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Abstract 

In this paper, we consider a three term nonlinear recurrence 
( ) ,12 cxbHaxx nnn ++= −−  where cba ,,10 <<  are real numbers and H is 

the Heaviside step function. We are able to derive the exact relations between 
the initial values 2−x  and ,1−x  what’s more, the limiting behaviours of the 
solution determined by them. 

1. Introduction 

Three term recurrence relations of the form 

( ) { },,3,2,1,0,, 21 …=∈= −− NnyyFy nnn  

arises in many studies of natural phenomena. A well known example has 
the relation 
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,,21 N∈+= −− nyyy nnn  

which is satisfied by the Fibonacci sequence { }.,8,5,3,2,1,0 …  Now, 

there are numorous studies for the above equation when F is a 
continuous function. However, when F is discontinuous, few studies are 
available (see, e.g., [1-4]). Since, (discontinuous) on-off control functions 
such as 
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etc. are common, it is extremely important to consider prototype models 
and study their properties.  

In this paper, we consider the following recurrence relation: 

( ) .,12 N∈++= −λ− ncybHayy nnn   (3) 

where ( ) R∈∈ cba ,,1,0  and RR →λ :H  is the step (activation) or 

bang bang function defined by (2). Clearly, for given any initial pair 

( )12, −− yy  in ,2R  we can generate a unique real sequence { }∞ −= 2nny  

through (3). Such a sequence is called a solution of (3) originated from 
( )., 12 −− yy  

There are many qualitative properties of this nonlinear recurrence 
which are worthy of studying. Here, however, we will concentrate on one 

of its asymptotic behaviours. More specifically, given ( ) ,, 2
12 R∈−− yy  we 

are interested in the limit of the solution sequence { }∞ −= 2nny  originated 

from it. 
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As we will see below, there are only a few types of limiting 
behaviours for solutions of (3) and we can also determine exactly the 
‘initial region’ from which each type of solutions originate. 

Since there are four real parameters in the nonlinear model (3), the 
above precise information may seem like a lot of trouble. Fortunately, we 
may resort to linear recurrences and transformations to solve this 
problem. 

Indeed, let { }∞ −= 2kky  be real sequences that satisfy 

,,222 N∈+= − kkk dayy   (4) 

,,1212 N∈+= −+ kkk dayy   (5) 

where ( )1,0∈a  and d is a real number. Then the following facts are 

obtained easily by induction: 

● If { }∞ −= 2nny  is a sequence which satisfies (4), then 
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● If { }∞ −= 2nny  is a sequence which satisfies (5), then 
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Next, we assume that .0≠b  Then by ,λ−= nn yx  (3) can be written as 

( ) ( )( ) ,,112 N∈λ−+++= −− nacxbHaxx nnn   (8) 

where H is the Heaviside function defined in (1). Furthermore, if 

( )1,0∈a  and ,0>b  then by nn xb
az −= 1  and (8), we can get 

( ) ( ) ;,1 12 N∈+−+= −− ndzHaazz nnn   (9) 
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while if ( )1,0∈a  and ,0<b  then by ,1
nn xb

az −=  (8) is equivalent to 

( ) ( ) ,,1 12 N∈+−+= −− ndzGaazz nnn   (10) 

where G is the Heaviside function defined in (1) and 

( )( ).11 λ−+−= acb
ad  

Since (10) is similar to (9), we consider the following equation: 

( ) ,,12 N∈++= −− ncxbHaxx nnn   (11) 

which includes (9) by assuming the case ( ) .0,1,0 >∈ ba  

Henceforth, we will discuss the limiting behaviours of solutions of 
(11). 

To state the corresponding results, it is convenient to introduce some 
notations. We set 
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Next, if I and J are real intervals, their cross product JI ×  will be 
denoted by IJ, and we will assume that this product receives the priority 
attention in a mathematical expression. For instance, if we set 

( ] ( ),,0,0, ∞=∞−= +− RR  

then { }−−+−−+++ RRRRRRRR ,,,  is a partition of .2R  Other subsets of 

the plane will be introduced in the subsequent sections. Here we will 
employ the following notations: 

{ } { } .andanyfor,, RR ∈⊆ΩΩ∈=ΩΩ∈+=Ω+ axaxaxxaa  
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2. The Main Result 

Under the assumption that ( )1,0∈a  we have ( ) ( )abc −−=α− 1  
( ) ( ) .1 +α=−+< abc  Thus we need to consider five cases (i) ,0 −α<  

(ii) ,0 −α=  (iii) ,0 +− α<<α  (iv) ,0 +α=  and (v) .0 +α>  

Theorem 2.1. Suppose ( ) 0,1,0 >∈ ba  and .0<α+  Then every 
solution of (11) tends to .+α  

Proof. Let { }∞ −= 2kkx  be a solution of (11). If 0>kx  for all ,2−≥k  

then from (11), cbaxx +−= −2kk  for all .N∈k  One sees immediately 
from (6) and (7) that ( ) ( ) ,01lim <α<α=−−= +−abcxnn  which is a 

contradiction. Thus there is 20 −≥m  such that .0
−∈ Rmx  Then we may 

show that there exists 2−≥m  such that ., 1
−

+ ∈ Rmm xx  In fact, if 

,10
−

+ ∈ Rmx  then we may take ,0mm =  if ,10
+

+ ∈ Rmx  then by (11), we 

have 

( ) ,0000 12
−

+λ+ ∈+−=++= RcbaxcxbHaxx mmmm  

( ) ,1213 0000
+

++λ++ ∈++=++= RcbaxcxbHaxx mmmm  

""  

( ) ,2212222 0000
−

−+−+λ−++ ∈+−=++= RcbaxcxbHaxx mmmm kkkk  

( ) .1221212 0000
+

−++λ−+++ ∈++=++= RcbaxcxbHaxx mmmm kkkk  

Thus, 

.0lim,0lim 122 00 <α=<α= +++∞→−+∞→ kkkk mm xx  

Therefore, there exists 2−≥m  such that ., 1
−

+ ∈ Rmm xx  We may 

suppose without loss of generality that ., 12
−

−− ∈ Rxx  Then by (11) and 

induction, −∈ Rnx  for all .2−≥n  Thus cbaxx nn ++= −2  for .N∈n  
In view of (6) and (7), .lim +∞→ α=nn x  The proof is complete. 
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Theorem 2.2. Suppose ( ) 0,1,0 >∈ ba  and .0>α−  Then every 

solution of (11) tends to .−α  

The proof is similar to that of Theorem 2.1 and hence is omitted.       
In the next result, we assume that ( ) 0,1,0 >∈ ba  and .0=α+  Then 

.0 10 +∞→<<<= −−−
kaaa "  If we let 

( ) ( ] ,,, 1 N∈= −
+

− kkk
k aaA   (12) 

and 

( ) ( ) ( ],0,01 cbcbaAA +−=+−=−  

then 

( ) ( ) ( ) ( ).,,,
0

11 k

k

kk k AAcbaAA ∪
∞

=

+−−− =⊆∈+−= RRN  

Theorem 2.3. Suppose ( ) 0,1,0 >∈ ba  and .0 +α=  Let { }∞ −= 2nnx  

be any solution of (11). 

(i) If ( ) ,, 12
−−

−− ∈ RRxx  then .0lim =nn x  

(ii) If ( ) ( ) ( ) ,, 12
−+

−− ∈ RR∪sAAxx k  where ,0 k<≤ s  then 0lim 2 =nn x  

and .lim 12 −+ α=nn x  

(iii) If ( ) ( ) ( ) ,, 12
+−

−− ∈ RR∪sAAxx k  where ,0 s≤≤ k  then −α=nn x2lim  

and .0lim 12 =+nn x  

Proof. The proof of (i) is quite easy and hence skipped. To see (ii), 

suppose ( ) ( ) ( ),, 12
sAAxx k∈−−  where .0 k<≤ s  Then by (11), 

( ) ( ) ( ),1
2120

−
−−− =+−∈+−=++= kk AcbaAcbaxcxbHaxx  

( ) ( ) ( ),1
1011

−
−− =+−∈+−=++= ss AcbaAcbaxcxbHaxx  
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and by induction, ( ) ( ) ( ) ., 11
122

−+−−−
+ ⊆∈ RRAAxx s

ss
k  Therefore, we may 

suppose without loss of generality ( ) ., 12
−+

−− ∈ RRxx  Then by (11) and 

induction, ( ) −+
+ ∈ RR122 , nn xx  for all .2−≥n  Thus 222 −= nn axx cb ++  

and .1212 cbaxx nn +−= −+  In view of (6) and (7), 0lim 2 =∞→ nn x  and 

−+∞→ α=12lim nn x  as desired. Finally, the proof of (iii) is similar to that 

of the case (ii) and hence omitted. 

In the next result, we assume that ( ) 0,1,0 >∈ ba  and .0=α−  

Then −∞→>>>= +++
kaaa "100  and ( ) [ ).,0, 10

++
+

∞
=

=∞− kkk
aa∪  

In the next result, we assume that ( ) 0,1,0 >∈ ba  and .0 +− α<<α  

Then +∞→<<<= −−−
kaaa "100  and >>= ++

100 aa  .−∞→> +
ka"  

Therefore, if let ( ) ( ]−
+

−= 1, kk
k aaA  and ( ) ( ]++

+= kk
k aaB ,1  for N∈k  and 

( ) ( ) cbaAA +−=− 01  and ( ) ( ) ,01 cbaBB ++=−  then 

( ) ( ) ( ) ( ) ,,, 11 N∈=++=+− −− kkkkk BcbaBAcbaA  

( ) ( ) ( ) ( ).,,,
00

11 k

k

k

k
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−
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++−−− ==⊆⊆ RRRR  

Theorem 2.4. Suppose ( ) 0,1,0 >∈ ba  and .0 +− α<<α  Let { }∞ −= 2nnx  

be any solution of (11). 

(i) If ( ) ( ) ( ) ( ) ( ) ,, 12
−+

−− ∈ RR∪∪ trs BBAAxx k  where k<≤ s0  and 

,0 tr ≤≤  then +α=nn x2lim  and .lim 12 −+ α=nn x  

(ii) If ( ) ( ) ( ) ( ) ( ) ,, 12
+−

−− ∈ RR∪∪ trs BBAAxx k  where s≤≤ k0  and 

,0 rt ≤≤  then −α=nn x2lim  and .lim 12 ++ α=nn x  
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Proof. Suppose ( ) ( ) ( ),, 12
sAAxx k∈−−  where .0 k<≤ s  Then by (11), 

( ) ( ) ( ),1
2120

−
−−− =+−∈+−=++= kk AcbaAcbaxcxbHaxx  

( ) ( ) ( ),1
1011

−
−− =+−∈+−=++= ss AcbaAcbaxcxbHaxx  

and by induction, ( ) ( ) ( ) ., 11
122

−+−−−
+ ⊆∈ RRAAxx s

ss
k  Suppose 

( ) ( ) ( ),, 12
tr BBxx ∈−−  where .0 tr ≤≤  By (11), if ,0=r  then 

( ) ( ) ( ) ,10
2120

+−
−−− ⊆=++∈++=++= RBcbaBcbaxcxbHaxx  

( ) ,01011 <+−≤+−=++= −− cbcbaxcxbHaxx  

i.e., ( ) ;, 10
−+∈ RRxx  while if ,0>r  then 

( ) ( ) ( ),1
2120

−
−−− =++∈++=++= rr BcbaBcbaxcxbHaxx  

( ) ( ) ( ),1
1011

−
−− =++∈++=++= tt BcbaBcbaxcxbHaxx  

and by induction, ( ) ., 122
−+

+ ∈ RRrr xx  Therefore, we may suppose 

without loss of generality that ( ) ., 12
−+

−− ∈ RRxx  Then by (11) and 

induction, ( ) −+
+ ∈ RR122 , nn xx  for all .2−≥n  Thus += −222 nn axx  

cb +  and cbaxx nn +−= −+ 1212  for .N∈n  In view of (6) and (7), 

+∞→ α=nn x2lim  and −+∞→ α=12lim nn x  as desired. The conclusion (ii) 

is similar to (i) and its proof is omitted. 
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Theorem 2.5. Suppose ( ) 0,1,0 >∈α b  and .0=α−  Let { }∞ −= 2nnx  

be any solution of (11). Then its limiting behaviour can be summarized in 
the following table: 

2−x  1−x  Condition nx2  12 +nx  

+∈ R  +∈ R   0→  0→  

( )∞+∈ + ,1a  = 0  +α→  0→  

−∈ R  +∈ R   0→  +α→  

( ]+∞−∈ 1, a  = 0  0→  +α→  

[ )∞+∈ ,0  ( )0,−∞∈   +α→  0→  

[ )++
+∈ kk aa ,1  [ )++

+∈ ss aa ,1  s<≤ k0  +α→  0→  

[ )++
+∈ kk aa ,1  +

+= 1sa  s=≤ k0  +α→  0→  

+
+= 1ka  ( )++

+∈ ss aa ,1  s=≤ k0  0→  +α→  

( )++
+∈ kk aa ,1  ( )++

+∈ ss aa ,1  s=≤ k0  +α→  0→  

+
+= 1ka  [ )++

+∈ ss aa ,1  10 +=≤ sk  0→  +α→  

( )++
+∈ kk aa ,1  +

+= 1sa  10 +=≤ sk  +α→  0→  

( )++
+∈ kk aa ,1  ( )++

+∈ ss aa ,1  10 +=≤ sk  0→  +α→  

[ )++
+∈ kk aa ,1  [ )++

+∈ ss aa ,1  1+> sk  0→  +α→  

The proof is similar to that of Theorems 2.1, 2.3, 2.4 and hence is 
omitted. 

3. Concluding Remarks 

Since we have derived the exact relations between the initial pair 

( )12, −− xx  with the limiting behaviours of the solution { }∞ −= 2kkx  of (11) 

originated from it, we may make some interesting observations. A 
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solution { }∞ −= 2kkx  of (11) converges if, and only if, (i) ,0<α+  (ii) ,0>α−  

(iii) 0=α+  and ;, 12
−

−− ∈ Rxx  or, (iv) 0=α−  and ., 12
+

−− ∈ Rxx  

We may also make assertions on the limiting behaviours of 

subsequences { }∞ −= 12 kkx  and { }∞ −=+ 112 kkx  of solutions { }∞ −= 2kkx  of (11). 

These and others can be made by going through the previous results one 
by one, and are not listed here since they do not offer any new theoretical 
information. 
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