ).1 Ian δ∈/−  If ,4≥n  then 

( ( )) 3gr =Γδ I  by Lemma 4.5. Now suppose that ( )Ia δ∈3  for all 

( ).IZa δ∈  Since ( ( )) ,2diam =Γδ I  there exist a, b, and c in ( )IZδ  such 

that ( ) 2, =δ bad  and ( )., Ibcac δ∈  We split the proof into three cases. 

Case 1. ( )Ia δ∈2  and ( ).2 Ib δ∈/  If ( ),, 22 Ica δ∈  then by Lemma 4.3, 

( ( )) .3gr =Γδ I  So, we may assume that ( ).2 Ic δ∈/  Since ( ),2 Ib δ∈/  

( ),, 33 Icb δ∈  Lemma 4.4 gives ( ( )) .3gr =Γδ I  

Case 2. ( )., 22 Iba δ∈  If ( ),2 Ic δ∈  then again Lemma 4.3 gives 

( ( )) .3gr =Γδ I  So, we may assume that ( ).2 Ic δ∈/  Since ( ),2 Ic δ∈/  we 

get ( );Ic δ∈/  hence ( )IZc δ∈2  (note that ( )Ic δ∈3 ). Clearly, either 
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( ) { }aIZc \2
δ∈  or ( ) { }bIZc \2

δ∈  (otherwise, ,2 bac ==  a contradiction). 

If ( ) { },\2 aIZc δ∈  then cacc −−− 2  is a cycle of length 3. If 

( ) { },\2 bIZc δ∈  then cbcc −−− 2  is a cycle of length 3. Hence in this 

case, ( ( )) .3gr =Γδ I  

Case 3. ( )., 22 Iba δ∈/  If ( ),2 Ic δ∈/  then ( ( )) 3gr =Γδ I  by Lemma 4.4. 

So, we may assume that ( ).2 Ic δ∈  If there exists an ( )IZx δ∈  such that 

( ),, 2 Ixxc δ∈≠  and cax −−  or ,cbx −−  then by an identical 

argument as in Case 2, we have ( ( )) .3gr =Γδ I  Since ( ) ( )IIZ δδ = nil  is 

an ideal of R by Proposition 3.2, we have ( ).IZcc δ∈+  Since ( ),2 Ic δ∈  

we have ( ) ( ).2 Icc δ∈+  Clearly if ,0≠+ cc  let ,ccc ≠+  we get 

( ( )) .3gr =Γδ I  Now suppose .0=+ cc  If either 2a  or 2b  is not equal to 

c, let 2ax =  or ,2bx =  and again we get ( ( )) .3gr =Γδ I  So, we may 

assume that .22 cba ==  By hypothesis, ( ) ( ( )) ,2diam,4 =Γ≥ δδ IIZ  

and ( )Ix δ∈3  for all ( ).IZx δ∈  So there exists ( )IZd δ∈  such that 

either ( ) ( ),, IdbIda δ∈δ∈  or ( )Idc δ∈  (otherwise, ( )IδΓ  is not 

connected, and this is a contradiction). If ( ),Iad δ∈  if ( )Idc δ∈  and 

( )Id δ∈2  or if ( )Idc δ∈  and ,2 cd ≠  we can appeal to previous cases to 

obtain ( ( )) .3gr =Γδ I  Now suppose ( )Idc δ∈  and .2 cd =  If ,aab =  

then ( ),222 Ibaa δ∈=  which is a contradiction. Similarly, .bab ≠  

Clearly ( ).Iab δ∈/  Thus, ,cab =  for otherwise we would let abx =  

above and have ( ( )) .3gr =Γδ I  Similarly, .cbdab ==  Therefore, 

( ) .0=− dba  If ,cdb ≠−  we again have ( ( )) .3gr =Γδ I  So suppose that 

.cdb +=  Similarly, ( ) .0=− adb  Again, if ,cad ≠−  we will have 

( ( )) .3gr =Γδ I  Now if ,cad +=  we have ,accacdb =++=+=  

which is a contradiction. Thus, every case leads to ( ( )) .3gr =Γδ I    
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