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Abstract 

In this work, we develop a formalism to determine the geodesic orbits at a point 
associated with the surface of a rotating planet which at the same time is forced 
to move on a toroid geometric structure. Such an approach is based on a 
Lagrangian method applied to the geodesics on the torus. In particular, we 
consider a circular as well as elliptic toroids. We find parameters relating the 
angular velocity with the internal angular momentum (spin) of the planet. We 
show that this relation leads to a non-Newtonian potential. Thus, through our 
Lagrangian formalism we determine the constants of the motion, including the 
orbital angular momentum and the energy. 
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1. Introduction 

Since the discovery of first exoplanet, it has been a growing interest 
in this new science [5]. This year, NASA’s Kepler Mission announced 
1284 new planets [14]. Recently [6], it was discovered the first exoplanet 
in the habitable zone for a star less massive than the Sun. Most of such 
exoplanets have been found in a distance less than 3000 light years from 
Earth. 

Exoplanetary science has challenged the models of planetary systems 
formation [12]. Since the discovery of the first exoplanet, many questions 
have been arised about the formation of planetary systems. In the case of 
PEG51, a planet with the 60% of Jupiter mass, which is very close to his 
parent star, put in doubt the formation of this planet at its present 
position. As a consequence of this, a planet migration theory was 
proposed [11]. 

Moreover, the recent growing number of exoplanets with high 
eccentricities and quite close to their parent stars can put in doubt our 
current understanding of planetary system formation [13]. For those 
reasons, the development of better models can help us to increase our 
panorama in exoplanetary science. 

More recently, it has been determined the angular velocity of rotating 
exoplanet [8]. With those data, a relation between internal angular 
momentum and mass (Regge trajectories) for various planets has been 
established. It is worth remarking that the rotation and translation 
periods in combination with the distance to its central star can affect the 
surface temperature and consequently the atmosphere and climate of a 
planet. The main motivation of this work emerged in the search of the 
understanding this combined rotation and translation movements. 

One of our guides in our goal arises from models of geometric torus 
structures around astronomical objects, including accretion disks around 
collapsed systems [1] and black-holes [2]. In analogy of the initial 
condition of the formation of a planetary system, one may expect that 
such a accretion toroidal disks leads eventually to a planet to move along 
the geometry of a torus. Thus, the motion of a point on a surface of the 
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evolving planet will describe geodesics determined by the geometry of the 
torus. In this context, it turns out convenient to develop a Lagrangian 
formalism associated with curved spaces. This will have the advantage to 
have a systematic method to obtain the constants of the motion knowing 
the symmetries of the corresponding Lagrangian. 

Following, the above method we explore the possibility of applying 
not only the solar planetary system but also to exoplanets. In the case of 
our solar system, we show that our formalism may allows to find a 
relation between the periods of the planet around the Sun and the planet 
rotation. While in the case of exoplanets, our approach may help to 
explain why the planets rotate according the Regge trajectories. 
Specifically, in this work, we propose a model in which the geodesic path 
of a point on the surface of a planet is determined by geometric tools of 
the torus and a Lagrangian formalism. 

 

Figure 1. Circular torus. (a) The angle φ  represents the translational 

motion and θ  the spin angle rotation. (b) The radius of the torus is 
denoted by p and the radius of the tube by q. 
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The technical plan of this work is as follows. In Section 2, we 
introduce the geometry of a torus, the constants of the motion and 
compute the corresponding potential. Section 3 roughly describes the 
elliptic generalization of the torus. Finally, in Section 4, we explain our 
results and describe possible further research. 

2. Circular Torus 

Consider the coordinates transformation 

( ) ,coscos φθ+= qpx  

( ) ,sincos φθ+= qpy  

.sin θ= qz  (1) 

It can be shown that (1) describes a circular torus with p as its the radius 
and q the radius of the torus tube. Here, the variable θ  is the angle 
inside the tube measured in the clockwise direction, and φ  is the angle of 

the orbit (see Figure 1). 

From the transformation (1), one obtains the Lagrangian 

( )[ ],cos2
1 2222

0 φθ++θ= qpqmL  (2) 

where the potential associated to some external force is not considered. 
Instead, we shall determine a potential due to the geometry (1). 

Observe that 

( ) ,cossin, 2
0

2
0 φθ+θ−=

θ∂
∂θ=

θ∂
∂ qpqmqm LL  (3) 

and 

( ) .0,cos 2
0 =

φ∂
∂φθ+=

φ∂
∂ LL pm  (4) 
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Hence, the Euler-Lagrange equations for θ  and φ  

,0=
θ∂

∂−
θ∂

∂ LL
dt
d  (5) 

,0=
φ∂

∂−
φ∂

∂ LL
dt
d  (6) 

lead to 

[ ] ( ) ,0cossin 2
0

2
0 =φθ+θ+θ qpqmqmdt

d  (7) 

and 

( )[ ] ,0cos 2
0 =φθ+pmdt

d  (8) 

respectively. Note that from (7), one obtains 

( ) .0cossin 22 =φθ+θ+θ qpqq   (9) 

Let us define 

( ) .cos 2
0 φθ+≡φ pmP   (10) 

Observe that φP  is the canonical momentum associated with .φ  

Moreover, from (8), one discovers that φP  is a constant of the motion. It is 

not difficult to prove that φP  is equivalent to the z-component of the 

angular momentum of the torus .zl  Thus, (10) can also be written as 

( ) .cos 2
0 φθ+= pmlz   (11) 

Solving (11) for φ  gives 

( )
.

cos 2
0 θ+

=φ
qpm

lz  (12) 

On the other hand, substituting Equation (12) into (9) yields 

( )
.0

cos
sin

3
0

2
2 =

θ+

θ
+θ

qpm
lqq z  (13) 
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Multiplying this equation by 2θ  and simplifying, we find 

( )
.0

cos2
1

2
1

2
0

2
22

0 =












θ+
+θ

qpm
lqmdt

d z  (14) 

This equation leads us to another constant of the motion which can be 
identified with the Hamiltonian and the total energy of the system E in 
the form 

( )
.

cos2
1

2
1

2
0

2
22

0 E
qpm

lqm z =
θ+

+θ  (15) 

Solving (15) for ,θ  we find the equation 

( )
.

cos
21

2
0

2

2
0

2













θ+
−=θ

qpm
lE

qm
z  (16) 

Introducing the analogue parameter 

,2
2

2
Em

lh
o
z=  (17) 

the expression (16) can be rewrite as 

( )
( ) .cos

cos 22

0 θ+
−θ+=θ qp

hqp
hqm

lz  (18) 

Thus, from Equations (12) and (18), the ratio between θ  and φ  becomes 

( ) ( ) .coscos1 22 hqpqpqh −θ+θ+=
φ
θ  (19) 

Observe that Equation (19) is a continue function of h and p. The values 
of h and p lead to different paths on the toroid. It is noticeable that the 
Equations (18) and (19) are similar to the geodesic equations derived by 
[2]. However, the advantage of our derivation is that (19) can be written 
in terms of the fundamentals constants zl  and E. This shall allow us a 

deeper understanding of the physics meaning provided by the dynamics 
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of the system. In particular, observe from (17) that 2h  is negative if the 

total energy is negative. In fact, the parameter 2h  will play an important 
role in the determination of the different geodesics on the torus as we 
shall show in detail in the next section. 

2.1. Geodesic on the surface of the torus 

In this subsection, we shall analyze the possible trajectories of a 
particle on the torus. In particular, we shall focus our attention on the 
energy of the system E giving in (15). 

Let us first consider the case .0=zl  From Equation (15), one obtains 

.2
1 22

0 θ= qmE  (20) 

Note that according to (17), this case corresponds to .0=h  

If ,0≠zl  then we can assume that 0=θ  in Equation (15) and E 

becomes 

( )
,

cos2 2
0

2

θ+
=

qp
lE z  (21) 

where we set .const0 =θ=θ  For ,00 =θ  we get 

( )
.

2 2

2
0

qp
lE z
+

=  (22) 

In the other words, from (17), we find ( )qph +=0  which corresponds to 

the outer equator of the torus. For ,0 π=θ  we get 

( )
,

2 2

2

qp
lE z
−

=π  (23) 

given ( )qph −=π  for the inner equator. 
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In the case that 0≠zl  and ,0≠θ  the bounded orbits must satisfy 

that .0<E  In this case, from (18), one needs to impose the condition 

( ) .cos0 22 hqp −θ+≤   (24) 

Table 1. Paths on the toroid 

h Geodesic 

0 Meridians 

qp −  The inner equator 

( )qph −≤<0  Unbounded orbits 

qp +  The outer equator 

( ) ( )qpqp +≤≤− R  Bounded geodesics ( )02 <h  

This can be rewritten as 

,22 H≤h   (25) 

with 

( ) .cos 22 θ+= qpH   (26) 

Observe that 

( ) ( ).qpqp +≤≤− H   (27) 

Thus, we have discovered that bounded orbits correspond to the energy 
between 0E  and πE  according to Equations (22) and (23). 

On the other hand, for ,0 E<  the non allowed orbits are determined 
when 

( ) .0cos 22 <−θ+ hqp   (28) 

Considering (27), from (28), we arrive to the relation 

( ).0 qph −≤<   (29) 
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As we mentioned, the parameter h determines the type of geodesic 
that travels around the torus. We observe h is related to the angular 
momentum zl  and the total energy of the system E. Table 1 shows some 

geodesics for different values of h. 

2.2. The potential associated with the torus 

The potential associated with the geometry can be obtained through 
the relations (1) (see [3]). In fact, from (1), one finds 

( ) [ ( ) ( ) ] ,0222 2222224222224 =−+−+++−+ qpzqpzrqprzr  

(30) 

where we used polar coordinates for x and y. Our main goal here is to 
start with (30) and subsequently derive the analogue of the equations of 
motion. 

For this purpose, let us first write (30) as 

[ ( ) ( ) ] ( ) .0222 222
2

2222224
2 =+−+

−+−+
+ qpz

r
qpzqpzr  (31) 

By taking the derivative (with respect to the time) of this expression, one 

obtains 

[ ( ) ]
[ ( )]

.1
2222

2223
z

qpzr
zrzqpz

rr
+−+

+−+
−=  (32) 

From (1), we have 

.cos θθ= qz   (33) 

Since from (1), we get 

,cos22 θ+=+= qpyxr   (34) 

then z and z  can be written in terms of r as 

( ) ( ) ,and 22
2

2
22 hrpr

hqrm
lzprqz
o

z −−=−−=  (35) 
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where we had used the relation (18) in .z  Then substituting Equation 
(35) into (32), one obtains 

( ) ( ) .2

2222

2
0

2

r
prqhrpr

hqm
plr z −−−−=  (36) 

Deriving (36) once again and using (36) itself yields 

( )
.12

2222
2













−−

−−
−

+
−

+−=
prq

pr
hr

r
prrrr  (37) 

Adding and subtracting 322 rml oz  in the last equation and substituting 
Equation (36), we can rewrite the Equation (37) as 

,3
0

2

r
V

rm
lr z

∂
∂−=  (38) 

where 

.1
22 20

2
2












+−=

rm
lrV z  (39) 

Thus, using (36), we discovered that V is given by 

( ) ( ) ( ( ) ) .14
2 24

22222

223
0

22

0

2












−

−−−−
−=

rr
prqhrpr

qhm
lp

m
lV zz  (40) 

This is the potential associated with the geometric structure of the 
circular torus. 

3. Elliptic Toroid 

A more realistic approach, it is to consider the orbit of a planet in 
terms of the geometry of an elliptic toroid, namely, 

( ) ,coscos1 φθ+= dx  

( ) ,sincos2 φθ+= dy  

,sin θ=z  
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where 1d  and 2d  are the ratio of the radius of the axis of the tube of the 

torus ( 1p  (semi-major axis) and 2p  (semi-minor axis)) and the radius of 

the tube of the torus q. 

Consider the Lagrangian 

[ ].2
1 222 zyx ++=L  (41) 

From Equations (40) and (41), we get 

[( ) ( ) ][ 222
2

22
1

2 coscossincos2
1 φφθ++φθ++θ= ddL  

( ) ].cossinsin2 21 φθφφθ−+ dd  (42) 

Instead of following the Euler-Lagrange equation of motion 

,0=
∂
∂−

∂
∂

ii xxdt
d LL  (43) 

where θ=1x  and ,2 φ=x  we shall start from the Hamiltonian 

.LH +φ+θ= φθ PP   (44) 

Here, θP  and φP  are the canonical momentum associated with the 

coordinates θ  and ,φ  respectively. Specifically, we have 

.ix
i

Px =
∂
∂L   (45) 

From (42) and (45), we get 

( ) .cossinsin21 φφφθ−+θ=
θ∂

∂ ddL  (46) 

Thus, the canonical momentum θP  can be written as 

( ) .cossinsin21 φφφθ−+θ=θ ddP   (47) 
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While, the canonical moment φP  becomes 

φ∂
∂=φ
LP  

  [( ) ( ) ]φφθ++φθ+= 22
2

22
1 coscossincos dd  

( ) .cossinsin21 θφφθ−+ dd  (48) 

From Equations (47) and (48), we find that the angular velocities θ  and 

φ  can be written as 

[ ],1
φθ −=θ hPPfg  (49) 

and 

[ ],1
θφ −=φ hPPg  (50) 

where 

[( ) ( ) ],coscossincos 22
2

22
1 φθ++φθ+= ddf   (51) 

( ) .cossinsin21 φφθ−= ddh   (52) 

Thus, we discovered that the Lagrangian L  can be rewritten in the form 

[ ].22
1 φ+φθ+θ= fhL  (53) 

Noticed that the determinant g of the metric is 

.2hfg −=   (54) 

Considering the Lagrangian (53), the angular velocities (49) and (50), and 
the canonical momenta (47) and (48) one finds that the Hamiltonian (45) 
becomes 

[ ].22
1 22

φφθθ +−= PPPhfPfgH  (55) 
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If we assume that the Hamiltonian represents the total energy of the 
system E, then (55) leads 

[ ]
.

2
2
1

2

22

hf

PPPhfPf
E

−

+−
= φφθθ  (56) 

Solving (56) for f, we obtain 

.
22

2
2

22

φθθ

φ

−−

+
=

PhPPE

EhP
f  (57) 

Substituting Equations (52), (53), and (54) into the last equation and 
solving to f, we find a relation between the angles θ  and φ  in terms of 

the canonical moments, θP  and ,φP  and the total energy of the system E 

[( ) ( ) ]φθ++φθ+ 22
2

22
1 coscossincos dd  

( )
( )

.
cossinsin22

cossinsin2
2

21

21
2

θφθ

φ

−φφθ−+

φφθ−−
=

PPPddE

ddEP
 (58) 

The relation (58) shows us that it is not possible to express the last 
equation in terms of the constant of motion related to the canonical 
momentum θP  and φP  as we did for the circular toroid. In fact, we can 

see that this relation is consistent with the circular analysis due to the 
fact that when 21 dd =  (58) can be reduced to (14). 

4. Final Remarks 

We have developed a toroidal model that determines the rotation and 
translation movements of a planet around a source object. Following the 
geodesic path of a particle attached to the rotating planet adapted to the 
torus geometry, we show that the total energy and the z-component of the 
angular momentum, which are constants of motion, play a key role in the 
orbit described by a given planet. We have also developed the model in 
the case of elliptic toroid which is appropriated for planets with large 
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eccentric orbits. It is worth mentioning that the elliptic case leads to a 
complicated formulae which can be solved through numerical 
approximations for further research. 

One of the main results of our formalism is the link between the 
translation and rotation motions of a planet. In fact, by introducing a 
parameter h with length units, which is a function of the constants of the 
motion (energy and angular momentum) of the system, we find that for 

positive energies, 02 >h  the orbit described on the torus do not 
corresponds to planetary orbits. On the other hand, for negative energies 

one gets that 02 <h  and, therefore, this parameter can not be identified 
with a physical length. Nevertheless, in this case, we obtain the 
corresponding planetary orbits. 

A number of interesting possible application of our toroidal model 
may emerge. First, one may try to determine the spin period of the 
exoplanet which recently has shown increasing attention [8, 9]. Second, 
the potential found (42) can be used in the context of the gravitational 
Poisson equation to obtain the density associated to a toroidal geometry. 
Moreover, it seems attractive to extend our toroidal model for the 
description of other astrophysical phenomena, such as the path of binary 
stars through the galaxy, globular clusters, epicyclic movements of the 
stars through the spiral galaxies and ring galaxies. Finally, our theory 
could be useful in the description of the toroidal dust surrounding super 
massive black-holes [10]. 
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