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Abstract

In this paper, we study the model of stem cells with two phases. We establish
the well-posedness for this model and show that the solutions exhibit the
phenomenon of asynchronous exponential growth if they don’t decay in an
exponential speed to 0 as the time goes to infinity.

1. Introduction

In this paper, we consider the model of the stem cells, which is
divided in two compartments: the proliferating and the nonproliferating
(see [1], [2], and [3]). We denote by n(f, a) and p(t, a) the densities of the

nonproliferating cells and the proliferating cells of the age a at the time ¢,
respectively. The nonproliferating cells are assumed to differentiate at a

rate 8(a) and transit to the proliferating cells of the age 0 with a rate

B(a). As soon as a cell enters the proliferating phase, it is committed to
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divide a time T (a constant) later. The proliferating cells also have a

mortality rate y(a). The nonproliferating cells and the proliferating cells
have the maximal ages @ and T, respectively. Then the evolution of the

stem cell population is described by the following system:

g—’;(t, a) + Z—Z(t, a) = —3(@nlt, @) - Bla(t, a), 0 < a <@, ¢ > 0,
P p __
o (¢, a)+ e (t, a) = —y(a)p(t, a), O<a<m,t>0,
n(t, 0) = 2p(t, 7), t >0,
- (1.1
pt. 0) = [ Blan(t. a)da. t>0,
0
n(0, a) = ny(a), 0<ac<a,
p(0, a) = py(a), 0<a<m,

We shall prove that under suitable assumptions on 3, B, and y the
problem (1.1) is globally well-posed, and analyze the large time behaviour
of its solutions. We prove that the solutions exhibit the phenomenon of
asynchronous exponential growth if they don’t decay in an exponential
speed to 0 as ¢ — o. The phenomenon of asynchronous exponential
growth appears frequently in age-or size-structured population models
(see [4], [5], [6], [7], [8], [9]). In the framework of semigroup theory, a

strongly continuous semigroup (7'(¢)),5, with infinitesimal generator A

on the Banach space X is said to possess the property of asynchronous

exponential growth if there exist Ay € R, which is an eigenvalue of A

and a strictly positive associated eigenfunction ® € X such that, for

each uy € X,

lim e *'7T(t)uy = Cyd,

t—>+o0

where C; is a constant depending on the initial data uq (see [4], [5], [6],

(7], [8], [9D)-
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The theory of asynchronous exponential growth is well studied in [7],
[8], and [9] where some applicable sufficient conditions are derived. In
this paper, we shall use the theory developed in [7], [8], and [9] to prove
that the solution operators of the model (1.1) possess this property.

Throughout this paper, the vital rates &(a), B(a), and y(a) are

supposed to satisfy the following conditions:

(1) 3(a) and y(a) are nonnegative and continuous functions defined
in [0, @] and [0, T].

(2) B(a) is a nonnegative and continuous function defined in [0, @]

with B(a) > 0 for almost all a € (0, @).

Our main result considers the well-posedness for the problem (1.1)

and reads as follows:

Theorem 1.1. For (ng(a), po(a)) € Wh[o, @]x Whi[o, 1] such that

(ng(a), po(a)) satisfies the boundary condition ny(0) = 2py(t) and
po(0) = I:B(a)no(a)da, the problem (1.1) has a unique solution
(n, p) € C([0, @), WH1(0, @) x Wh1(0, 7)) N C}([0, ), L0, @]x LMo, 7)),
and for any T > 0, the mapping (ng, py) — (n, p) from the space

{(no, po) € WHH(0, @) x WHH(0, 7) = (ng(0), po(0)) = (2po (), Ijﬁ(a)no(a)da)}

to  C([o, T], W10, @) x wht(o, )N € ([o, T], LMo, @] x L}[0, 7]) s
continuous.

The proof of this result will be given in Section 2.
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Before giving the main results about the asymptotic behaviour of the

solutions of the problem (1.1), we define
R = exp{— J. Ty(s)ds}J. ¢ B(a) exp{— J. ! (8(s) + B(s))ds}da.
0 0 0

Then we give a statement of our first main result about the asymptotic

behaviour of the solution of the problem (1.1):

Theorem 1.2. Under the assumption R < %, there exists € > 0 such
that
. t
Lim e ([n(t, Nppo,a) + 1 2 ) g, p) = 0
The proof of this result will be given in Section 4.

Under the assumption R > %, we have that there exists an

eigenvalue Ay > 0 associated with the strongly positive eigenvector
(7(a), pla), ie.,

n'(a) + An(a) = —8(a)n(a) - Bla)(a), 0 <a < a,

p'(a) + ap(a) = —y(a)p(a), 0<ax<m,

) ) (1.2)

n(0) = 2p(1),

5(0) = [ " playi(a)da.

0
Let (¢, v) be the eigenvector of the conjugate problem of (1.2), i.e.,
-¢'(a) + 2o(a) = - 8(a)o(a) - Bla)p(a) + ¥(0)B(a), 0<a <a,
-v'(a) + 2p(a) = —y(apw(a), 0O<a<m,
(1.3)

o(r) = 20(0),
¢(a) = 0.
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We normalize (¢, v) such that

J~Oa n(a)o(a)da + JOT plaw(a)da = 1.

Then we give our second result about the asymptotic behaviour of the

solutions of the problem (1.1):

Theorem 1.3. Under the assumption R > %, we have that

Jim ¢ 1, ) - [ [ “ra@rotayda + | ;po<a>w<a>daJ (i, b).

The proof of this result will be given in Section 4. The parameter i

is called the intrinsic rate of natural increase or Malthusian parameter

(see [7]). Theorems 1.2 and 1.3 show that the population densities n(t, a)

and p(t, a) decay in an exponential speed to zero as ¢t — © when the
R <% and the population densities n(¢, ) and p(¢, a) exhibit the

phenomenon of asynchronous exponential growth as ¢ —» o« when the
1
R>—.
2
The layout of the rest part is as follows. In Section 2, we reduce the
problem (1.1) into an abstract Cauchy problem and establish the well-
posedness for it by means of Hille-Yosida operator. In Section 3, we find
the resolvent of the generator of the semigroup of the solutions of the
problem (1.1) which is the preparation for the proof of the asynchronous
exponential growth. In Section 4, we obtain the large time behaviour of

the solutions.
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2. Reduction and Well-Posedness

In this section, we reduce the problem (1.1) into an abstract Cauchy

problem and establish the well-posedness for it. We choose as state

spaces X = I} [0, @] x oy [0, T]. On this Banach space, we introduce the

u Up
A{ J = - [ }, (2.1)
v Vo

u (0) 2u(T)
e Who, @]x who, 7] : = J.a ,

following operators:

the domain D(A) = [

v v(0) . Bla)u(a)da
(2.2)
u -8(a) - B(a) 0 u
R R
v 0 —y(a)) \v
L = A + B, with domain D(L) := D(A). (2.4)

We note that A e L(D(A), X), B e L(X, X), and L € £L(D(A), X).

Using these notations, we rewrite the model (1.1) the following

abstract differential equation in the Banach space X:

au() _
T LU@), t=>0,

(2.5)
U(0) = Uy,
[n(t, -)J [no(a)J
where U(t) = and U, = .
p(, ) po(a)

Since D(A) is nonlocal, we introduce a new abstract setting involving

Hille-Yosida operator. Recall that (see [10]) a linear operator (A, D(A))
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acting on a Banach space X is called a Hille-Yosida operator if there

exists ® € R such that (o, + ©) = p(A) and
sup{|(A - @)" (A = A) | : A > o, n € N} = M(A) < +.

For Hille-Yosida operators, we also recall the following important
result (see [10]):

Theorem 2.1. Let (A, D(A)) be a Hille-Yosida operator on the Banach
space X and the set Xo = (D(A), || |), D(Ap) = {x € D(A) : Ax € Xy},
Apx = Ax for x € D(Ay). Then the operator (Agy, D(Ag)), called the
part of the A in Xy, is the generator of a strongly continuous semigroup

on X denoted by (Ty(t)),s-

In order to use Theorem 2.1, we introduce the following operators on

u Ug
Am{ J = —( ], (2.6)
v Vg

the Banach space X:

the domain D(A,, ) = {m e Who, a]x wh1[o, T]}, o
)

)7 ’ (2.8)
v v(0)
u 2v(T)

‘D(U] i J.Oa Bla)u(a)da | (2.9)

L,, = A,, + B, with domain D(L,,) := D(A,,). (2.10)



18 MENG BAI

We consider the Banach space y = X x R? and the operator

L, 0
A = ,
® - P 0

with the domain D(A) := D(4,,)x {0}. To the operator (A4, D(A)), we
have the following lemma:

Lemma 2.2. The operator (L, D(A)) is isomorphic to the part

(Ag, D(Ag)) of the operator (A, D(A)) in the closure of its domain D(A).

Proof. Since D(A) = X x {0}, we have that

U vy
D(Ag) = {[ J: U e D(4,,), A[ ] € D(A)}
0 0

U
= { J: U e D(A,,), ®U - PU = o}.
0

The claim follows. O
Then if we prove the part (Ay, D(Ag)) of the operator (A, D(A)) in

the closure of its domain D(A) generates a strongly continuous
semigroup, the operator (L, D(A)) does the same. By Theorem 2.1, we
need to prove that the operator (A, D(A)) is a Hille-Yosida operator. To

L,0
this aim, we split A into two operators A; and A,, where A; = ( ]
- PO

00
and Ay =

J. Since Ay is a bounded operator on X, it suffices to prove
D0

that A; is a Hille-Yosida operator (see [11]).

Lemma 2.3. The operator (A;, D(A)) is a Hille-Yosida operator on
the Banach space X.
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Proof. The restriction (Lg, D(Lg)) of L to the kernel of P generates
the nilpotent semigroup (Ty(t)),», on X given by

[expl [ @0 s o
10 (@), fla) = | expl- [ o)dsifa-n) ot sa @

(0, 0), for ¢ > a.

It is easily to see that o(Ly) = 0. For L > 0, its resolvent is
R(:, Ly) E;
R(}\., ./41) = ’
0 0
where E; = (¢, ¥3.), ¢3(a) = exp{ - I(?(% + 8(s) + B(s))ds}, for a < [0, a],
and ¥, (a) = exp{- I;(X +v(s))ds}, for a €0, 1]. For (F,H)e X, F

= (h(a), f2(a)) € X and H = (I, hy) € R?,

R 4) (B, HY| = |RG. A)F| + |HE, |

= HJ:exp{ - J':(k +8(y) + B(y))dyfy(s)ds

Mo, a]

* .[ Oa exp { - La (h + y(y))dyfs(s)ds

Mo, 7]

+lexp { - j Oa(x + 8(s) + Bls)) dshy

Mo, a]

+ exp { - j Oa(x + y(s))dshy

o [0,7]
1
< L0 @l0.m) 2@l o)+ ul + i

Therefore [AR(A, A;)| < 1. That completes the proof. O
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Corollary 2.4. The operator (A, D(A)) is a Hille-Yosida operator on

the Banach space X.
Then by Theorem 2.1 and Lemma 2.4, we have the following result:
Corollary 2.5. The operator (L, D(A)) generates a strongly

continuous semigroup (T(t));o-

By the above Corollary 2.5 and a well-known result in the theory of
strongly continuous semigroups, we immediately obtain the following

result:
Theorem 2.6. For the initial data Uy € D(A), the problem (2.5) has
a unique solution U e CL([0, + ©); X) given by
Ut) = T@#)U,. (2.12)

By Theorem 2.6, we see that Theorem 1.1 follows.
3. The Resolvent of the Generator L

In the section, we find the resolvent R(A, L) of the generator L.
For each given F € X, we solve the equation
(AM-L)U=F. (3.1)

By writing U = (u(a), v(a)), we can see that the Equation (3.1) can be
rewritten as follows:

u'(a) + ru(a) + 8(a)u(a) + Bla)u(a) = f(a), 0<a<a,

v'(a) + Av(a) + y(a(a) = g(a), 0O<ac<m,

u(0) = 20v(r), 3.2)

v(0) = j:[s(a)u(a)da.
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The solutions of the above equations are as follows:

ula) = 2 plaula)dass; (@)ezs (7)
#o@)([ (60,6) 7 F8)ds + 260 ()] (o226 80)s), 8.)
v(a) = [ plak(a)dasy, (@) + 2, (@)] (e2,(5)) " es)as (39

wheregq; (x)= exp{— I; (A +8(r)+B(r)) dr} andeg; (x)= exp{—ﬁc (A +v(r)) dr}.
For each A € C, we define the two operators on X:

G{fl(a)] (2], Ma(a)dass, (@)ess -

= - , (3.5)
h@) | | paa)dasy, (@

{fl (a)J (@) ([ (e 6 As)ds + 26, ()] (0226 olo)dls)
S}\, - .

fla) o2.(0)[ (62,6)) " o(s)ds
(3.6)
Since
fi(a)
Gy, < ceg () (I (@) 1 0,) + 2@l 20, 5) > O — +0),
fa(a)

there exists Ly >0 such that |G| <1 for A > ig. This implies

(I -G, )" exists for A > Ao. Then the resolvent of L is

RO\, L)F = (I - L, ) 'S,.F, for & > A,. (3.7)
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4. Asynchronous Exponential Growth

In this section, we consider the long-term behaviour of solutions of
the problem (1.1). For this purpose, we shall analyze the spectrum of the
operator (L, D(A)) and prove that the semigroup (7'(¢)),so is positive,

eventually compact and irreducible. Recall (see [9] and [12]) that a

strongly continuous semigroup (7'(¢)),so in a Banach lattice X is said to
be positive if 0 < f € X implies T(t)f > 0 for all ¢ > 0; it is said to be
eventually compact if there exists ¢, >0 such that the operator 7'(¢) is

compact for all ¢>¢,. Moreover, (T'(t)),, is said to be irreducible if

Vo € X, v € X* (topological dual space of X), ¢ > 0, v > 0, we have that
(T(to)p, v) > 0 for some ¢y, > 0, where () denotes the usual product of
duality in X.

We denote by s(L) the spectral bound of L, i.e.,
s(L) = sup{Re A : A € o(L)}.

We also denote by o, the growth bound of the semigroup (T'(t)),(, i-e.,
®g = inf{o € R : there exists M, > 1 such that |T(t)] < Mye® for all ¢}
= inf{o e R : tli)rgo e T (@) = 0}.

Lemma 4.1. The semigroup (T(t)),so is positive.

Proof. It suffices to prove that the resolvent R(), L) of the generator

L is positive for all sufficiently large A (see [[9], Theorem VI.1.8]). Using
the expression (3.7 of R(A, L), we can see easily that for

0<F e X, R(n, L)F >0 forall » > Xy. That completes the proof. O

Lemma 4.2. The semigroup (T(t)),so is irreducible.



WELL-POSEDNESS AND ASYMPTOTIC BEHAVIOUR OF ... 23
Proof. Since R(A, L) = J'Jooe*MT(t)dt, for all Rex > s(L) (see [9],

Lemma VI.1.9]), we have that VF = (f(a), g(a)) € X, ¥ = (¢, ¥9) € X",
F>0% >0,

(¥, R(h, L)F) = I;we—“w, T(¢)F)ds.

If we prove that (¥, R(A, L)F) > 0 for some A > 0, then from the above
equation, it follows that there exists a ¢, > 0 such that (¥, T(t)F) > 0,
and the desired assertion then follows. Let ©; and my be the projections

onto the first and second coordinates, respectively. We will prove that
n(R(A, L)F)(a) > 0 for almost all a € [0, @] and ny(R(A, L)F)(a) > 0
for almost all a e€[0,7]. For 0<F and F =0, without loss of

generality, we can assume that 0 < f e I}[0, @] and f(a) > 0 for almost

all a € [xg, x;]. Using the expression (3.7) of R(A, L), we have that

f
7T1(Sx[

J(a) > 0, for almost all a € [x(, a],
g

f

nl(GlSk[ J(a) > 0, for almost all a € [0, a],

8

f

nz(Gka[ J(a) > 0, for almost all a € [0, 7).

8

Then we obtain n;(R(A, L)F)(a) > 0 for almost all a < [0, a] and
ng(R(A, L)F)(a) > 0 for almost all a [0, ]. If we assume that
g(a)>0 for almost all a e [xg, x;], the result is the same. This

completes the proof. O

Lemma 4.3. The semigroup (T'(t)),;so is eventually compact.
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Proof. We note that the abstract differential equation (2.5) is equivalent
to the problem (1.1). For t5 > 0, let us introduce n;(a) = n(a, t(a)) and
pi(a) = p(a, t(a)), where t(a) = ty + a. Then n;(a) and p;(a) satisfy the

following equations:

ni(a)+ 8(a)n (a) + Bla)ny (@) =0, 0<a < a,

pi(a) + y(a)p;(a) = 0, 0O<a<m,
4.1)
n1(0) = 2p(ty, 7),
p1(0) = [ "planlto, a)da.
0
Hence
m(@) = 2pltg. )expl- [ (3(6) + Bls)ds}, e
p(@ = [ planto, a)da expi- [ (366) + pe)ds). @3)
For ¢t — a > 0, this implies
n(t, @) = 2p(t — a, ) exp|{— j : (8(s) + B(s))ds), (4.4)
p(t, a) = jaB(a)n(t - a, a)da exp{- Ja(S(s) + B(s))ds}. (4.5)
0 0

Therefore, if ¢ > max{a, T}, p is continuous in a and ¢. Consequently, the

second equation in problem (1.1) implies that p is continuously

differentiable with respect to a if ¢ > 2 max{a, 7}. Then (4.5) implies that
n is continuously differential with respect to a if ¢ —a > 2 max{a, T}.
Hence the semigroup (7'(t)),», generated by L is differentiable for ¢ > 3
max{@, 7}. Since W50, @)x WH1(0, 1) is compactly imbedded in

I}0, @) x I}(0, 7), the claim follows. O
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Corollary 4.4. o(L) # ¢ and s(L) > —o.

Proof. This follows from Theorem C-II1.3.7 of [12] that if the
semigroup is positive, eventually compact and irreducible, then the
spectrum of its generator is not 0. O

Corollary 4.5. oy = s(L) € o(L).

Proof. Since the semigroup (T'(¢)),», is eventually compact, we have
that the Spectral Mapping Theorem holds, wy = s(L) (see [[9], Corollary
IV.3.12]). The positivity of the semigroup (7'(t)),s, and the fact
s(L) > —o imply that s(L) € o(L) (see [[9], Theorem VI.1.10]). O

In the sequel, we analyze the spectrum o(L) of the generator

(L, D(A)).

Lemma 4.6. The spectrum o(L) of L consists of eigenvalues only and
is determined by a characteristic equation, more precisely,

Leo(l) e KA)-1=0, (4.6)

where
K() =2 exp{— [0 y(s»ds} [ "t exp{— [CEECE B(s»ds} da.

Proof. Since the semigroup (7T'(t)),5, is eventually compact, the
spectrum of its generator is consists of eigenvalues only (see [[9],
Corollary V.3.2])). Let n(t, a)=e"n(a) and p(t, a) = "p(a),

substituting them into (1.1),

n'(a) + An(a) = - 8(a)n(a) - Bla)n(a), O0<a < a,

p'(a) + Ap(a) = - y(a)p(a), 0<a<m,

_ _ 4.7
n(0) = 2p(r),

50) = [ pay(a)da
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We have that

n(a) = 2p(t) exp{— J.Oa (A +8(s) + B(s))ds}, (4.8)

Bla) = j : B(a)7(a)da exp{— j : O+ y(s))ds}. (4.9)
Substituting (4.9) into (4.8), we have that
n(a) = 2-.-; B(a)r(a)da exp{— JOT »+ y(s))ds} exp{— J.: (r + 8(s) + B(s))ds}.

Multiplying the above equation by B(a) and integrating from 0 to @, we
have that

[ " Bam(@da - of " pamia)da p{ [0 y(s))ds} [ "p@

exp{— j :(x + 5(s) + B(s))ds} da.

We note that J.(?B(a)ﬁ(a)da # 0. Then

1=2 exp{— j 0 0.+ y(s))ds}J:B(a)exp{— j O“ (. + 8(s) + B(s))ds}da. (4.10)

O
Lemma 4.7. We have the following assertions:

@ If
exp{— .[()T y(s)ds}joa B(a) exp{— J: (8(s) + B(S))ds}da < %, (4.11)

then the spectral bound s(L) < 0.
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(i) If
T a a 1
exps — I y(s)ds J. B(a) exp —J (3(s) + B(s))ds pda > 3 (4.12)
0 0 0

then the spectral bound s(L) > 0.

Proof. We can easily see that lim, _,,, K(A) = 0, lim; _,_, K(A) = +
and K'(A) < 0. If (4.11) is satisfied, then we have K(0) < 1, so that the
equation K(X) =1 has no nonnegative root. Since s(L) is the largest root
of this equation, it follows that s(L) < 0. Similarly, under the condition
of the assertion (i), we have that K(0)>1, so that the equation
K() =1 has no negative root and, consequently, s(L)> 0. This
completes the proof. O

Proof of Theorem 1.2. By Corollary 4.5 and Lemma 4.7, we have
that the growth bounds oy < 0 under the assumption (4.11). Then there

exists ¢ > 0 such that
: et _
tlgg e®||T(¢) = 0.

We note that (n(¢, a), p(t, a)) = T(t)(ng(a), po(a)). Then Theorem 1.2
follows. O

Proof of Theorem 1.3. By Corollary 4.5 and Lemma 4.6, we know
that A = s(L) is the dominant eigenvalue of the eigenvalue problem

n'(a) + An(a) = - 8(a)n(a) - Bla)a(a), 0 < a < a,

p'(a) + Ap(a) = —y(a)p(a), 0O<ac<m,

) ) (4.13)
7(0) = 2p(7),

50) = [ plaita)da,

and the corresponding eigenvector (n, p) is strongly positive in (0, @)
and (0, 7), ie., n(a) >0 for almost all 0 <a <a and p(a)> 0 for

almost all 0 < @ < 7. We normalize (n, p) such that



28 MENG BAI
a T
J. n(a)da + J. pla)da = 1.
0 0

Combining Lemmas 4.1-4.3, Corollary 4.4 and Corollary V.3.3 of [9],
we have that

lim e (n, p) = c(, D). (4.14)

t—>+o0

Let (¢, v) be the eigenvector of the conjugate problem of (4.13), i.e.,

- ¢'(a) + ro(a) = - 3(a)p(a) - Bla)p(a) + ¥(0)B(a), O <a <a,
—¢'(a) + 2p(a) = — y(a(a), 0O<a<r,

(4.15)
¥(1) = 20(0),
o(@) = 0.

We normalize (¢, v) such that

j Oaﬁ(a)(p(a)da ; jo Haw(a)da = 1.

Then ¢ and y are also strictly positive in (0, @) and (0, 7), due to a

similar reason as that for n and p. Now we consider the function
J'gn ¢, a)p(a)e "'da + J-OT plt, ay(a)e *da. From (1.1) and (4.15), we

easily obtain

i“.an(t, a)p(a)e 'da + JT p(t, a)w(a)e_}‘otdaj =0.
dt\Jo 0
Hence

Jan(t, a)p(a)e 'da + IT plt, al(a)e 'da = Jano(a)(p(a)da
0 0 0

+ IT polal(a)da,
0



WELL-POSEDNESS AND ASYMPTOTIC BEHAVIOUR OF ... 29

for all ¢t > 0. Letting ¢ — o and using (4.14), we get

cj.oa n(a)p(a)da + J()T play(a)da = joano(a)@(a)da + JOT pola)(a)da.

Since J; n(a)p(a)da + JOT pla(a)da = 1, we obtain

a T
¢ = [ mo(@o@)da+ [ po(ap(@)da.
Hence, this completes the proof of Theorem 1.3. O
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