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Abstract

In this paper, the method of guiding functions and the topological tools are used
to investigate the global bifurcation problem for a class of feedback control
systems. We obtain the sufficient conditions, under which there is a connected
subset of non-trivial solutions of such systems that bifurcates from (0, 0) and

tends to infinity.
1. Introduction

Let I =[0,T] and k>1 be a given integer. In this paper, we

consider the global bifurcation problem for the following feedback control
system:
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x'(t) = apx(t) + f(t, x(@t), ur @), -, up(t), n), for ae. t € I,
ul(t) e G.(t, x(t), u (t), n), for ae. t € I, 1<7 <k, (1.1)

2(0) = x(T), u.(0)= 0, 1< <k,

where @ > 0; f : I xR" x R™ x...x R™ xR — R”" is a continuous map;
G, : IxR"xR™ xR — Kuo(R™7),1 <1<k, be multivalued maps,
where Kuv(R™7) denotes the collection of all nonempty compact convex
subsets of R™7; n is an odd integer. Here x : I — R" is a trajectory of

the system, u, : I — R™,1< 1 <k, be control functions. The first

equation describes the dynamics of the system and the differential

inclusions represent the feedback.

Applying the method of guiding functions and the topological tools,
we obtain the global structure of the solution set of system (1.1). Let us
mention that the bifurcations in control systems were studied by many
researchers (see, e.g., [6]) and the method of guiding functions was
applied to study the global bifurcation problem for differential inclusions

in various research papers (see, e.g., [14, 16, 17, 18]).

The paper is organized in the following way. In the next section, we
recall some notions and notation from multivalued analysis, theory of
Fredholm operators, and bifurcation theory for inclusions. The main

result is given in Section 3.
2. Preliminaries

2.1. Multimaps

Let X and Y be metric spaces. Denote by P(Y)[K(Y)] the collections

of all nonempty [respectively, nonempty compact] subsets of Y.
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Definition 1 (see, e.g., [2, 9, 13]). A multivalued map (multimap)
2 : X - P(Y) is said to be

(1) upper semicontinuous (u.s.c.), if for every open subset V < Y, the set
V)= e X : X(x) < V}
1s open in X
(i) compact, if the set >(X) is relatively compact in Y;

(111) completely u.s.c., if it maps every bounded subset U < X into a

relatively compact subset >(U) of Y.

Definition 2. A set M € K(Y) is said to be aspheric (or UV®, or

wo-proximally connected) (see, e.g., [19, 15, 10, 9)), if for every ¢ > 0, there
exists 8 > 0 such that each continuous map ¢ : S” — Os5(M), n =0, 1,
2, ---, can be extended to a continuous map$ . B O.(M), where
S" = {x e R™ : x| =1} and B""' = {x e R"™" : x| < 1}, and Og(M)
[O.(M)] denote the §-neighbourhood [resp., €-neighbourhood] of the set
M.

Definition 3 (see [11]). A nonempty compact space is said to be an

Rj-set, if it can be represented as the intersection of a decreasing

sequence of compact, contractible spaces.

Definition 4 (see [9]). An u.s.c. multimap Y. : X - K(Y) is said to
be a J-multimap (X € J(X, Z)), if every value X(x),x € X is an
aspheric set.

Now, let us recall (see, e.g., [4]) that a metric space Z is called the
absolute retract (the AR-space) [resp., the absolute neighbourhood retract

(the ANR-space)] provided for each homeomorphism A taking it onto a
closed subset of a metric space Z', the set A(Z) is the retract of Z’

[resp., of its open neighbourhood O(A(Z)) in Z']. Notice that the class of
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ANR-spaces is broad enough: In particular, a finite-dimensional compact
set 1s the ANR-space, if and only if it is locally contractible. In turn, it
means that compact polyhedrons and compact finite-dimensional
manifolds are the ANR-spaces. The union of a finite number of convex

closed subsets in a normed space is also the ANR-space.

Proposition 1 (see [9]). Let Z be an ANR-space. In each of the

following cases, an u.s.c. multimap Y. : X — K(Z) is a J-multimap:
For each x € X, the value Y(x) is

(a) a convex set;
(b) a contractible set;
(c) an Rg-set;

(d) an AR-space.

In particular, every continuous map o : X — Z is a J-multimap.

Definition 5. Let X and Y be Banach spaces. By J°(X, Y), we will
denote the collection of all multimaps F : X — K(Y) that may be
represented in the form of composition

F =3 005,

where ¥; € J(X;4, X;),i=1-¢q, Xg =X, X, =Y, and X;(0<i<q)
are normed spaces.

Let us mention that if U < X is an open bounded subset and
F:U — K(X) is a compact J°-multimap such that x ¢ F(x) for all

x € 0U. Then the topological degree deg(i — F, (7) is well-defined and

has all usual properties of the Brouwer topological degree (see [3]), where

i denotes the inclusion map.
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2.2. Fredholm operators

Now, we recall some basic notions of the theory of linear Fredholm

operators (see, e.g., [8]). Let X and Y be Banach spaces.

Definition 6. A bounded linear operator L : X — Y 1is said to be a

Fredholm operator of index zero, if
(11) Im L is closed in Y;

(21) Ker L and Coker L have finite dimensions and dim Ker L = dim

Coker L.

Let L : domL < X — Y be a linear Fredholm operator of index zero.
Then there exist projections p; : X > X and q7 : Y —» Y such that
Im p;, = Ker L and Ker ¢, = Im L. If the operator

L, :domL(\Kerp; - ImL
is defined as the restriction of L on dom L (1 Ker py,, then L, is a linear

isomorphism and so the linear operator ka :ImL — dom L, ka = L;lL

is well-defined. Now, let CokerL =Y /Im L. Define a canonical

projection operator 7, : Y — Coker L,
ny(z) = z+ImL,

and let ¢j : CokerL —» KerL be a linear continuous isomorphism.

Then, the equation
Lx =y, yeY,
is equivalent to the following relation:
x =prx+ (L + kr)y, 2.1

where k7, : Y — X is defined as

ky, = kp, (i —qr,).
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2.3. Global bifurcation theorem for J¢-inclusions

Let X be a Banach space. Denote by Bx(0, r) the ball of radius r

centered at 0 in X. Consider the following one-parameter family of

inclusions:

x e Flx, p), (2.2)

where F : X x R — K(X) is a completely u.s.c. J°-multimap satisfying

the following conditions:

(F1) 0 € F(0, p) for all p e R;

(F2) for each u, 0<|u-pg|<r, there is 3, >0 such that

x ¢ F(x, p) when 0 < |x| < &,, where pg, ry are given numbers.

p, )
A point (0, p,) is said to be a bifurcation point of inclusion (2.2), if for

every open subset U c X xR with (0, u,) € U, there exists a point
(x, u) € U such that x # 0 and x € F(x, p).

From (F2), it follows that for each p, 0 <|u—pgl<ry the

topological degree
deg(l - ]:(’ “), BX(07 8;1 ))7

is well defined. Then, the bifurcation index of the multimap F at (0, pg)

may be defined as

Bi[F; (0, po)] = lim deg(i — F(,u), Bx(0, 8,))
n—ug

~ lim deg(i - #(,p), Bx(0, 5,)).
H—lg

Let us denote by S the set of all non-trivial solutions to inclusion (2.2),

le.,

S={x,n)e XxR;x # 0 and x € F(x, p)}.

The following assertion can be easily followed from the global bifurcation

theorems presented in [7, 14].
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Theorem 1. Under conditions (F1)-(F2), assume that
Bi[F; (0, ug)] # 0. Then, there exists a connected subset C = S such that

(0, ng) € C and one of the following occurs:
(a) C is unbounded,

() (0, 1) € C for some . * wo.
3. Main Result

We will use the same notation for scalar products and norms (2’, z")
and |z| in all spaces R” and R™. Denote by the symbols C(I, R")
[L,(I,R"), (p 21)] the space of continuous [resp., p-summable]
functions x : I - R" with usual norms

1

T »
e = maxla(0) ana 11, = [ e

A ball [sphere] of radius r centered at 0 in C(I, R") is denoted by
Bc(0, r) [resp., 0B¢(0,r)]. Consider the space of all absolutely

continuous functions «x :I — R”", whose derivatives belong to
Ly(I, R™). It is known (see, e.g., [1]) that this space can be identified

with the Sobolev space WH2(I, R") endowed with the norm

2 92 1/2
el = ()2 + 1e12)

Notice that (see, e.g., [6]) the embedding Wl’g(I, R")> C(I, R") is
compact. By the symbol W%’2(I , R™), we will denote the subspace of all
functions x € WH2(I, R") such that x(0) = x(T).

We will consider system (1.1) with the following assumptions:

(f) there exists 0 < ¢ < a such that

|f(t’ 2, Wy, =+, W, “)l < ClZl (l“l + |w1| +oeeet |wk|)’
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for all (z, wy, -+, wy, n) and a.e. t € I.

For each 1 < 1 < &, the multimap G, satisfies conditions:

(G1) for every (z,w, n) e R"” x R™ xR, the multifunction G- (-, z, w, n) :
I — Kuv(R™7) has a measurable selection;

(G2) for a.e. t € I, the multimap G.(¢,,-,-): R" xR™™ x R — Kv(R"")
is u.s.c.;

(G3) the multimap G, is uniformly continuous with respect to the

second and fourth arguments in the following sense: For every ¢ >0,
there is 6 > 0 such that

G.(t, z, w, &) c O.(G.(t, z, w, n)), V(, w)e I=xR™,
provided max {|z — 2|, g — |} < §;

k Td, _a-c
(G4) there are d. > 0 such that ZT=1dTe < and

|G.(t, z, w, p)| < d. (v + |2] + [w]),
for all (z, w, u) e R" xR™ xR and a.e. t € I.
Now, for each (x, u) € C(I, R")x R define the multimaps
GWH I xR™ — Ko(R™ ), G, w) = G. (¢, x(t), w, 1), 1<7<k

By virtue of Theorem 1.3.5 [13] for each w € R™", the multifunction
Gﬁx’“)(u w) has a measurable selection. Further, from conditions (G2)

and (G3), it follows that for a.e. ¢t € I the multimap Gﬁx’”)(t, w) depends

upper semicontinuously on (x, w, u). We have the following assertion

(see, e.g., [9, 13]): For each (x, u)e C(I, R")x R, the set H(Tx’“) of

solutions of the following problem:

u.(t) e G.(t, x(t), u.(¢), n), for a.e. t € I,

Ur (0) =0,
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is an Rs-set in C(I, R™) and the multimap [I. : C(I, R")xR —
kle(z, r™)),

(e, ) = 11
s upper semicontinuous.

By a solution to problem (1.1), we mean a pair (x, p) € W%’Q(I, R™")x R
such that there are u, € [1,(x, n), 1 < 1 < %, and
x'(¢) = apx(t) + f@t, x@), uy ), -, up(t), n), for a.e. t € I.

From (f), it follows that (0, u) is a solution of (1.1) for every p € R. These

solutions are called trivial. Let us denote by S the set of all non-trivial

solutions of (1.1).
In what follows, we need the following statement:

Lemma 1 (Gronwall’s lemma, see, e.g., [12]). Let u, v : [a, b] > R be

continuous nonnegative functions and C > 0 be a constant and
t
ut) < C +I u(sl(s)ds, a <t <b.
a

Then

t
(s)ds
u(t) < Cej"u , a<t<hb

Our main result is the following statement.

Theorem 2. Let conditions (f) and (G1)-(G4) hold. Then, there is an
unbounded connected subset C = S such that (0, 0) € C.

Proof. For every (x, n) € C(I, R")x R, define the following multimaps:

[, : C(I, R"")x R — K(C(I, R")x C(I, R"™ ) x R),
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My (x, w) = foc} x Ty (x, ) x 4,
[y : C(I, R")x C(I, R"™ )x R — K(C(I, R™)x C(I, R™ )x C(I, R™2)x R),

Mo (@, u, 1) = fahx {u x Ta(x, w)x fu},

and so on
[l : (I, R?)x C(I, R™ ) x - x C(I, R"™1)x R
— K(C(I, R™")x C(I, R™ ) x ---x C(I, R™ )x R),
(s g, ooy gy, 1) = e fug ) o {agg b x (e, 1) x ful,
anda map f : C(I, R")x C(I, R™ )x ---x C(I, R™ )x R — Lo(I, R"),
Fx, ug, o, wg, 0) () = apx(t) + (¢, 2(2), w (@), -, @), ), tel
It is clear that for every i,1 <1i <k, ﬁi is a J-multimap and }7 is a
continuous map. Set @ : C(I, R")x R — K(Lgy(I, R™)),
Qx, p) = f o [T oo Ty (x, ).

Then problem (1.1) can be substituted by the following operator-

inclusion:
Ax € Q(x, pn), (3.1)
where A : W%’Q(I, R") —» Ly(I, R"™), Ax = x'.
It is easy to see that A is a linear Fredholm operator of index zero and
Ker A = R" = Coker A.
The projection

Ty L2(I, Rn) = Rn,
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is defined as
1 T
7a(e) = 5 [ £()ds
0

and the homeomorphism /4 : R” — R" is an identity operator. The
space Ly(I, R™) can be represented as
Ly(I, R") = Ly ® Ly,
where L£; = Coker A and £ = Im A.
The decomposition of an element g € Ly(I, R™) is denoted by
g =280)*81): &o)<Lo 8a €Ll

By virtue of (2.1) inclusion (3.1) is equivalent to the following inclusion:

x € H(x, p), (3.2)
where H : C(I, R")xR — K(C(I, R")),

H(x, 1) = pax +(na +ka)o Qx, p).

It is clear that H is a J°-multimap. Let us show that H is completely
u.s.c.. In fact, let Q < C(I, R")x R be a bounded subset and (x, p) € Q.
Taking arbitrarily y € Q(Q), then there exist u,. € [1.(x, n), 1 <1 <k,
such that

y(t) = pax(t) + f(¢, x(t), u @), -, up(t), n), for a.e. t € I.
From (f), it follows that
ly(@)] < |x(@)] ((a +o)|y + du @)+ + c|uk(t)|), for ae. t € I. (3.3)

From the fact that u; € [1,(x, p), it follows that there are g, € L;(I, R™7),
1 < 1 < k, such that
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g.(t) e G.(¢, x(t), u.(t), n), for a.e. t € I,

and
t
w0) = | g:(s)ds.
0
By virtue of (G4), we have that

@) = [ ler(0)ds = [ ol (o) + (0N ds

t
< Td |l + dNTlely + [ dofus(s)ds.
0

From Lemma 1, it follows that
lur ()] < (Td. || + dNT x|, )%, for all £ € I. (3.4)

Since (3.3) and (3.4), there exists Mg > 0 such that [y(t)| < Mq, for a.e.
t e I, ie., the set Q(Q) is bounded in Lo(I, R"). Notice that the
operator

(ng+ka): Ly(I, R") - Wgp2(I, R"),

is continuous and the map p,4 takes values in R". Then, the set H(Q)
is bounded in W%’2(I , R™), and hence, it is a relative compact set in
C(I, R™). So, H is a completely u.s.c. J°-multimap.

For each p=#0, let us show that there exists 5, >0 such that

inclusion (3.2) has no non-trivial solution on B (0, 8, ) x {u}.

In fact, to contrary assume that (x, p) € Bc(0, §,)x {u} is a non-
trivial solution of (3.2). Then there are wu. € [1.(x, n),1 < 7 <k, such

that

x'(t) = apx(t) + f(¢, x(@t), uy(t), -, up(t), n), for ae. t € I. (3.5)
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Therefore,
T T
[ (0 ane(®) « £(2 5(0), 10). -, wg@). w) et = [ Guste), @)t = 0.
On the other hand,

[ 0. @)+ 106 500, 100, -, @), )

I\

el [ O, ), 100, ),

\%

2112 T,
ap? |2 = e[ 22@) (] + Jur )] + - +
0

up(t))dt

\Y

T=1

T k
(a -2 |uf3 - c|u|jo x2<t)[Z(TdT|u| + d VT, Je™ |at
k k
= (a-c-cTY de"™ )l - VT Y de™[of3 >0, (3.6)
1 1

provided

k
(a-c—cl) de’™ )l
k. Td, '
cﬁzl d.e

0 <[]y < (3.7)

Therefore, inclusion (3.2) has no solution (x, p) that satisfies (3.7).

Thus, for sufficiently small §,, we obtain a contradiction.

o
Now, for a given p = 0, we will evaluate the topological degree
deg(i — H(, n), Bc(0, 3,,)).
Toward this goal, let us consider the multimap

X, Be(0,8,)x[0,1] - K(C(I, R™)),



90 NGUYEN VAN LOI
Zu(x, 2) = pax + (ng + kg ) o 0(@x, 1), 1),
where ¢ : Lo(I, R")x [0, 1] > Lo(I, R™),
o(g. ) = 80) +281), &) € Lo» &) € L1-

It 1s clear that Z“ is a compact J¢-multimap. Assume that there is

(%4, As) € @B (0, 3, ) x [0, 1] such that «x, € 2, (x4, As). Then there are

v* € Ly(I, R™) and u; € [1.(x,, n), 1 < T < k, such that
V() = aux.(t) + f(¢, x.(t), ui @), -, up(t), n), for a.e. t € I,
and
Xy = X*Ya),
0= “/fo),
where (o) +v(1) = ¥ ¥(0) € Lo, Y1) € L1

If A, # 0, then
T . 1 T ,
[ e v @) = 5= [ (@), 21 0)de = 0.

On the other hand, from |x,[, < ﬁ"x*”c = ﬁéi“, it follows that x,

satisfies relation (3.7) for sufficiently small Oy Therefore,

T
[ 0. v @)ar > o,

giving a contradiction.

If A, =0, then x, € Ker A, ie., x,(() =w e R" for all ¢t € I. Since

the fact that w satisfies relation (3.7), we have
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T
J.o (nw, y(t))dt > 0,

forall u, € [1.(w, pn), 1 < 1 < k, where

Y(t) = apw + f(t, w, w1 (), -, up(t), p) € Qw, n), for a.e. t € I.

Notice that
T
[t )t = 7o, 7).

Consequently,
(nw, may) > 0, for all v € Qw, ). (3.8)
In particular,
0 < (pw, may") = (pw, nAyf0)> =0,

that is a contradiction.

So, X, is a homotopy connecting the multimaps X, (-,1) = H(,u) and

2.(,0) = pg + mAQ(, ).

By virtue of the invariant property of the topological degree, we have that

deg(i — H(-, 1), Bc(0, 8,)) = deg(i — pg — naQ(, 1), Bc(0, §,)).
Notice that the multimap py + n4Q(, 1) takes values in R”, and hence
deg(i — pa — maQ(, 1), Be(0,8,)) = deg(i — pa — maQ( 1), Bya(0, 5,)).
In the space R", the vector field i — p4 — m4Q(,, n) has the form

i—pa—maQ( 1) = —mAQ(, p).
From (3.8), it follows that mn4@Q(,pn) and pi are homotopic on
GBRn (0, 3,,). So, we obtain

deg(_ TEAQ(" M), BRn (O’ 6;4)) = deg(_ W, BRn(O’ Sp )) == Sign(“)'
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Thus, the bifurcation index Bi[H; (0, 0)] = —2. From (3.6)-(3.7), it follows
that (0, 0) is the unique bifurcation point of system (1.1). To complete the
proof, we need only to apply Theorem 1 with a remark that the case (b) of
Theorem 1 could not appear. O

Example 1. Consider the following feedback control system:

x'(t) = apx(t) + x(t) (u + uy () + - + ug(t)), for a.e. t € [0, 1],
u(t) e [m+x(t), p+x@)+u ()], for ae. t €[0,1], 1<7<Ek (3.9
x(0) = x(1), u.(0) = 0,
where a > 1 + ke.
Here, f : [0, 1]x R**2 & R,

f(t’ 2, Wy, =+ Wp, u) = Z(MJ"wl toe wk)’ (2’ Wy, =+ We, M) € Rk+2’

and G, : [0, 1]x R x Rx R - Ku(R),
G.t,z,w,p)=[n+z,p+z+w], 1<Tt<k

It is easy to verify that the map f satisfies condition (f) and the
multimaps G, satisfy conditions (G1)-(G4). Therefore, applying Theorem

2, we obtain the global structure of the solution set of problem (3.9).

References

[1] V. Barbu, Nonlinear Semigroups and Differential Equations in Banach Spaces,
Noordhoff International Publishing, Leyden, 1976.

[2] Y. G. Borisovich, B. D. Gelman, A. D. Myshkis and V. V. Obukhovskii, Introduction
to the Theory of Multivalued Maps and Differential Inclusions, Second Edition,
Librokom, Moscow, 2011 (in Russian).

[3] R. Bader and W. Kryszewski, Fixed-point index for compositions of set-valued maps
with proximally 1-connected values on arbitrary ANR’s, Set-Valued Anal. 2(3) (1994),
459-480.

[4] K. Borsuk, Theory of Retracts, Monografie Mat. 44, PWN, Warszawa, 1967.

[6] Guanrong Chen, Jorge L. Moiola and Hua O. Wang, Bifurcation control: Theories,
methods and applications, Int. J. Bifur. Chaos 10(3) (2000), 511-548.



(6]

(7

(8]

(9]

(10]

(11]

(12]

(13]

(14]

(15]

(16]

[17]

(18]

(19]

GLOBAL BEHAVIOUR OF SOLUTIONS TO A CLASS ... 93

Z. Denkowski, S. Migérski and N. S. Papageorgiou, An Introduction to Nonlinear
Analysis: Theory, Kluwer Academic Publishers, Boston, MA, 2003.

D. Gabor and W. Kryszewski, A global bifurcation index for set-valued perturbations
of Fredholm operators, Nonlinear Anal. 73(8) (2010), 2714-2736.

R. E. Gaines and J. L. Mawhin, Coincidence Degree and Nonlinear Differential
Equations, Lecture Notes in Mathematics, No. 568, Springer-Verlag, Berlin-New
York, 1977.

L. Goérniewicz, Topological Fixed Point Theory of Multivalued Mappings, 2nd
Edition, Topological Fixed Point Theory and its Applications, 4, Springer, Dordrecht,
2006.

L. Gérniewicz, A. Granas and W. Kryszewski, On the homotopy method in the fixed
point index theory of multi-valued mappings of compact absolute neighbourhood
retracts, J. Math. Anal. Appl. 161(2) (1991), 457-473.

D. M. Hyman, On decreasing sequences of compact absolute retracts, Fund. Math. 64
(1969), 91-97.

Ph. Hartman, Ordinary Differential Equations, Corrected reprint of the second
(1982) edition [Birkhatiser, Boston, MA], Classics in Applied Mathematics, 38,
Society for Industrial and Applied Mathematics (STAM), Philadelphia, PA, 2002.

M. Kamenskii, V. Obukhovskii and P. Zecca, Condensing Multivalued Maps and
Semilinear Differential Inclusions in Banach Spaces, de Gruyter Series in Non-
linear Analysis and Applications 7, Walter de Gruyter, Berlin-New York, 2001.

W. Kryszewski, Homotopy Properties of Set-valued Mappings, Univ. N. Copernicus
Publishing, Torun, 1997.

R. C. Lancer, Cell-like mappings and their generalizations, Bull. AMS 83 (1977),
495-552.

N. V. Loi and V. Obukhovskii, On global bifurcation of periodic solutions for
functional differential inclusions, Funct. Diff. Equat. 17(1-2) (2010), 157-168.

Valeri Obukhovskii, Nguyen Van Loi and Sergei Kornev, Existence and global
bifurcation of solutions for a class of operator-differential inclusions, Differ. Equ.

Dyn. Syst. 20(3) (2012), 285-300.

Nguyen Van Loi, Valeri Obukhovskii and Pietro Zecca, On the global bifurcation of
periodic solutions of differential inclusions in Hilbert spaces, Nonlinear Anal.: TMA
76 (2013), 80-92.

A. D. Myshkis, Generalizations of the theorem on a fixed point of a dynamical system
inside of a closed trajectory, Mat. Sb. 34(3) (1954), 525-540.



