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Abstract
In this paper, we establish the generalized Hyers-Ulam stability of the equation
flax +by) = a%f(@) + BF(2) + S [7(x + 3) - (& + o),
and
flax +by) = a%g(x) + b%h(2) + L [7(x + 3) - f(x + o)

on Banach spaces, by using the fixed theorem.
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1. Introduction

The problem of the stability of functional equation has originally
been started by Ulam [25]. Hyers [10] gave a first affirmative partial
answer to the question of Ulam for Banach spaces. Hyers theorem was
generalized by Aoki [1] for additive mappings and by Rassias [22] for
linear mappings. The paper of Rassias [22] has been an influential in the
development of what is now known as the generalized Hyers-Ulam
stability or Hyers-Ulam-Rassias stability of functional equations. A
generalization of the Rasssias theorem was obtained by Gavruta [9] by
replacing the unbounded Cauchy difference by a general control function

in the spirit of Rassias approach. The functional equation
flx +y)+ flx - y) = 2f(x) + 2f(y), (1.1)

is called the quadratic functional equation. A generalized Hyers-Ulam
stability for the quadratic functional equation was proved by Skof [24] for
the function f : X — Y, where X is a normal space and Y is a Banach
space. Cholewa [3] noticed that the theorem of Skof is still true if the
relevant domain X is replaced by an abelian group. Czerwik [4] proved
the Hyers-Ulam-Rassias stability of the quadratic functional equation
(1.1). Park [19] proved the generalized Hyers-Ulam stability of the

quadratic functional equation in Banach modules over a C* algebra. The
stability problem of several functional equation have been extensively
investigated by number of mathematicians ([2], [13], [14], [15], [17], [18],
(19], [22]).

We recall the following theorem by Diaz and Marglis: Let X be a set,

a function d : X x X — [0, ] is called a generalized metric on X if d

satisfies
(1) d(x, y) = 0 if and only if x = y.
(2) d(x, y) = d(y, x) forall x, y € X.

3) d(x, z) < d(x, y) + d(y, z) forall x, y, z € X.
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Theorem 1.1 ([8]). Let (X, d) be a complete generalized metric space
and J : X — X be a strict contractive mapping with a Lipschitz constant
L < 1. Then for each given element x e X, either d(J"x, J"'x) = o for

all nonnegative integer n or there exists a positive integer ng such that
(1) d(J"x, J" 1 x) < 0Vn > ng;
(2) the sequence J"x converge to a fixed y* for J,

(3) y* is the unique fixed point of J in theset Y = {y € X, d(J™x, y)
< o}.

In [16], Najati and Park showed that the functional equation
2 2 ab
flax +by) = af(x) + 3(0) + LI+ ) - fle -], (D)

1s equivalent to the quadratic functional equation (1.1), if a, b are

rational numbers such that a® + b2 # 1 and, they proved the stability
problem of this equation.

Throughout this paper, assume that X is a normed vector space with
|.I, Y is a Banach space with norm ||.|, and suppose o(c(x)) = x for all

x € X. In this paper, using the fixed point theorem, we will prove the
generalized stability of the following equation:

flax +by) = a*f(@) + 01(3) + L [fw + ) - e + o), (D)

and
flax +by) = a%glx) + 5%h(3) + S [fw + ) - fle + o). (10

2. Hyers-Ulam Stability of Quadratic

Functional Equations

In this section, we take f : X — Y and we define

Df(x, ) = flax + by) - a*f(x) = b2f(2) - L [flx + 3) - flx + o)),
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and
DfR(x, 9) = flax + by) - a®g(x) ~ b*h(y) - L[f(x + 3) - fl& + o)),
where a, b in N - {0, 1}.
Theorem 2.1. A mapping f : X — Y satisfies
flax +by) = a*f(@) + 01(3) + S [fw + ) - e + o), @D

if and only if f satisfies
flx + y)+ f(x + o(y)) = 2f(x) + 2f(y) and f(x + o(x)) = 0, 2.2)

forall x, y € X.

Proof. Suppose that (2.1) holds. Since a® + b # 1, letting x = y = 0
in (2.1), we get f(0) = 0. Letting y = 0 in (2.1), we obtain

flax) = a*f(x), (2.3)
for all x € X, and putting x = 0, we get
f(by) = B*f(y) + ab(f(y) - f(o(3))), 2.4)
for all y € Y. Now putting x = bx and y = ay in (2.1), we get
flabx + aby) = a*f(bx) + b*f(ay) + %2 (F(bx + ay) - f(bx + ao(y), (25)

for all x, y in X. Letting y = o(y) in (2.5), we get

flabs + abo(y)) = a*1(bx) + b*f(ao(y)) + & (f(bx + ao()) - f(bx + ay)),

(2.6)

for all x, y in X, by (2.2), (2.5), and (2.6) and we obtain

f(bx + by) + f(bx + bo(y)) = 2f(bx) + b2 (F(y) + f(o(»))). (2.7)
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Using (2.4), we get

F(by) + f(bo(y)) = b (f(3) + F(o().
Then
f(bx +by) + f(bx + bo(y)) = 2f(bx) + (f(by) + f(bo(y)))- (2.8)
Then, f satisfies
flx +y)+ fx + o(y)) = 2f(x) + (f(y) + f(c())), (2.9)

we replace x and y by x + o(x) in (2.9), we obtain

f2(x + o(x))) = 2f(x + o(x)).

Now, we will prove that f satisfies f(x + o(x)) =0 for all x € X. By

applying the inductive argument, we show that
f(n(x + o(x))) = nf(x + o(x)),

for all x € X and for all n € N. Replacing x and y by x + o(x), we find
f(2(x + o(x))) = 2f(x + o(x)). Writing n(x + o(x)) instead of x and

x + o(x) instead of y in (2.9), we get
f((n +1)(x + o(x))) = (n + )f(x + o(x)).

This proves for all n e N. By using (2.4), we obtain b%f(x + o(x)) =
bf(x + o(x)) for all x € X, since b =1 and f(b(x + o(x)) = bf (x + o(x)),
then we get f(x + o(x)) =0, for all x € X, we replace x and y by x in

(2.9), we get
f(2x) = 3f(x) + f(o(x)),
we use the inductive argument to prove that there exists a, and (3,
such that a% + [3% = n? and
f(nx) = a,f(x) + Bpf(olx)),

we have
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f((n+ 1)) + f((n = + x + o(x)) = 2f(nx) + f(x) + f(o(x)),
and

f(n-1)x + x + o(x)) = f((n - 1)x).

Then

f((n+ 1)) = (200, = 0ty + 1) + (2B, = By + 1)f(o(x)),
this complete inductive argument. By f(ax) = a,f(x)+ B,f(c(x)) and
flax) = a*f(x), we get f(o(x)) = f(x).

We shall now prove the converse. Let f: E — F be a solution of
Equation (2.2). Replacing x by (n —1)x and y by x + o(x) in (2.2), we
obtain the equation f(nx + o(x)) = f((n —1)x), for all x € E and for all

n € N*. We will prove by the mathematical induction that

flnx + ) = n*f(0) + f(3) + 5 (Fx + 5) = flx + o(y). (2.10)

The result for n = 1 is immediately.

We prove now (2.10) is satisfied for n +1. By using the hypothesis

inductive, we find that
flln + 10+ ) = (@) + fx + 3)+ 5 (22 + 3) = f(x + olx) + ().

We have
f(x + o(x) + o(y)) = f(a(¥)) = f(¥),

then we get the result. Finally, we have

f(nx) = n2f(x), (2.11)

forall n e N,

flax +by) = a®f(x) + f(by) + 5 (fx +by) = f(x + bo(y)).
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fla+b9) = B(3) + f(&) + 5 (Fw + 3) = flo(x) + ),

f(x +bo(y)) = B*f(o(y)) + f(x) + %(f(x +o(y) - f(x + o())).

Since f is even, we get the result. This completes the proof of Theorem
2.1.o

Using the fixed point method, we prove the stability of the

o -quadratic functional equation Df(x, y) = 0.
Theorem 2.2. Let f: X — Y for which there exists a function
0: X% [0, )
1Df (x, Y)]| < o(x, v), 2.12)

forall x, y € X, and v(x, y) = ¢(x, ¥) + (0, 0) such that

lim a2"(a"x, a”y) = 0, (2.13)

n—>+o0

forall x € X. Let L <1 such that ¢(x, 0) < a2L¢(§, 0), forall x € X.
Then there exists a mapping @ : X — Y satisfying (2.2) and

1

If(x) = £(0) - Q(x)| < ﬂlﬁ(ﬁc, 0), (2.14)

forall x € X.

Proof. Considering F(x) = f(x) - f(0), the inequality (2.12) becomes
|DF(x, y)| < v(x, y). Let the set

S={g:X->Y} (2.15)

and introduce the generalized metric on S as follows:

d(g, h) = inf {K € R, : |g(x) - h(x)| < Kp(x, 0), Vx € X}. (2.16)
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It is easy to show that (S, d) is complete. (see the proof of Theorem 2.5 of
[8]). Now, we consider the linear mapping J : S — S such that

Jg(x) = %g(ax), (2.17)
a

for all x € X.

We have

|glax) _ hax))  dlg. W@z 0) _ pyy p)

@ a a

then

d(Jg, Jh) < Ld(g, h), (2.18)
for all x € S.
Letting y = 0 and in (2.12), we get
|f(ax) - a*f(x)] < v(x, 0), (2.19)

forall x € X. So

d(F, JF) < ., (2.20)
a

By Theorem 1.1, there exists a mapping @ : X — Y satisfying the

following:
(1) @ is a fixed point of ¢/, that is,
Qax) = a®Q(x), (2.21)
for all x € X. The @ is a unique fixed point of / in the set
M={geS:df, g) < x} (2.22)

This implies that @ is a unique mapping (2.9) such that there exists
K € (0, o) satisfying

|1F(x) - Qx)| < Kv(x, 0), (2.23)
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for all x € X.
)
n
lim J"F(x) = lim 29 _ o), (2.24)
n—+o0 n—oto 21
for all x € X.
(3) d(F, @) < il _1 7 d(F, JF), which implies the inequality
d(F, Q) < ————. (2.25)
a” —a“L

This implies that the inequality (2.14) holds.

It follows from (2.12), (2.13), and (2.24) that

|DF(a"x, a"y)| w(a"x, a"y) _

"D(Q(x, y) )" = nli)r};—loo a2n < nl—l)r-ri—looaT =0, (226)
forall x, y € X. So DQ(x, y) = 0 for all x, y € X. O

Corollary 2.3. Let p<2 and 0 >0 be real numbers, and let
f:X —> Y bea mapping such that

IDf (e, y) < ol [” + |117), (2.27)
for all x,y e X. Then, there exists a unique mapping @ : X —» Y
satisfying (2.2) and

1) - Q)| < 5= 2.28)

forall x € X.

Proof. We get the result from Theorem 2.2 by taking

o(x, y) = vl(x, y) = 6(|«[” +[x]”), (2.29)
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for all x, y € X. We have f(0) = 0, by letting x = y = 0 in (2.28) and we

can choose L = b2, then we get the desired result. O

Theorem 2.4. Let f, g, h: X - Y be an even mapping for which
there exists a function ¢ : X2 5 [0, ) satisfying
|Df2 x, )] < olx, ), (2.30)

and

lim 2727¢(2"x, 2"y) = 0. (2.31)

n—>+o0

Let ®(x, y) = ¢(x, y) + ¢(0, 0) and let
EPYE x o) x ki
w(xﬁy)_q)(aab)+(b(a7 b )+2q)(a70)+2q)(0’b)a
and L <1 such that
o(x, x) < 4L(( 5. 5)), 2.32)

for all x € X. Then, there exists a unique mapping @ : X — Y satisfying
(2.1) and

&)= 5 (£l + olx)) + £0) - Q)

(x, x) + ¥(x + o(x), x + o(x)),

1
ALY

(2.33)

le(w) - § (e + o) + £00) - Q)

< ;—2 (d(x, 0) + %(d)(x +o(x)))

L1 ] (#(x, x) + v(x + o(x), x + o(x))),

401-L

and

hx) - 3 (s + o(x)) + h(0)) - Q)

< b%(qa(o, x) + 5 (@(0, x + o(x))



ON THE STABILITY OF ¢ QUADRATIC FUNCTIONAL ... 71

1
T )

(@(x, x) + v(x + o(x), x + o(x))),
forall x € X.
Proof. Put F(x) = f(x) - f(0), G(x) = g(x) - (0), H(x) = h(x) - h(0),

we have

IDFE (x, y) + DFE (x, o(y)) - 2DF& (x, 0) - 2DFE (0, )| < v(ax, by),

(2.34)
for all x, y € X. Therefore,
|F(ax + by) + F(ax + bo(y)) — 2F (x) - 2F(y)|| < v(ax, by), (2.35)
for all x, y € X. Replacing x by 2 and y by % in (2.35), we get
IF(x + y)+ Fx + o(y)) - 2F (x) - 2F (y)] < v(x, ¥), (2.36)

for all x, y € X. Consider the set
S={:X->Y}
and introduce the generalized metric on S as follows:

d(l, k) = inf {K e R, : |l(x) - k(x)| < K(¥(x)), Vx e X},

with W¥(x) = v(x, x) + iw(x +o(x), x + o(x)). It is easy to show that

(S, d) is complete. (See the proof of Theorem 2.5 of [8].)

Now put Fj(x, y) = F(x) - % F(x + o(x)), we use the inequality (2.36)

and we replace x by x + o(x) and y by y + o(y) in (2.36), we get

I (x + ) = Fi(x + o(y)) - 2F7 (x) - 2F, (7)) < 0w, x) + %(w(x +o(x), y + o(y))-

(2.37)
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If you replace in the first x and y by x in (2.36) and in the second x and y
by x + o(x) in (2.37), we obtain

| F1(2x) — 4F; (x)]| < ¥(x). (2.38)
Now, we consider the linear mapping JJ : S — S such that
Jk(x) = %x), (2.39)

for all x € X.

Similar to the proof of Theorem 2.3, we deduce that the sequence
J"F; converges to a fixed point @ of JJ. Also @ is the unique fixed point of
J on the set M ={g e S:d(f, g) < »}, hence @ satisfies (2.2) and
R(2x) = 4Q(x), then Q(x +o(x)) =0, so @ is solution of (2.1) and
satisfying (2.33).

Now, we put Gy(x) = G(x) —%G(x +o(x)) and Hy(x) = H(x)- % H
(x + o(x)) by (2.30), we have
17 (ax) - 026y ()] < ®(x, 0) + £ (x + o{x), 0),
and
|y (ax) - b2H, (x)] < (0, x) + %qn(o, x + o(x)).
Then, we get
Q(ax) - a%Gy ()] < @(x, 0) + 5 @(x + o(x), 0)

o g o ) ot o), % + o),

and

Qo) - b H (x)] < (0, %) + 5 @0, x + ofx)
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1

2
My

@(x, x) + v(x + o(x), x + o(x))),

which ends the proof.

Corollary 2.5. Let f : X — Y be mapping and a, b in N*, for which

there exists a function ¢ : X> — [0, o) satisfying

IDf (x, Y] < dlx, ), (2.40)

and
lim 272"¢(2"«x, 2"y) = 0. (2.41)
n—>-+o0
Let ®(x, y) = ¢(x, y) + ¢(0, 0) and let
e, ) = o(E, D) va(E, ) oo o)1 a0(0,2),
and L <1 such that

p(x, x) < 4L(w(%, % ), (2.42)

for all x € X. Then, there exists a unique mapping @ : X — Y satisfying
(2.1) and

f@) = 5 (£l + olx) - £0) - Q)

< ﬁ(w(x, )+ 9(x + o(x), x + o(x))).

(2.43)
Corollary 2.6. Let f, g, h: X > Y be an even mapping for which

there exists a function ¢ : X2 5 [0, ) satisfying

and

< o(x, y), (2.44)

flax + by) - a%f(x) + b*h(y) = &2 (1 + 3) = (& - )

lim 272"¢(2"x, 2"y) = 0. (2.45)

n—>+00
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Let ®(x, y) = ¢(x, y) + ¢(0, 0) and let

¥(x, y):qb(g,%)+®(§,_{)—y)+2q)(§,0)+2®(0,%),

and L <1 such that
o(x, x) < 4L(( 5. 5), (2.46)

for all x € X. Then, there exists a unique mapping @ : X — Y satisfying
(2.1)

17()~ 1(0) = Q)] < g b, %)+ 4(0, 0)), 2.47)

lg(x) - £(0) - Qx)| < a—q)(x 0)+5 CI>(0 0)+ g Wl *) +v(0, 0)),

4(1

and

[A(x) = h(0) — Q(x)| < b_ @0, x)+ = CD(O 0)+———— 4(1 ) ((x, x) + (0, 0)),
forall x € X.
Proof. By Theorem 2.4 and o(x) = —x, we get the result. O
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