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Abstract

Let I be an ideal of a commutative ring R with an ideal expansion § and
Zs(I)={x e R\3(I): xy € 8(I) for some y € R\ §(I)}. In this paper, we
introduce and investigate an ideal-based 3&-zero-divisor graph of R, denoted by
Is(I). It is the (undirected) graph with vertices Zg(I), and for distinct
x, y € Zs(I), the vertices x and y are adjacent if and only if xy € 8(I). An
ideal-based zero-divisor graph of a commutative ring, denoted by I'j(R), is the
undirected graph with vertices {x e R\ I : xy € I for some y € R\ I}, and
distinct vertices x and y are adjacent if and only if xy € I. This is due to

Redmond [9]. In the case § = the identity function, T'5(I) = T7(R).
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1. Introduction

In the literature, there are many papers on assigning a graph to a
ring (see, for example, [1-6, 9]). Among the most interesting graphs are
the zero-divisor graphs, because these involve both ring theory and graph
theory. By studying these graphs, we can gain a broader insight into the
concepts and properties that involve both graphs and rings. The concept
of the zero-divisor graph of commutative ring R was first introduced by
Beck [6], where he was mainly interested in colourings. In his work, all
elements of the ring were vertices of the graph. This investigation of
colorings of a commutative ring was then continued by Anderson and
Naseer in [1]. Let Z(R) be the set of zero-divisors of R. In [2], Anderson

and Livingston associated a graph I'(R) to R, with vertices Z(R)\{0}, the
set of nonzero-divisors of R, and for distinct x, y € Z(R)\{0}, the vertices

x and y are adjacent if and only if xy = 0.

Throughout this work, all rings are assumed to be commutative with

nonzero identity. Let R be a commutative ring with Id(R) its set of

ideals. An ideal expansion is a function & which assigns to each ideal I of
R another ideal §(I) of R, such that I < §(I), and J < L implies

8(J) < 8(L) for all ideals I, J, and L of R (so 8¢(I) = I and 3;(I) = I for

every ideal I of R are ideal expansions [8]). Let Zg(R)* be the set of
8-zero-divisor elements in R that are not elements of 3({0}). We say that
x € R is §-zero-divisor if xy e 8({0}) for some y ¢ §({0}) [7]. In [7], the
present authors introduced the &-zero-divisor graph of a commutative

ring R, denoted by Ts(I). It is the graph with vertices all elements of

Zs(R)", and two distinct vertices x, y € Zs(R)" are adjacent if and only
if xy € 8({0}). Clearly, if & is the identity function, then §-zero-divisor
elements are exactly the ordinary zero-divisor elements, then T'5(I) = T(R).

In this paper, we will generalize this notion by replacing elements whose

product lies in §({0}) with elements whose product lies in some ideal &(1)

of R. Indeed, we define an undirected graph TI5(I) with vertices
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Zs(I)={x € R\8(I) : xy € 8(I) for some y e R\3(I)}, where distinct
vertices x and y are adjacent if and only if xy € §(I). This definition was

motivated from [8]. Here is a brief summary of our paper. A number of

basic results concerning the ideal-based &-zero-divisor graph of
commutative rings are given. For example, we show that [s(I) is
connected with diam(Ts(7)) < 3. Furthermore, if ['5(I) contains a cycle,
then gr(Ts(7)) < 4. Also, we study T5(I) for some classes of rings which
generalize valuation domains to the context of rings with &-zero-divisors.

In these cases, we completely characterize the diameter and girth of the

graph T5(I) of such rings (see Sections 2, 3, 4).

In order to make this paper easier to follow, we recall in this section

various notions which will be used in the sequel. For a graph T, let E(T)
and V(T) denote the set of all edges and vertices, respectively. We recall

that a graph is connected if there exists a path connecting any two
distinct vertices. At the other extreme, we say that ' is totally
disconnected if no two vertices of I' are adjacent. The distance between
two distinct vertices a and b, denoted by d(a, b), is the length of a

shortest path connecting them (d(a, @) = 0 and d(a, b) = « if there is no
such path). The diameter of graph T, denoted by diam(T'), is equal to
sup{d(a, b) : a, b € V(T)}. A graph is complete if it is connected with
diameter less than or equal to one. The girth of graph I', denoted by
gr(I') is the length of a shortest cycle in T, provided I' contains a cycle;

otherwise, gr(T') = .
2. Some Basic Properties of I'g(I)

A commutative ring R with an ideal expansion & 1is called a
8-domain if whenever ab € 3({0}) (a, b € R), then either a € §({0}) or

b € 8({0}) [7]. Given an expansion & of a ideals, a proper ideal I of a ring

R is called §-primary if whenever ab € I and a ¢ I, then b € 3({0}) [8].
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Remark 2.1. Let R be a commutative ring with identity. Clearly, the

function 8, where 8(I) = R for every ideal I of R, is an expansion of
ideals. Then I5(I) = 0. So throughout this paper, we shall assume unless
otherwise stated, that 8(1) # R for every proper ideal I of R.

Theorem 2.2. Let I be an ideal of a commutative ring R with an ideal

expansion 8. Then the following hold:
(1) If I = {0}, then Ty(I) = T(R).
(2) If 1is a &-primary ideal of R, then Ts(I) = 0.
(3) T5(I) = 0 if and only if 8(I) is a prime ideal of R.

Proof. (1) It is clear.

(2) Let I be a &-primary ideal of R. Then xy e I implies
x el <) or yed(I). Hence, the vertex set of I's(I) is empty.

(3) Let 8(I) be a prime ideal of R. Then xy € 8(I) implies x € §(I) or
y € 8(I). Hence, the vertex set of I'5(I) is empty. Conversely, suppose
that T5(I) = 0. Therefore, if x € R\ 8(I) and xy € 8(I) for some y € R,
we must have y € 5(I) (otherwise, x is a vertex of I'5(I)). Thus §(I) is a

prime ideal of R. O

By an argument like that in [9, Theorem 2.4], we have the following

theorem:

Theorem 2.3. Let R be a commutative ring R with an ideal expansion
8. Then Ty(I) is connected and diam(T5(I)) < 3.

Proof. Let x, y € Z5(I) be distinct. If xy € 8(I), then dg(x, y) = 1.
So we may assume that xy ¢ 6(I). If %2, y? e 8(I), then x —xy —y is a
path of length 2 since 3(I) is an ideal; thus ds(x, y) = 2. If x% < 8(I)

and y? ¢ 5(I), then there exists b € Zg(I)\ {x, y} with by € 8(I). If bx <
3(I), then x — b — y is a path of length 2. If bx ¢ 5(I), then x — bx — y is
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a path of length 2. In either case, ds(x, y) = 2. A similar argument holds
if 2 € 8(I) and x2 ¢ 5(I). Thus, we may assume that xy, yZ, x% ¢ 3(I).
Hence there exist a, b € Z5(I) \ {x, y} with ax, by € 3(I). If a = b, then
x—a-y 1s a path of length 2. So we may assume that a = b. If
ab e 8(I), then x-a-b-y is a path of length 3, and hence
ds(x, y) < 3. If ab ¢ 8(I), then x —ab—y is a path of length 2; thus
ds(x, y) = 2. Hence dg(x, y) < 3, and thus diam(T[5(7)) < 3. O

Theorem 2.4. Let R be a commutative ring R with an ideal expansion
8. If Ts(I) contains a cycle, then gr(I's(I)) < 4.

Proof. Suppose not. Assume that I'5(I) contains a cycle xq — x; —
=%, —%9 such that gr(Ts5(I)) >4 (son >4),xx; ¢38(I) for all
i, j€1{0,1,---,n} with [i - j| 22 and x;x;,; € 8(I). We split the proof
into three cases.

Case 1. xx, 1 # x9 and x;x,; # x,. Then xgx, € §(I) and
x1%,_1 ¢ 8(I) since |n — 2| > 2, and we have xgxx, ; € 8(I) since &(I)
is an ideal of R. Similarly, x;x,,_1x, € 8(I). So xq — x1%,_1 — X, — Xo is a

cycle of length 3.

Case 2. x7x,,_; = x9. Then x% = x0%1%,_1 € 8(I). We claim that
there is an element y of R such that xyy ¢ 8(I) and xgy # xy. Suppose
not. Then for every y € R, either xpy € 8(I) or xgy = xy. Take y = x3.
Then by assumption, xgxs ¢ 8(I) and xgx3 = xo (f xgx3 = xp, then
xogX9 € 8(I), a contradiction), which is a contradiction. So, thereisa y € R
such that xgy ¢ 8(I) and xqy # x9. If xqy # x;, then xgx;y € 8(1);
thus we have x5 —x; — x9y — xo 1s a cycle. Similarly, if xyy = x7, then
xoy # x, and x,xq0y = xoyxg € 8(I). Thus x5 —x, —x9y —xg is a
3-cycle in Ty(7).
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Case 3. x1x,, ; = x,. This necessarily forces x> e 8(I) and there
exists an element y of R such that x,y ¢ 3(I) and x,y # x,. If x,y # x,,
then x, —x,y —x,_1 — x, is a cycle of length 3, and if x,y = x,,, then
X, — X9 — X,y — X, is a 3-cycle in [5(I). Thus every case leads to a

contradiction. O
3. Chained Rings

In this section, we continue the investigation of I5(I) when R a

commutative chained ring with an ideal expansion 8. We say that a ring
R is a chained ring if the (principal) ideals of R are linearly ordered (by

inclusion), equivalently, if either x|y or yjx for all x, y € R.

Definition 3.1. Let I be an ideal of a commutative ring R with an

ideal expansion 8. An x € R is said to be &;-potent if there exists a

positive integer n such that a” e §(I).

One can easily show that if § is the identity mapping and I = {0},
then d;-potent elements are exactly the ordinary nilpotent elements.

The set of all §;-potent elements of R is denoted by nils(I). Clearly,
I  §(I) < nils(I). Set nils(I)" = nilg(Z)\ 5(I).

Proposition 3.2. Let I be an ideal of a commutative ring R with an

ideal expansion 8. Then the following hold:
(1) nilg(I) is an ideal of R with nils(I)" < Zs(I).
(2) If Z5(I) is an ideal of R, then Zg(I) is prime.

Proof. (1) Let x, y e nil§(I) and r € R. Then x", y" e &(I) for
some positive integers n, m. So, there are integers ag, a1, ..., @4, such

that

(x = )" = apax™™ 4k @ xy™ Ht ay g,y e 8(1),
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and hence x — y € nilg(7). Since (rx)" = r"x" e 8(I), we conclude that
rx € nilg(I). Thus nilg() is an ideal of R. Finally, let x € nil5()". Let
n (n>2) be the least positive integer such that x" e §(I). As

"¢ §(I), x ¢ 8(I) and xx"! e §(I), we conclude that x" e Zs(I),

as required.

(2) Let x, y € R such that xy € Z5(I). Then there exists z € R such
that z ¢ 8(I) and xyz € §(I). Therefore, if yz € 8(I), then y € Z5(I). If
yz ¢ 8(I), then x € Zs(I). Thus Zz(I) is a prime ideal of R. O

Theorem 3.3. Let I be an ideal of a commutative ring R with an ideal

expansion 8. Then the following hold:
() If x e nil§(I) and y € Zs(I), then dg(x, y) = 1 in T5(I).

(2) Let x € Zs(I)\ nils(I), and let y e nilg(I)" such that x|zy" for
some positive integers n and z € R\ Zs(I). Then ds(x, y) < 2 in T5(I).

(3) If nils(I) is a prime ideal of R, then V(I's(I))\ nil5(I) is totally
disconnected.

Proof. (1) We may assume that x #y and xy ¢ 8(I). Since
y e Zs(I) and xy ¢ 8(I), thereis a z € Z5(I) \ {x} such that zy € §(I).

Let n be the least positive integer such that x"z e §(I) since
x € nilg(I)*. If n =1, then x — z — y is a path of length 2 from x to y. If

n > 2, then x — x" 'z — y is a path between x and y. Thus ds(x, y) < 2.

(2) We may assume that x # y and xy ¢ 8(I). Since x € Z5(I)\
nil5(7) and xy ¢ 8(I), thereis a w e Z5(I) \ {x, ¥} such that xw e §(I).
Since x|zy" with z ¢ 8(I), we get zy"w e 8(I). If y"w ¢ &(I), then

z € Zs(I), a contradiction. So, we conclude that y"w e §(I). Let m be
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the least positive integer such that wy™ e §(I). If m =1, then

x —w — y 1s a path of length 2 from x to y. If m > 2, then x — ym_lw -y
is a path between x and y. Thus dg(x, y) < 2 in T5(1).

(3) Assume that nils(I) is a prime ideal of R, and let x and y be two
distinct elements of V(I'5(I)) \ nils(I). Suppose that xy e 3(I); hence

either x or y belong to nils(I), which is a contradiction. O

Compare the next result with [3, Lemma 4.2].

Proposition 3.4. Let I be an ideal of a commutative chained ring R

with an ideal expansion 8, N5(I) = {x € R : x* € 8(I)}, and x, y € R.

(1) If xy € 8(I), then either x € Ns(I) or y € Ng(I).

(2) If x, y € N5(I), then xy e 8(I).

B)If x, y € Zs(I)\ Ns(I), then xy ¢ d(I).

(4) If x e Zg(I), then xy e d(I) for some ye Ns(I), where
N5(I)" = Ny(D\ 8(1).

() If xq, x9, -, x, € 8(I), then there is a y € Ns(I)* such that
x;y € 8(I) for every integer i,1 < i < n.

(6) Ns(I) is an ideal of R.

(7) Ns(I) is a prime ideal of R if and only if Ns(I) = nilg(I).

Proof. (1) We may assume that x/y. Then y = ax for some a € R;
hence y% = axy e 5(I). Thus y € Ns(I).

(2) We may assume that x|y. Then y = ax for some a € R; hence
xy = ax? e §(I).

(3) Follows from case (1) above.
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(4) If x € N5(I). then let y = x. If x € Z5(I)\ N5(I), then there

exists y € R with y ¢ 8() such that xy € §(I). By case (3) above, we
must have y € N5(I)".

(5) Since R is a chained ring, there is an integer j, 1 < j < n, such

that x;|x; for all i, 1 <i < n. By case (4) above, there exists y € N5(I)’

such that x;y e 8(I); hence x;y € 8(I) forall i,1 < i < n.

(6) Let x,ye Ng(I) and re R Then r’x%=(rx)* e 8(I); so
rx € Ns(I). Now we need only show that x + y € N§(I). By assumption,
x2, y% € §(I), and xy e 5(I) by part (2); so (x + y)2 =x2 + 3% + 2xy € 8(1).
Thus Nj(I) is an ideal of R.

(7) Let Ng(I) is a prime ideal of R. Since the inclusion

N5(I) ¢ nilg(I) is clear, we will prove the reverse inclusion. Let
x € nilg(I). Then x™ € §(I) for some positive integer n. Let m (m > 3)

be the least positive integer such that x™ e §(I), and let y = x™. Then

y% = x¥™ e §(I); hence Ng(I) prime gives x e Ng(I), and so we have

equality. Conversely, assume that xy € N5(I) for some x, y € R. Then
by part (1) above, either x? € Ny(I) = nil5(I) or y* e Ns(I) = nil(1);
thus either x € N5(I) or y € N5(I), as needed. O

Theorem 3.5. Let I be an ideal of a commutative chained ring R with
an ideal expansion & and Ns(I)={x e R: x% € 5(I)}. Then V(Ts(I)\N;(I)

is totally disconnected.
Proof. Apply Proposition 3.4. O
Compare the next theorem with [3, Lemma 4.5].

Theorem 3.6. Let I be an ideal of a commutative chained ring R with

an ideal expansion 8. Then diam(T5(I)) < 2.
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Proof. If |Z5(I)| = 1, then diam(T5(Z)) = 0. So we may assume that
|Zs(I)| 2 2. Let x,yeZs(I) with x =y If x ye Ns(I), then
xy € 8(I) by Proposition 3.4 (2), and thus ds(x, y) = 1. If x € N5(I) and

y ¢ Ns(I), then yz € 8(I) for some z € Ng(I)* by Proposition 3.4 (4),
and xz € §(I) by Proposition 3.4 (2); hence x — z — y is a path from x to
y. Thus dg(x, y) < 2. Finally, let x, y ¢ N5(I). Then xz, yz € 8(I) by
Proposition 3.4 (5). Thus ds(x, y) < 2, and hence diam(T5([)) < 2. O

Theorem 3.7. Let I be an ideal of a commutative chained ring R with
an ideal expansion 8. If Zg(I) # {0}, then exactly one of the following

three cases must occur:
(1) |Z5(I)| = 1. In this case, diam(I5(I)) = 0.
(2) |Z5(I)| = 2 and Ns(I) = Zs(I). In this case, diam(Ts(I)) = 1.
(3) |Zs(I)| = 2 and Ns(I) < Zs(I). In this case, diam(T5(I)) = 2.
Proof. This follows directly from Proposition 3.4 and Theorem 3.6. [

Theorem 3.8. Let I be an ideal of a commutative chained ring R with
an ideal expansion 8. Then exactly one of the following four cases must

occur:
(1) |Ns(I)| = 1. In this case, gr(T5(I)) = o.
(2) |Ns(I) = 2 and Ng(I) = Z5(I). In this case, gr(Is(I)) = .
®3) |Ns(I)| = 2 and Ns(I) < Zg(I). In this case, gr(Ts(I)) = 3.
(4) |Ns(I)| > 3. In this case, gr(Ts5(I)) = 3.
Proof. (1) Let Ns(I)" = {x}. If Ns(I)" = Z5(I), then gr(I's(I)) = .

If N5(I)' < Zs(I), then T5(I) is a star graph with center x by parts (3)
and (4) of Proposition 3.4. Thus gr([5(I)) = o.

(2) By hypothesis, |Z5(I)| = 2; hence gr(I'5(I)) = .
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() Let Ns5(I)* = {x, y}. If y # —x, then (x + y)? =x2 + 9% + 2xy € §(1)
(note that by Proposition 3.4 (2), xy € 8(I); so (x + y)? € 8(I). It follows
that x + y € Ng(I)". Thus, either x + y = x or x + y = ¥, a contradiction.

So, we may assume that y = -x. If ze Zs(I)\ Ns(I)', then
x —y—z-x is a triangle since by Proposition 3.2 (4), xz, yz € 8(I); so

gr(s(1)) = 3.

(4) If [N5(I)| = 3, then gr(Is(I)) = 3 by Proposition 3.4 (2). O
4. 8-Domainlike Rings

In this section, we investigate the properties of I'5(I), where R is a

8-domainlike ring with an ideal expansion 8. We say that a ring R is
8-domainlike rings if Zs(I) = nilg(I)".

Proposition 4.1. Let I be an ideal of a commutative ring R with an
ideal expansion 8. If x,y enilg(I)" are distinct with xy ¢ 3(I), then

there is a path of length 2 from x to y in nilg(I)" < Zs(I).

Proof. Since xy ¢ 8(I) and x € nilg(I)", let n(n > 2) be the least
positive integer such that x"y e §(I). Also, since x" 'y ¢ §(I) and
y € nilg(I), let m (m > 2) be the least positive integer such that
x"1y™ e 5(I). Then x"1y™1 e nilg(I)". Thus x —x" 1™ 1 -y isa
path of length 2 from x to y in nilg()". O

Theorem 4.2. Let I be an ideal of a commutative 3-domainlike ring

R with an ideal expansion . Then diam(T5(I)) < 2.

Proof. Apply Proposition 4.1. O
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Lemma 4.3. Let I be an ideal of a commutative ring R with an ideal
expansion 8. If |Zs(I)| 23 and there exist a,be Zs(I) such that

ab, a?, b2 e §(I), then gr(Ts(I)) = 3.

Proof. By assumption, if diam(T5(7)) =1, then there exist xy, xq,
and x3 in Zg(I) such that x;xg, x9x3, x3x; € 8(I); hence x; — x9 — x3
—x; is a cycle of length 3. So, we may assume that diam(T5(I)) > 1.
Then there exists some ¢ € Z5(I)\ {a, b} such that (without loss of
generality) ac € 5(I) and bc ¢ 3(I). Since (1) is an ideal of R, we have
ala +b), bla+b)e §(). Now show that (a +0b) ¢ 5(I). Suppose not.
Since c(a +b) € 8(I), we have bc = be + ac —ac = c¢(a +b) - ac € §(I),
and this is a contradiction. So a + b € Zg(I). Thus a -b-a+b-a isa

cycle of length 3, as required. O

Lemma 4.4. Let I be an ideal of a commutative ring R with an ideal

expansion 8, and let a,be Zg(I) such that ab, a®, b e 8(I) and

a?, b2 ¢ 8(I). Then gr(Ts(I)) = 3.

Proof. By hypothesis, ab? € 8(I), and b2 # a (otherwise, b* = a? < §(I),
a contradiction). Similarly, b2 b and b2 #0. Thus b—a—-b>-b isa

3-cycle in T5(I), and hence gr(I'5(1)) = 3. O

Lemma 4.5. Let I be an ideal of a commutative ring R with an ideal
expansion 8, and let a € Zs(I) such that o™ e 8(I) and a™* ¢ §(I) for
some n > 4. Then gr(T'5(I)) = 3.

Proof. Let a e Zs(I) such that o™ e §(I) and o™ ¢ 5(I) for some
n>5. If k>n, then a* € 3(I). Then a"? -a"2-a"1-a"3 is a
3-cycle in Ts(I), and hence gr(I5(I)) = 3. If there exists a e Zs(I)
with a* € 8(I) and a® ¢ 8(I), then consider the element a? +a®. If

a® +a® =a®, then a® €8(I), a contradiction. Thus a? +a® = o®.



AN IDEAL-BASED §-ZERO-DIVISOR GRAPH OF ... 117

Similarly, a® +a® # a?. Clearly, a®+a®>#0 and a®=0. If

a® +a® € §(I), then a® +a* e 5(I); hence a® e §(I), a contradiction.
So, a? +a® ¢ 8(I). Thus, we get the cycle a® — a® - (a® + a®) - a? with
length 3. Thus gr(T’5(I)) = 3. O

Theorem 4.6. Let I be an ideal of a commutative d-domainlike ring

R with an ideal expansion . If Ts(I) contains a cycle, then
gr(I5(1)) = 3.

Proof. Since I5(I) contains a cycle, |Z5(I)| = 3 and diam(Is(I)) # 0.
So by Theorem 4.2, either diam(I5(I))=1 or diam(I5(1))= 2. If
diam(T5(I)) = 1, then there exist x;, x9, and x5 in Zz(I) such that
X1X9, X9X3, x3x; € d(I); hence x; — x9 — x5 — x7 is a cycle with length 3,
and so gr([5(7)) = 3.

For reminder of the proof, we will assume that diam(T5()) = 2. As
[5(I) contains a cycle and diam([5(I)) =2, we may assume that
|Zs(I)| > 4, let a € Zs(I). Since Zs(I) = nilg(I)*, there exists a positive
integer n(n > 2) such that a” e 8(I), but a® ' ¢ §(I). If n > 4, then

gr(T's(I)) =3 by Lemma 4.5. Now suppose that a® e §(I) for all
a € Zg(I). Since diam(T5(I)) = 2, there exist a, b, and ¢ in Zg(I) such
that dgs(a, b) = 2 and ac, be € §(I). We split the proof into three cases.

Case 1. a? € 5(I) and b? ¢ 5(I). If a2, ¢% e 8(I), then by Lemma 4.3,

gr(Ts(I)) = 3. So, we may assume that c¢? ¢ §(I). Since b2 ¢ 5(I),

b3, ¢3 € 5(I), Lemma 4.4 gives gr(TIs(I)) = 3.

Case 2. a2, b% e 8(I). If ¢% € §(I), then again Lemma 4.3 gives
gr(Ts(I)) = 3. So, we may assume that ¢ ¢ §(I). Since ¢ ¢ 8(I), we

get ¢ ¢ 8(I); hence ¢? e Zs(I) (note that ¢® e 8(I)). Clearly, either
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¢ e Zs(I)\ {a} or ¢% € Z5(I)\ {b} (otherwise, ¢ = a = b, a contradiction).
If ¢2eZs(I)\{a}, then c-c®-a—-c is a cycle of length 3. If

¢ e Zs(I)\ {b}, then ¢ —c? —b—c is a cycle of length 3. Hence in this
case, gr(I5(1)) = 3.

Case 3. a2, b2 ¢ 5(I). If ¢? ¢ 5(I), then gr(I's(I)) = 3 by Lemma 4.4.
So, we may assume that ¢ e 8(I). If there exists an x e Zs(I) such that

c#x,x2edl), and x—-a-c or x—b-c, then by an identical

argument as in Case 2, we have gr(I'5(I)) = 3. Since Zz(I) = nils(I) is
an ideal of R by Proposition 3.2, we have ¢ + ¢ € Zs(I). Since ¢? e §(I),
we have (c+c)® € 8(I). Clearly if c+c#0, let c+c#c, we get

gr(Ts(I)) = 3. Now suppose ¢ + ¢ = 0. If either a? or b2 is not equal to

2

¢, let x =a? or x = b2, and again we get gr(T'5(I)) = 3. So, we may

assume that a? = b% = ¢. By hypothesis, |Zs(I)| > 4, diam(T5(1)) = 2,
and x® e 8(I) for all x e Zs(I). So there exists d e Zs(I) such that

either da € 8(I), db € 5(I), or dc e 8(I) (otherwise, TI5(I) is not

connected, and this is a contradiction). If ad € 8(I), if dc € §(I) and
d? e 8(I) or if dc € 8(I) and d? = ¢, we can appeal to previous cases to

obtain gr(Is(I)) = 3. Now suppose dc e 8(I) and d? =c. If ab = a,

then a? = a?b? € 8(I), which is a contradiction. Similarly, ab = b.

Clearly ab ¢ 8(I). Thus, ab = ¢, for otherwise we would let x = ab
above and have gr(I'5(I))=3. Similarly, ab =bd =c. Therefore,
a(b-d)=0. If b—d # ¢, we again have gr(I's(I)) = 3. So suppose that
b =d+c Similarly, b(d -a)=0. Again, if d -a # ¢, we will have
gr(l5(I))=38. Now if d=a+c, we have b=d+c=a+c+c = a,

which is a contradiction. Thus, every case leads to gr(I'5()) = 3. O
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