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Abstract 

In this paper, we study the model of stem cells with two phases. We establish 
the well-posedness for this model and show that the solutions exhibit the 
phenomenon of asynchronous exponential growth if they don’t decay in an 
exponential speed to 0 as the time goes to infinity. 

1. Introduction 

In this paper, we consider the model of the stem cells, which is 
divided in two compartments: the proliferating and the nonproliferating 
(see [1], [2], and [3]). We denote by ( )atn ,  and ( )atp ,  the densities of the 

nonproliferating cells and the proliferating cells of the age a at the time t, 
respectively. The nonproliferating cells are assumed to differentiate at a 
rate ( )aδ  and transit to the proliferating cells of the age 0 with a rate 

( ).aβ  As soon as a cell enters the proliferating phase, it is committed to 
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divide a time τ  (a constant) later. The proliferating cells also have a 
mortality rate ( ).aγ  The nonproliferating cells and the proliferating cells 

have the maximal ages a  and ,τ  respectively. Then the evolution of the 
stem cell population is described by the following system: 
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 (1.1) 

We shall prove that under suitable assumptions on ,, βδ  and γ  the 

problem (1.1) is globally well-posed, and analyze the large time behaviour 
of its solutions. We prove that the solutions exhibit the phenomenon of 
asynchronous exponential growth if they don’t decay in an exponential 
speed to 0 as .∞→t  The phenomenon of asynchronous exponential 
growth appears frequently in age-or size-structured population models 
(see [4], [5], [6], [7], [8], [9]). In the framework of semigroup theory, a 
strongly continuous semigroup ( )( ) 0≥ttT  with infinitesimal generator A 

on the Banach space X is said to possess the property of asynchronous 
exponential growth if there exist ,0 R∈λ  which is an eigenvalue of A 

and a strictly positive associated eigenfunction X∈Φ  such that, for 
each ,0 Xu ∈  

( ) ,lim 000 Φ=λ−
+∞→

CutTe t
t

 

where 0C  is a constant depending on the initial data 0u  (see [4], [5], [6], 

[7], [8], [9]). 
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The theory of asynchronous exponential growth is well studied in [7], 
[8], and [9] where some applicable sufficient conditions are derived. In 
this paper, we shall use the theory developed in [7], [8], and [9] to prove 
that the solution operators of the model (1.1) possess this property. 

Throughout this paper, the vital rates ( ) ( ),, aa βδ  and ( )aγ  are 

supposed to satisfy the following conditions: 

(1) ( )aδ  and ( )aγ  are nonnegative and continuous functions defined 

in [ ]a,0  and [ ].,0 τ  

(2) ( )aβ  is a nonnegative and continuous function defined in [ ]a,0  

with ( ) 0>β a  for almost all ( ).,0 aa ∈  

Our main result considers the well-posedness for the problem (1.1) 
and reads as follows: 

Theorem 1.1. For ( ) ( )( ) [ ] [ ]τ,0,0, 1,11,1
00 WaWapan ×∈  such that 

( ) ( )( )apan 00 ,  satisfies the boundary condition ( ) ( )τ00 20 pn =  and 

( ) ( ) ( ) ,0 000 daanap
a
β= ∫  the problem (1.1) has a unique solution  

( ) ([ ) ( ) ( )) ([ ) [ ] [ ]),,0,0,,0,0,0,,0, 1111,11,1 ττ LaLCWaWCpn ×∞×∞∈ ∩  

and for any ,0>T  the mapping ( ) ( )pnpn ,, 00 6  from the space 

{( ) ( ) ( ) ( ) ( )( ) ( ( ) ( ) ( ) )}daanappnWaWpn
a

0
0

000
1,11,1

00 ,20,0:,0,0, β=×∈ ∫ττ  

to ([ ] ( ) ( )) ([ ] [ ] [ ])ττ ,0,0,,0,0,0,,0 1111,11,1 LaLTCWaWTC ×× ∩  is 

continuous. 

The proof of this result will be given in Section 2. 
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Before giving the main results about the asymptotic behaviour of the 
solutions of the problem (1.1), we define 

( ) ( ) ( ) ( )( ) .expexp:
000

dadsssadssR
aa
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






γ−= ∫∫∫
τ

 

Then we give a statement of our first main result about the asymptotic 
behaviour of the solution of the problem (1.1): 

Theorem 1.2. Under the assumption ,2
1<R  there exists 0>ε  such 

that 

( ( ) [ ] ( ) [ ] ) .0,,lim ,0,0 11 =⋅+⋅ε
∞→ τLaL

t
t

tptne  

The proof of this result will be given in Section 4. 

Under the assumption ,2
1≥R  we have that there exists an 

eigenvalue 00 ≥λ  associated with the strongly positive eigenvector 

( ( ) ( ),ˆ,ˆ apan  i.e., 
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 (1.2) 

Let ( )v/ϕ,  be the eigenvector of the conjugate problem of (1.2), i.e., 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
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τ
 (1.3) 
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We normalize ( )v/ϕ,  such that 

( ) ( ) ( ) ( ) .1ˆˆ
00

=/+ϕ ∫∫ daavapdaaan
a τ

 

Then we give our second result about the asymptotic behaviour of the 
solutions of the problem (1.1): 

Theorem 1.3. Under the assumption ,2
1≥R  we have that 

( ) ( ) ( ) ( ) ( ) ( ).ˆ,ˆ,lim 0
0

0
0

0 pndaavapdaaanpne
at

t 







/+ϕ= ∫∫λ−

∞→

τ
 

The proof of this result will be given in Section 4. The parameter 0λ  

is called the intrinsic rate of natural increase or Malthusian parameter 
(see [7]). Theorems 1.2 and 1.3 show that the population densities ( )atn ,  

and ( )atp ,  decay in an exponential speed to zero as ∞→t  when the 

2
1<R  and the population densities ( )atn ,  and ( )atp ,  exhibit the 

phenomenon of asynchronous exponential growth as ∞→t  when the 

.2
1≥R  

The layout of the rest part is as follows. In Section 2, we reduce the 
problem (1.1) into an abstract Cauchy problem and establish the well-
posedness for it by means of Hille-Yosida operator. In Section 3, we find 
the resolvent of the generator of the semigroup of the solutions of the 
problem (1.1) which is the preparation for the proof of the asynchronous 
exponential growth. In Section 4, we obtain the large time behaviour of 
the solutions. 
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2. Reduction and Well-Posedness 

In this section, we reduce the problem (1.1) into an abstract Cauchy 
problem and establish the well-posedness for it. We choose as state 

spaces [ ] [ ].,0,0: 11 τLaLX ×=  On this Banach space, we introduce the 

following operators: 
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( ) ( ).:domainwith, ADLDBAL =+=  (2.4) 

We note that ( )( ) ( ),,,, XXBXADA LL ∈∈  and ( )( )., XADL L∈  

Using these notations, we rewrite the model (1.1) the following 
abstract differential equation in the Banach space X: 
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Since ( )AD  is nonlocal, we introduce a new abstract setting involving 

Hille-Yosida operator. Recall that (see [10]) a linear operator ( )( )ADA,  
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acting on a Banach space X is called a Hille-Yosida operator if there 
exists R∈ω  such that ( ) ( )Aρ⊂∞+ω,  and 

{ ( ) ( ) } ( ) .:,:sup +∞<=∈ω>λ−λω−λ − AMnA nn N  

For Hille-Yosida operators, we also recall the following important 
result (see [10]): 

Theorem 2.1. Let ( )( )ADA,  be a Hille-Yosida operator on the Banach 

space X and the set ( ( ) ) ( ) { ( ) },::,,: 000 XAxADxADADX ∈∈=⋅=  

AxxA =:0  for ( ).0ADx ∈  Then the operator ( )( ),, 00 ADA  called the 

part of the A in ,0X  is the generator of a strongly continuous semigroup 

on 0X  denoted by ( )( ) .00 ≥ttT  

In order to use Theorem 2.1, we introduce the following operators on 
the Banach space X: 
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( ) ( ).:domainwith, mmmm ADLDBAL =+=  (2.10) 
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We consider the Banach space 2: R×=χ X  and the operator 

,
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with the domain ( ) ( ) { }.0: ×= mADD A  To the operator ( )( ),, AA D  we 

have the following lemma: 

Lemma 2.2. The operator ( )( )ADL,  is isomorphic to the part 

( )( )00 , AA D  of the operator ( )( )AA D,  in the closure of its domain ( ).AD  
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The claim follows.   

Then if we prove the part ( )( )00 , ADA  of the operator ( )( )ADA,  in 

the closure of its domain ( )AD  generates a strongly continuous 

semigroup, the operator ( )( )ADL,  does the same. By Theorem 2.1, we 

need to prove that the operator ( )( )ADA,  is a Hille-Yosida operator. To 

this aim, we split A into two operators 1A  and ,2A  where 
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0

00
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


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
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Φ
=A  Since 2A  is a bounded operator on X, it suffices to prove 

that 1A  is a Hille-Yosida operator (see [11]). 

Lemma 2.3. The operator ( )( )AA D,1  is a Hille-Yosida operator on 

the Banach space X. 
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Proof. The restriction ( )( )00, LDL  of L to the kernel of P generates 
the nilpotent semigroup ( )( ) 00 ≥ttT  on X given by 

( ) ( ( ) ( ))

{ ( ) ( )( ) } ( )

{ ( ) } ( )
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
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It is easily to see that ( ) .00 /=σ L  For ,0>λ  its resolvent is 
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λ
≤ τ  

Therefore ( ) .1, 1 ≤λλ AR  That completes the proof.  
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Corollary 2.4. The operator ( )( )AA D,  is a Hille-Yosida operator on 

the Banach space X. 

Then by Theorem 2.1 and Lemma 2.4, we have the following result: 

Corollary 2.5. The operator ( )( )ADL,  generates a strongly 

continuous semigroup ( )( ) .0≥ttT  

By the above Corollary 2.5 and a well-known result in the theory of 
strongly continuous semigroups, we immediately obtain the following 
result: 

Theorem 2.6. For the initial data ( ),0 ADU ∈  the problem (2.5) has 

a unique solution [ )( )XCU ;,01 ∞+∈  given by 

( ) ( ) .0UtTtU =   (2.12) 

By Theorem 2.6, we see that Theorem 1.1 follows. 

3. The Resolvent of the Generator L 

In the section, we find the resolvent ( )LR ,λ  of the generator L. 

For each given ,XF ∈  we solve the equation 

( ) .FULI =−λ   (3.1) 

By writing ( ) ( )( ),, avauU =  we can see that the Equation (3.1) can be 

rewritten as follows: 
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( ) ( ) ( ) ( ) ( )

( ) ( )

( ) ( ) ( )














β=

=

<<=γ+λ+′

<<=β+δ+λ+′

∫ .0

,20

,0,

,0,

0
daauav

vu

aagavaavav

aaafauaauaauau

a

τ

τ
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The solutions of the above equations are as follows: 

( ) ( ) ( ) ( ) ( )τλλ εεβ= ∫ 21
0

2 adaauaau
a
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
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

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For each ,C∈λ  we define the two operators on X: 
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(3.6) 

Since 

( )

( )
( ) ( ( ) ( ) ( ) ( ) ( ),0,02,012

2

1
11 +∞→λ→+ε≤













λλ aLaL afafc

af

af
G τ  

there exists 00 >λ  such that 1<λG  for .0λ≥λ  This implies 

( ) 1−
λ− GI  exists for .0λ≥λ  Then the resolvent of L is 

( ) ( ) .for,, 0
1 λ>λ−=λ λ
−

λ FSLIFLR   (3.7) 
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4. Asynchronous Exponential Growth 

In this section, we consider the long-term behaviour of solutions of 
the problem (1.1). For this purpose, we shall analyze the spectrum of the 
operator ( )( )ADL,  and prove that the semigroup ( )( ) 0≥ttT  is positive, 

eventually compact and irreducible. Recall (see [9] and [12]) that a 
strongly continuous semigroup ( )( ) 0≥ttT  in a Banach lattice X is said to 

be positive if Xf ∈≤0  implies ( ) 0≥ftT  for all ;0≥t  it is said to be 

eventually compact if there exists 00 ≥t  such that the operator ( )tT  is 

compact for all .0tt ≥  Moreover, ( )( ) 0≥ttT  is said to be irreducible if 

∗∈/∈ϕ∀ XvX ,  (topological dual space of X), ,0,0 >/>ϕ v  we have that 

( ) 0,0 >/ϕ vtT  for some ,00 >t  where ⋅  denotes the usual product of 

duality in X. 

We denote by ( )Ls  the spectral bound of L, i.e., 

( ) ( ){ }.:Resup LLs σ∈λλ=  

We also denote by 0ω  the growth bound of the semigroup ( )( ) ,0≥ttT  i.e., 

{ ( ) }teMtTM t allforthatsuch1existsthere:inf:0
ω

ωω ≤≥∈ω=ω R  

{ ( ) }.0lim:inf =∈ω= ω−
∞→

tTe t
t

R  

Lemma 4.1. The semigroup ( )( ) 0≥ttT  is positive. 

Proof. It suffices to prove that the resolvent ( )LR ,λ  of the generator 

L is positive for all sufficiently large λ  (see [[9], Theorem VI.1.8]). Using 
the expression (3.7) of ( ),, LR λ  we can see easily that for 

( ) 0,,0 ≥λ∈≤ FLRXF  for all .0λ>λ  That completes the proof.  

Lemma 4.2. The semigroup ( )( ) 0≥ttT  is irreducible. 
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Proof. Since ( ) ( ) ,,
0

dttTeLR tλ−∞+
∫=λ  for all ( )Ls>λRe  (see [9], 

Lemma VI.1.9]), we have that ( ) ( )( ) ( ) ,,,, 21
∗∈//=Ψ∈=∀ XvvXagafF  

,0,0 >Ψ>F  

( ) ( ) .,,,
0

dtFtTeFLR t Ψ=λΨ λ−
∞+

∫  

If we prove that ( ) 0,, >λΨ FLR  for some ,0>λ  then from the above 

equation, it follows that there exists a 00 >t  such that ( ) ,0, >Ψ FtT  

and the desired assertion then follows. Let 1π  and 2π  be the projections 

onto the first and second coordinates, respectively. We will prove that 
( )( ) ( ) 0,1 >λπ aFLR  for almost all [ ]aa ,0∈  and ( )( ) ( ) 0,2 >λπ aFLR  

for almost all [ ].,0 τ∈a  For F≤0  and ,0≠F  without loss of 

generality, we can assume that [ ]aLf ,00 1∈≤  and ( ) 0>af  for almost 

all [ ]., 10 xxa ∈  Using the expression (3.7) of ( ),, LR λ  we have that 

( ( ) [ ],,allalmostfor,0 01 axaa
g

f
S ∈>













π λ  

( ( ) [ ],,0allalmostfor,01 aaa
g

f
SG ∈>













π λλ  

( ( ) [ ].,0allalmostfor,02 τ∈>












π λλ aa

g

f
SG  

Then we obtain ( )( ) ( ) 0,1 >λπ aFLR  for almost all [ ]aa ,0∈  and 

( )( ) ( ) 0,2 >λπ aFLR  for almost all [ ].,0 τ∈a  If we assume that 

( ) 0>ag  for almost all [ ],, 10 xxa ∈  the result is the same. This 

completes the proof.   

Lemma 4.3. The semigroup ( )( ) 0≥ttT  is eventually compact. 
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Proof. We note that the abstract differential equation (2.5) is equivalent 
to the problem (1.1). For ,00 >t  let us introduce ( ) ( )( )atanan ,1 =  and 

( ) ( )( ),,1 atapap =  where ( ) .0 atat +=  Then ( )an1  and ( )ap1  satisfy the 

following equations: 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( )

( ) ( ) ( )














β=

=

<<=γ+′

<<=β+δ+′

∫ .,0

,,20

,0,0

,0,0

0
0

1

01

11

111

daatnap

tpn

aapaap

aaanaanaan

a

τ

τ
 (4.1) 

Hence 

( ) ( ) { ( ) ( )( ) },exp,2
0

01 dssstpan
a

β+δ−= ∫τ  (4.2) 

( ) ( ) ( ) { ( ) ( )( ) }.exp,
0

0
0

1 dsssdaatnaap
aa

β+δ−β= ∫∫  (4.3) 

For ,0>− at  this implies 

( ) ( ) { ( ) ( )( ) },exp,2,
0

dsssatpatn
a

β+δ−−= ∫τ  (4.4) 

( ) ( ) ( ) { ( ) ( )( ) }.exp,,
00

dsssdaaatnaatp
aa

β+δ−−β= ∫∫  (4.5) 

Therefore, if { } pat ,,max τ>  is continuous in a and t. Consequently, the 

second equation in problem (1.1) implies that p is continuously 
differentiable with respect to a if { }.,max2 τat >  Then (4.5) implies that 

n is continuously differential with respect to a if { }.,max2 τaat >−  

Hence the semigroup ( )( ) 0≥ttT  generated by L is differentiable for 3>t  

{ }.,max τa  Since ( ) ( )τ,0,0 1,11,1 WaW ×  is compactly imbedded in 

( ) ( ),,0,0 11 τLaL ×  the claim follows.  
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Corollary 4.4. ( ) φ≠σ L  and ( ) .−∞>Ls  

Proof. This follows from Theorem C-III.3.7 of [12] that if the 
semigroup is positive, eventually compact and irreducible, then the 
spectrum of its generator is not .0/   

Corollary 4.5. ( ) ( ).0 LLs σ∈=ω  

Proof. Since the semigroup ( )( ) 0≥ttT  is eventually compact, we have 

that the Spectral Mapping Theorem holds, ( )Ls=ω0  (see [[9], Corollary 

IV.3.12]). The positivity of the semigroup ( )( ) 0≥ttT  and the fact 

( ) −∞>Ls  imply that ( ) ( )LLs σ∈  (see [[9], Theorem VI.1.10]).  

In the sequel, we analyze the spectrum ( )Lσ  of the generator 

( )( )., ADL  

Lemma 4.6. The spectrum ( )Lσ  of L consists of eigenvalues only and 

is determined by a characteristic equation, more precisely, 

( ) ( ) ,01 =−λ⇔σ∈λ KL   (4.6) 

where 

( ) ( )( ) ( ) ( ) ( )( ) .expexp2
000

dadsssadssK
aa









β+δ+λ−β








γ+λ−=λ ∫∫∫
τ
�  

Proof. Since the semigroup ( )( ) 0≥ttT  is eventually compact, the 

spectrum of its generator is consists of eigenvalues only (see [[9], 

Corollary V.3.2]). Let ( ) ( )aneatn tλ=,  and ( ) ( ),, apeatp tλ=  

substituting them into (1.1), 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )

( ) ( ) ( )














β=

=

<<γ−=λ+′

<<β−δ−=λ+′

∫ .0

,20

,0,

,0,

0
daanap

pn

aapaapap

aaanaanaanan

a

τ

τ
 (4.7) 
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We have that 

( ) ( ) ( ) ( )( ) ,exp2
0 








β+δ+λ−= ∫ dssspan
a

τ  (4.8) 

( ) ( ) ( ) ( )( ) .exp
00 








γ+λ−β= ∫∫ dssdaanaap
aa
�  (4.9) 

Substituting (4.9) into (4.8), we have that 

( ) ( ) ( ) ( )( ) ( ) ( )( ) .expexp2
000 








β+δ+λ−








γ+λ−β= ∫∫∫ dsssdssdaanaan
aa τ

�  

Multiplying the above equation by ( )aβ  and integrating from 0 to ,a  we 

have that 

( ) ( ) ( ) ( ) ( )( ) ( )adssdaanadaana
aaa
β









γ+λ−β=β ∫∫∫∫ 0000
exp2

τ
�  

( ) ( )( ) .exp
0

dadsss
a









β+δ+λ− ∫  

We note that ( ) ( ) .0
0

≠β∫ daana
a

 Then 

( )( ) ( ) ( ) ( )( ) .expexp21
000

dadsssadss
aa









β+δ+λ−β








γ+λ−= ∫∫∫
τ
�   (4.10) 

 

Lemma 4.7. We have the following assertions: 

(i) If 

( ) ( ) ( ) ( )( ) ,2
1expexp

000
<









β+δ−β








γ− ∫∫∫ dadsssadss
aaτ

�  (4.11) 

then the spectral bound ( ) .0<Ls  
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(ii) If 

( ) ( ) ( ) ( )( ) ,2
1expexp

000
≥









β+δ−β








γ− ∫∫∫ dadsssadss
aaτ

�  (4.12) 

then the spectral bound ( ) .0≥Ls  

Proof. We can easily see that ( ) ( ) +∞=λ=λ −∞→λ+∞→λ KK lim,0lim  
and ( ) .0<λ′K  If (4.11) is satisfied, then we have ( ) ,10 <K  so that the 
equation ( ) 1=λK  has no nonnegative root. Since ( )Ls  is the largest root 
of this equation, it follows that ( ) .0<Ls  Similarly, under the condition 
of the assertion (ii), we have that ( ) ,10 ≥K  so that the equation 

( ) 1=λK  has no negative root and, consequently, ( ) .0≥Ls  This 
completes the proof.  

Proof of Theorem 1.2. By Corollary 4.5 and Lemma 4.7, we have 
that the growth bounds 00 <ω  under the assumption (4.11). Then there 
exists 0>ε  such that 

( ) .0lim =ε
∞→

tTe t
t

 

We note that ( ) ( )( ) ( ) ( ) ( )( ).,,,, 00 apantTatpatn =  Then Theorem 1.2 
follows.  

Proof of Theorem 1.3. By Corollary 4.5 and Lemma 4.6, we know 
that ( )Ls=λ  is the dominant eigenvalue of the eigenvalue problem 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )

( ) ( ) ( )














β=

=

<<γ−=λ+′

<<β−δ−=λ+′

∫ ,ˆ0ˆ

,ˆ20ˆ

,0,ˆˆˆ

,0,ˆˆˆˆ

0
daanap

pn

aapaapap

aaanaanaanan

a

τ

τ
 (4.13) 

and the corresponding eigenvector ( )pn ˆ,ˆ  is strongly positive in ( )a,0  

and ( ),,0 τ  i.e., ( ) 0ˆ >an  for almost all aa <<0  and ( ) 0ˆ >ap  for 

almost all τ.<< a0  We normalize ( )pn ˆ,ˆ  such that 
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( ) ( ) .1ˆˆ
00

=+ ∫∫ daapdaan
a τ

�  

Combining Lemmas 4.1-4.3, Corollary 4.4 and Corollary V.3.3 of [9], 
we have that 

( ) ( ).ˆ,ˆ,lim pncpne t
t

=λ−
+∞→

 (4.14) 

Let ( )v/ϕ,  be the eigenvector of the conjugate problem of (4.13), i.e., 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )

( )














=ϕ

ϕ=/

<</γ−=/λ+′/−

<<β/+ϕβ−ϕδ−=λϕ+ϕ′−

.0

,02

,0,

,0,0

a

v

aavaavav

aaavaaaaaa

τ

τ
 (4.15) 

We normalize ( )v/ϕ,  such that 

( ) ( ) ( ) ( ) .1ˆˆ
00

=/+ϕ ∫∫ daavapdaaan
a τ

�  

Then ϕ  and v/  are also strictly positive in ( )a,0  and ( ),,0 τ  due to a 

similar reason as that for n̂  and .p̂  Now we consider the function 

n
a
∫0

( ) ( ) ( ) ( ) .,, 00
0

daeavatpdaeaat tt λ−λ− /+ϕ ∫
τ
�  From (1.1) and (4.15), we 

easily obtain 

( ) ( ) ( ) ( ) .0,, 00
00

=







/+ϕ λ−λ− ∫∫ daeavatpdaeaatndt

d tta τ
�  

Hence 

( ) ( ) ( ) ( ) ( ) ( )daaandaeavatpdaeaatn
atta

ϕ=/+ϕ ∫∫∫ λ−λ−
0

000
00 ,,

τ
�  

( ) ( ) ,0
0

daavap /+ ∫
τ
�  
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for all .0≥t  Letting ∞→t  and using (4.14), we get 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) .ˆˆ 0
0

0
000

daavapdaaandaavapdaaanc
aa

/+ϕ=/+ϕ ∫∫∫∫
ττ
��  

Since ( ) ( ) ( ) ( ) ,1ˆˆ
00

=/+ϕ ∫∫ daavapdaaan
a τ

�  we obtain 

( ) ( ) ( ) ( ) .0
0

0
0

daavapdaaanc
a

/+ϕ= ∫∫
τ
�  

Hence, this completes the proof of Theorem 1.3.  
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