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1. Introduction

As the development of singular integral operators (see [10], [23], [24]),
their commutators and multilinear operators have been well studied. In
[5], [21], [22], the authors prove that the commutators generated by the
singular integral operators and BMO functions are bounded on L”(R")
for 1 < p < . Chanillo (see [2]) proves a similar result when singular
integral operators are replaced by the fractional integral operators. In
[14], [18], the boundedness for the commutators generated by the

singular integral operators and Lipschitz functions on Triebel-Lizorkin
and L”(R")(1 < p < ») spaces are obtained. In [1], [13], the bounded-
ness for the commutators generated by the singular integral operators
and the weighted BMO and Lipschitz functions on LP(R")(1 < p < )

spaces are obtained (also see [12]). In [11], some singular integral
operators satisfying a variant of Hérmander’s condition are introduced,
and the boundedness for the operators and their commutators are
obtained (see [16], [25]). Motivated by these, in this paper, we will study
the multilinear operator generated by the singular integral operator
satisfying a variant of Hérmander’s condition and the weighted Lipschitz
and BMO functions.

First, let us introduce some notations. Throughout this paper, @ will

denote a cube of R" with sides parallel to the axes. For any locally

integrable function f, the sharp maximal function of fis defined by

MA@ = sup o [ 170~ fold

where, and in what follows, fg = |Q|_1IQf(x)dx. It is well-known that

(see [10], [23])

M) @) = sup inf oo [ 170) el
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Let

M@ = swp ior [ 7

L 1@
For 1 > 0, let M¥(f)(x) = M*(|f|")/"(x) and M, (f)(x) = M(/f[")/"(x).

For 0 <n<n,1< p< o and the non-negative weight function w,

set

1/p
My pw(f)(x) = ggp[ f If(y)lpw(y)dy] :

@ )1 pn/n
We write M, , ,(f) = M, ,(f) if n = 0.

The A, weight is defined by (see [10]), for 1 < p < oo,

p-1
A, = {O <we L}, (R"): sgp(ﬁ IQw(x)dxj [ﬁ J'Qw(x)_l/(p_l)dxj < oo},

and

A ={0<welll (R"): M(w)(x) < Cw(x), a. e.}.

loc

Given a non-negative weight function w. For 1 < p < o, the weighted

Lebesgue space LP”(R", w) is the space of functions f such that

1l ) = ( [ I#eute) dx]l/p B

For 0 < B <1 and the non-negative weight function w, the weighted

Lipschitz space Lipg (w) is the space of functions b such that

1/p
& ||Llpﬁ(w) (Q)B/n (w(Q).[ 1b(y) - bQ|Pw(x)1dej < o,
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and the weighted BMO space BMO(w) is the space of functions b such
that

1 » 1-p 1/p
Blssroe = 502 | gy [ o)~ bal @ Pdy | <

Remark. (1) It has been known that (see [9]), for be Lipg(w),w € A;
and x € Q,

k
186 = byt | < CHIBL 002 Q)F/".

(2) It has been known that (see [1], [9]), for b € BMO(w), w € A; and

x €@,
16Q = by | < CHPl paso(w)w(*)-
(3) Let b € Lipg(w) or b € BMO(w) and w € A;. By [8], we know
B 1

that spaces LipB(w) or BMO(w) coincide and the norms "b”LipB(w) or
o] BMO(w) 2Te equivalent with respect to different values 1 < p < o.

Definition 1. Let ¢ be a positive, increasing function on R* and

there exists a constant D > 0 such that

o(2t) < Do(t) for t > 0.

Let w be a non-negative weight function on R" and f be a locally

integrable function on R". Set, for 1 < p < oo,

1 p d 1/17
Iflzpo@y = sup (@J.Qud)lf(y)l w(y) y] ,

xeR",d>0

where Q(x, d) = {y € R" : |[x — j| < d}. The generalized weighted Morrey
space is defined by

LPO(R", w) = {f & Lloo(B") : [fll progy) < )-
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If o¢d)=d® 6>0, then LP?°R" w)=LP%R", w), which

is the classical Morrey spaces (see [19], [20]). If o¢(d) =1, then

LP?°(R", w) = I’(R", w), which is the weighted Lebesgue spaces (see
[10]).

As the Morrey space may be considered as an extension of the
Lebesgue space, it is natural and important to study the boundedness of

the operator on the Morrey spaces (see [6], [7], [15], [17]).
Definition 2. Let ® = {¢1, ..., ¢;} be a finite family of bounded

functions in R". For any locally integrable function f, the ® sharp

maximal function of fis defined by

ME(T) @) = sup inf j|f<y) Jeibilq = )iy

) |Q

where the infimum is taken over all m-tuples {c;, ..., ¢;} of complex

numbers and x¢ is the center of @. For n > 0, let

I 1/n
Mét),n(f) (x) = 51;1;{ l}nf:cl}{lQl J‘ |f(y) Lzllcjd)i(xQ - y)lndy

Remark. We note that M# ~ f# if { =1 and ¢; = 1.

Definition 3. Given a positive and locally integrable function f in

R™, we say that f satisfies the reverse Holder’s condition (write this as

f € RH (R")), if for any cube @ centered at the origin, we have
1
0 < sup f(x) < Cr | fly)dy.
xeQ @l Je

In this paper, we will study some singular integral operators as

following (see [11]).
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Definition 4. Let K € L?(R") and satisfy

K]~ < C,
|K(x)| < Clx| ™,

there exist functions By, ..., B; € L},.(R" —{0}) and ® ={¢y,...,¢;} = L*(R")
such that |det[¢;(y; )]|2 e RH,(R™), and for a fixed >0 and any
|x| > 2]y > 0,

|5

[
K(x - 5) = > By ()] < I L
=1

|x _ y|n+5 )

For f e Cy, we define the singular integral operator related to the

kernel K by

(@) = [ K= ().

Moreover, let m be the positive integer and b be the function on R". Set

By (b x, ) = () = 3" - D(y) (x - )"

loj<m

The multilinear operator related to the operator T is defined by

R b; x,

()@ = [ T2 g yyray
BY fx -

Note that the classical Calderén-Zygmund singular integral operator

satisfies Definition 4 (see [10], [23]). Also note that the commutator

[, T](f) = bT(f) - T(bf) is a particular operator of the multilinear

operator T? if m = 0. The multilinear operator T? are the non-trivial
generalizations of the commutator. It is well-known that commutators

and multilinear operators are of great interest in harmonic analysis and
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have been widely studied by many authors (see [3], [4], [8]). The main

purpose of this paper is to prove the sharp maximal inequalities for the
multilinear operator T®. As the application, we obtain the weighted

I” norm inequality and Morrey space boundedness for the multilinear

operator T°.

2. Theorems and Lemmas

We shall prove the following theorems:

Theorem 1. Let T be the singular integral operator as Definition 4,
weA,0<n<lL1l<r<ow, and D% e BMO(w) for all o with

lo| = m. Then there exists a constant C >0 such that, for any
feCy(R") and X € R",

MG o(T(N)®) < C D 1D“bl gy EMy 1 (F) (®)-

laj=m
Theorem 2. Let T be the singular integral operator as Definition 4,
weA,0<n<1,1<r<w0<p<1, and D e Lipg(w) for all o
with |o| = m. Then there exists a constant C > 0 such that, for any
feCy(R") and X € R",
# ~ ~ ~
MG (T () E) < € 3 1Dl i 0y 0@ Mp, 1,10 () @)
lof=m
Theorem 3. Let T be the singular integral operator as Definition 4,
we A,1<p<wn, and D* € BMO(w) for all a with |a| = m. Then
T is bounded from LP(R", w) to LP(R", w'™P).
Theorem 4. Let T be the singular integral operator as Definition 4,
weA,1<p<w,0<D<2" and D% e BMO(w) for all o with
lof = m. Then T is bounded from LP*°®(R", w) to L»®(R", w'™P).
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Theorem 5. Let T be the singular integral operator as Definition 4,

weA,0<B<L,1<p<n/B1/q=1/p-PB/n, and D e Lipg(w)
for all a with |o|f =m. Then T® is bounded from LP(R", w) to
LY(R", w'™9).

Theorem 6. Let T be the singular integral operator as Definition 4,
weA,0<B<1,0<D<2" 1<p<n/B1l/qg=1/p-B/n, and
Db e Lipg(w) for all o with |of =m. Then T® is bounded from
ILP°(R", w) to LT *(R", w'™9).

To prove the theorems, we need the following lemmas:

Lemma 1 (See [10, p.485]). Let 0 < p < g < © and for any function
f > 0. We define that, for 1 /r =1/p-1/q,

s = supalte < B" + f) > 179, N, (1) = suplfrolys /ol

where the sup is taken for all measurable sets @ with 0 < |Q| < . Then

lwze < Nog (F) < (a /(@ =P Pflyga-

Lemma 2 (See [2]). Let T be the singular integral operator as

Definition 4. Then T is bounded on LP(R",w) for we A, with
1< p < o, and weak (L', I') bounded.

Lemma 3 (See [11], [25]). Let 1 < p <o, 0<n<oo,we A, and
@ = {¢1, ..., ¢;} < L”(R™) such that | det[d;(y; )]|2 e RH(R™). Then,

for any smooth function f for which the left-hand side is finite,

[ M @Pe@)ds < Cf M () =P wlx)ds.
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Lemma 4 (See [2], [9]). Let 0<n<n,1<s<p<n/n1l/q=
1/p-n/n and w € Ay. Then

1Mo 5,0 (s ) < CWllze o

Lemma 5 (See [9]). Let 0<n<n, 0<D<2" 1<s<p<n/n,
1/g=1/p-n/n and w € Ay. Then

1My, 5,00l 2.0y < Clflze-0 )

Lemma 6 (See [4]). Let b be a function on R" and D*A e LY(R")

for all a with |of = m and any q > n. Then

By (55 %, 9)] < Cle = 5™ Y

jaj=m

1 1/q
ap (e
[t o]

where (:) is the cube centered at x and having side length 5x/;|x - .

Lemma 7. Let 1<p<w,0<n<wwed,0<D<2" and
® = {0, ..., &} € L”(R™) such that |det[o;(y;)]*> € RH,,(R™). Then,

for any smooth function f for which the left-hand side is finite

”Mﬂ(f)"Lp’q’(w) < C"Mg,n(f)"[}’»q)(w)-

Proof. For any cube @ = Q(xg, d) in R", we know M(wyq) € 4;
for any cube @ = Q(x,d) by [10]. By Lemma 3, we have, for

felP?R" w),

MNPy = [ 10,0) )P wls)g()dy

< IRnan(f) I M(wyq)(y)dy < CJ.RnIM?),n(f)(y)IpM(wa)(y)dy

= C[IQMgn(f) (y)‘pM(wXQ)(y)dy + ;IQ}CHQ Mgﬂ](f) (y)‘P M(wXQ ) (v)dy

o
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<( J. |Mq> 2O )P w(y)dy + ZJ g,n(f)( P Q) w(®) y]

| k+1Q|

2k 1\ 2k @

< Q[ JMEnN O Iy + S IME AN Miwityy dyJ

< QMBI uOdy+ 2 ME DO D dy]
< C"Mfg,n(f)llip,¢(w)22—nk@(2k+ld)
k=0

< CAME ()00, 2 (27" D) 0l)
k=0

< AIME 417,01

thus,

1/p

(il mnerun)” < o L[ g nwraa)”
and

1M (Dl -0 ) < < CIM§ (Al oo o

This finishes the proof.

3. Proofs of Theorems

Proof of Theorem 1. It suffices to prove for f € Cy(R") and some

constant Cy, the following inequality holds:

1/
(ﬁJ‘Q‘Tb(f)(x)_ Co‘nde <c Z 1D“bl prs0) W (X )My, 1 () (X),

jof=m
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where @ is any a cube centered at xg, Cy = Zi.:lcjd)j(xo —x) and

cj :I MBJ-(JCO - ¥)fo(y)dy. Fix a cube @ = Q(xg, d) and

i o — y|m

¥e@ Let @=5/nQ and b(x)=b(x)- > %(D“b)@xo‘, then
loj=m
R,(b; x,y)= R, (b;x, y) and D% = D% — (D%b)g for |af = m. We

write, for f; = fXQ‘ and fy = fXRn\éa

(e = [ 2D ke )y

e — o™

% Rn%ﬂx—y)ﬁ(y)dy
lofJ=m " -

+ J MK@ - Y)fo(y)dy

- T{Mjﬁ;'ﬂ —T[ 3 i%ﬁ] L TP () (),

then

(ﬁ IQ‘Tb(f) (x) - Co‘ndle/ﬂ

n \M/n
1
dx] + C[l a IQ

e =™

n MM
dx}

),

+ C(ﬁ JQ‘Tg(f2)(x) - Co‘ndle/n

T[ 3 e flJ
e

=Il+12+13.
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For I;, noting that w e A;, w satisfies the reverse of Hoélder’s

inequality:

1/po
(ﬁ J'Q w(x )P0 dx} < % jQw(x)dx,

for all cube @ and some 1< py < (see [10]). We take q = rpg/
(r + po —1) in Lemma 6 and have 1 < ¢ <r and pg = q(r-1)/(r - q),
then by the Lemma 6 and Hoélder’s inequality, we gain

1/q
~ ) ~
B (b3 2, )| < Cle = 5" (~— - ID“b(z)lqdzJ
az:;n |Q(x, y)| -[Q(x,y)

~ - 1/q
<Cle—y" IQI_l/qUé(x y)|D%(z>|qw(z)q“-’)/’w(z)q“-“/’dzj

jof=m

~ - 1/r
<Cle—y" \Q\*”‘IUQ( )\D“b(z)\rw(z)l’rdzj ( I () gy
X,y

(r-q)/rq
\a\:m Qx,y) ]

< Cle = 5™ > 1R Dbl gy w( @) 1@

jaf=m

(r-q)/rq
x (—N 1 IN w(z)Po dz}
|Q(x, y)| ¢ Qx,»)

< Cle = 3™ > 1Dl gygo)| @ w(@)M @4

jof=m

. (r-1)/r
X| = d
[|Q(x, y)l Jo, @ j

< Cle =™ D" 1Dl gaso| Q1 1w( @)@ (@)@

jaf=m

< =3 3 1Dl a0, %
lof=m
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< Clx = o™ Z [ D0l g0y (%),

ja[=m

thus, by the L°-boundedness of T (see Lemma 2) for 1 <s <r and

we A c Ay, Weobtain

T[—R’"(g; il )f1]

e =™

C
IS—J d
LRl *

1/s
< C 3 10 gyl g [, TG 0 |

jaf=m

1/s
< C Y 10" Sl gyl 1@ [ o |

ja[=m

1/s
=C Z ”Dab"BMO(w)w(f)lQlI/S(Jélf(x)|sw(x)8/rw(x)s/rde

jaj=m

1/r
< C 3 1D Syl o wlares|

jaj=m

(r-s)/rs
x U. _ w(x)s/(rs)dxj
Q

a ~ -1/s. A\L/r 1 - 1r
< CZ 1D gpgo)w(*) Q| Ysw(@) (mjélf(x)l w(x)de

|o=m

(r-s)/rs 1/r
o R N Y R R

< C D 10D oy (E M, () (F):

jal=m
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For Iy, by the weak (I}, L') boundedness of T (see Lemma 2) and

Kolmogoro’s inequality (see Lemma 1), we obtain

L<cy (ﬁ | Q|T(D°°z§f1)(x)wdle/n

ja[=m

<Ccy Q" 1T(D*6f ) g I
&R lelpva-n

<cy ﬁ@uﬂmaﬁ -

ja[=m

1 e
< C%@JR"W b (x)fy (x)|dx

) Co;ﬁ' J P bt) - (D0)gleote) 7 ) ot
1 . R 1
< Caz::‘n@['[él(D b(x)— (D b)Q )l w(x) dxj

([ roruea)”

N o 1/r
<03 o ID B0y @ w(@) [@ | Q|f(x>|rw(x>dxj

loj=m

<€ > ID°bl o) %Mr,wm ®

< C Y Dbl gaso(yw @My, (1) (F).

|o=m
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For I3, we write

178 (1) ()~ Co < | JUAGE IR AUED POMETIN Y
R |x =y o = 9]

| Bt (b5 %o, 3) <
e L =3 By(50 - ko = M)l

|(x - )" (x - y)“| o
c - K(x — y)|D* ()| |fo(v)|d
" o;n'[R”|lx—ylm 0 _y|m|| (x = I D“b()|Ife(v)|dy

= I0(x) + 1P(x) + I (x).
By the formula (see [4]):

~ ~ 1 ~
By (b5 %, ) = Ry(B3 %0, 3) = D =1 By (D73 %, ) (v = 9",

lyl<m

and Lemma 8, we have, similar to the proof of I,

Ry (B3 %, ¥) = Ry (B3 %0, 3) < € ) ) e = x| W = o

rl<mloj=m
x | Db ppgoueyw(¥)-
Note that |x -y ~|xg -y for xe® and ye R"\ @, thus,

weA cA,,

o0 - - K. _
1P(x) < ;Lkﬂé\zk@mm(b; x, y) = R (b; xo, y)ll—

+ZI ~ ~| - m||Rm(5;xo,y)IIK(x—y)llf(y)ldy
k

=R Qe — o Jxp — 5

ey uD“buBMO(w)wu)Z [ —’“lgkl|f<y>|dy

k+1 A\ ok A
la=m 28T RN\2 Ql
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< C Y ID“Bl gyrow) w(x)z kd),m | gl ")y

|of=m

1/r
< 03 1Dl gas00 0 >Z (2kd>n+1 [, ororuea]

jo=m

(r-1)/r
(g

<C Z ||Dab||BMo(w)w( )Z( p )n+1 w(2" Q)"

jaf=m

1/r
{ e P w(y)de

1 Lr) (r-1)/r ) 1/r
(|2’“QlIsz e dyj (I2’%2|I " y]

x |2F Qlo(2" @) "

<C Z | D8] 5100y (E) M 1 () (@Zz u

jof=m

<C Z 1D“bl g0y W EIM, 1 (£) ().

|o=m

For I éz)(x) by the conditions on K, we get

= R l;; X0,
Iéz)(x) < CZI P NLOmy)l
=072 @NQ |xg -y

!
|[K(x = y) = D Bj(xo = )0;(xo — %) [f(»)|dy

Jj=1
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ZJ Db I(xo ~ 3)°]

k+1 A\ ok m
\a\ mh=0"2 Q\2'Q o = 3

l
|[K(x = y) = D Bj(xo — 9)(xo - 2)||f()]dy
j=1

)
ey uD%uBM()(w)w(x)z [ —xi),LBIf(y)ldy

‘OL p 2L+IQ\2kQ|

| x0|
[ s sl DO00) = (D)t | =0 (v dy
o ml; 21Q\2'Q g — 5"

- =l
+C Z ZJ2k+1Q\2kQ|(Dab)2k+1Q - (D“b)Q|W|f(y)|dy

|od]=m k=0 |x0 -

o0

, , 1/r

o
loj=m k=1 (2kd)n+

X Uzkélf(y )|rw(y)dxj1/r

1/r
> ||D“b||BMO(w)w<x)Z kd)n+5 [ [ oo utas |

jof=m

1 1) (r-1)/r 1 1/r
(alea o) glea]

< |28 Qpu(2" @)Y/

1/r
<cy. ||Do‘b||BMo(w)w(x)ZkZ"”6 ( J.Zkélf(y)lrw(y)dx]

lof=m

1
(2" Q)

< C D DBl gps0 0y E) My 0 (F) (®).

jaf=m
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Similarly, we have

(3) C M DB (V) d
(x) ) (XZ'";J;AHQ\?“Ql |n+1 |f(y)|| (y)l Y
® d a o ~ Y Ur
¢ Tok Al D%b(y) — (Db J
azm; (de)n+l J2k§| (y) ( )2kQ|w(y) |f(y)|w(y) y

+C Z ZWJ.Z%KD%)Q@ - (Dab)§||f(y)|w(y)l/rw(y)‘1/"dy
lof=m k=1

N , . 1/r
<CY 3 ([ D) - (DY o)

1
lo|=m k=1 (2kd)n+

(] Qkév(y)r“w(y)dyjl/r

1/r
+CY "Dab"BMO(w)w(x)zk Uzk éIi‘(y)l'"w(y)cixj

Ic n+1l
jal=m =) d)

< |2 Qpu(2" @) /"

S 1/r
<C D% 7k w(2 9)( 1 _ r d j
2100 w)Zl Er R R

1/r
+cZ||D%||BMo<w>w<x>zkz-k[ e ,,le(y)l'"w(y)dxj

jaf=m

< C D 1Dl gy wEMy, o (1) ).

jaf=m
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Thus,

13 <C Z ”Dab"BMO(w)w(f)Mr,w(f) (E)

|o=m
These complete the proof of Theorem 1.

Proof of Theorem 2. It suffices to prove for f € Cy(R") and some

constant Cy, the following inequality holds:

1/
(ﬁ .[Q‘Tb(f) (x) - Co‘ndxj "cc Z 1D 0 0 EDM 5,10 (1) (E).

jaj=m

where @ is any a cube centered at xq, Cy = Z;.n:lcjd)j(xo —-x) and

c: _I K(x()’y)

- Rnl B Bj(xo - y)f9(y)dy. Fix a cube @ = Q(xq, d) and
X0 =

J

X € Q. Similar to the proof of Theorem 1, we have, for f; = fx@ and

(ﬁ IQ‘Tb(f) (x) - Co‘ndle/ﬂ

Ru(b;x, ), )" o
1 m\0; X, -
< c{@ jQ T(— flJ‘ de

e = o™

1/n

dx

~ il
T(Z (xl—-) ﬁ LA f1J
loj=m x =

) C(ﬁ J.Q‘Tg(fZ)(x) - Co‘ndle/n

+CﬁIQ

ZJl +J2 +J3.
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For J; and J9, by using the same argument as in the proof of Theorem 1,

we get

b ) ~ 1/q
(B (B x, ) < Che =" ‘Q‘fl/qu a )‘Dab(zww<z)q<1*f>/rw<z)q<f*1>/rdzJ
X,y

loj=m
~i-1/ >~ 1 Ur
< Clx — 5™ Q q( N D% (2)] w(z rdzj
ol 1A [ DB )
(r-q)/rq
a(r-1)/(r-a) 4 j
" U@(x,y)w(Z) :
< Clx - ylmz |é|—1/q"Docb”LipB(w)w(é)B/n+1/r|@|(r—Q)/rq
(r-q)/rq
x (N;J‘N w(z)Po dzJ
|Q(x, y)| 4 Qx,»)

< Cloe — y™ Z "Dab"Lipﬁ(w)lél—l/qw(é)ﬁ/rHl/rl@ll/q_l/r

jaf=m

1 (r-1)/r
X | —= - d
(lQ(x, y)l J.Q(x,y)w(z) ZJ

< Clx - y|m Z "Dab"LipB(w)lélfl/qw(é)ﬁ/nﬂ/rl@ll/q,l/r

jaf=m

% w(@)l—l/rléll/r—l

< e =3l D 1Dl 0@ (@),

of=m
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thus

1/s
51 €3 100 @ Q[ ]

jaf=m

1/r
< C 3 10"l e @)@ [ 0 e

jaf=m

(r-s)/rs
~8/(r-s)
x U.Qw(x) dxj

< C Y 100l gy oy w(®)|@I P w( @)

ja=m

1/r
x {W J.§|f(x)|rw(x)de

(r—s)/rs 1r
’ [ﬁ J g w(x) ! (r_S)dx] [ﬁ J g w(x)de Q5| @

<C Z "Dab"LLp (w)w(x )MB r, w(f) (x)

ja=m

1 o o7\~ -1/r r
Ty < c;@jéw b(x) — (D“b)g | [w(x) ™" [|f(Yoolx) " dx

< cz @ U J(D*b(x) - (D*b)g | w(x) ’"dle/r’

jaf=m

x U QIf(x)Vw(x)dx]l/r

1 o A\B/n+1/r' A\L/r-B/n
< cZ@uD b||LipB(w)w(Q)B/ U (@)

jaf=m

1/r
(—(Q)l '“B/n,[ |f ()" w(x)dx]
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<C 3 1Dl “;(Q?) ()

<cy | DBl i 20y W E) M, 0 (F) ()

jof=m

For J3, we have
IR, (b5 2, y) = Ry, (b5 x0, ¥)|

<C Z Z I — M|x _ y"ﬂ"Dab”LipB(w)w(E)w(zkQ)B/n’

[vl<m |of=m

thus

1T () (x) - Co |

[ el BB 2, 90 R (B 50, 30 =D )
l; 2k+1Q\2k | m m 0 | |x _ y| | |

J _ ~| 1 || Ry (b; xg, y)| [K(x - ¥)||f(y)|dy

+
AP Gx - " g - y|'”|

I

R, (b;x0,)
+Cz,[2k+1Q\2kQﬁlK(x -y)- ZB (xo=2)0j (xo—x)| [f (v dy

+CZ iJ‘ |D*b(y)]|(x — )" ||K(x )
loj=m k=0 2k+1Q\2kQ |x0 _yl

!
=" Bj(wg - )00 — ) If(3)]dy

Jj=1

DID) . JCEE) LR ||K<x WD) If()]dy

e e A [N L PR L
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<C D 1Dl iy ) w<x>zw<zk+1Q>ﬁ/"

jal=m

| = xol o — x0|6
><J.2k+1Q\2A [lx _ |n+1 + _y|n+8 |f(y)|dy

Y [xo

X 9
I (e
n
lof=m k=1 |x0 - yl |x0 - yln

x jM |Db(y) ~ (D*D)y ()™M F (o) " dy

e —xo _Jx— ol J

+C [ n+l n+d
|oj=m k=1 leo = 91 leo = 91

[ (00hrg ~ (D)) o)

5 ~
<C Z ||D°°b||LLpB(w w(x )Z((zk e + (2k‘;)n+5 ]w(sz)ﬁ/n

jaf=m

Uy (r-1)/r
g (J;kélf(y)lrw(y)dx] (lzkél J.2kéw(y)_1/(r—1)dyJ

1/r
[leQ|Ik~w(y)dy] |2 Qlu(2F Q)"

. d d’
+C Z Z((de)nﬂ * (de)nﬂSJ

lo|=m k=1

, BNV
X Uzké [(D%0(y) = (D*0)yeg )" (o)™ dyJ

’ U‘Z’“él’c(y)Vw(y)dyT/"
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o B/n d d8
+caZm||D Ol iy a0y (F ka@ QP [ Gy (2kd)n+5J

Ul e (r-1)/r
X(LkéIf(y)lrw(y)dx] (lzkélbéw(y) ’ dyJ

1/r
[lm j s (y)dy] 12" Qpo(2t Q)Y

<cy 1Dl iy w(x)Zk(Tk + 271

jaf=m

1 . 1/r
X [W [ w<y>dxj

+C Z "Dab”Llp (w)z(2 Fr2 k&)wl(22 QGT)
lo|=m

1 . 1/r
) (W Lk@myﬂ w(y)de

<C Z ||Dab||Llp (w) w(x)MB r, w(f)(x)

lof=m
This completes the proof of Theorem 2.

Proof of Theorem 3. Choose 1 <r < p in Theorem 1 and notice

wl™P e A;, then we have, by Lemmas 3 and 4,

1T (Dgp -2y < IM(T (D gpui-r) < CIME (T (D] p s

< C 3 1Dl syt 0™ o (Pl )

lof=m
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= C > 10Dl gyt Mo, (o)

jo=m

< C " 1D°Bl o/ 122 )

lof=m
This completes the proof of Theorem 3.

Proof of Theorem 4. Choose 1 < r < p in Theorem 1 and notice

wl™P ¢ A;, then we have, by Lemmas 5 and 7,
"Tb(f)”LP,(p(wl—p) < ||Mn(Tb(f))"LP"P(w1‘P) < C"Mg),n(Tb(f))"LP"P(wl‘p)

< €D DBl gygo)l WMy, (o o(ut-r)

jof=m

-C Z 108l gso ) M r, w0 (Fll -0 1

jal=m

< € 3 108l gl lzpo ()

lof=m
This completes the proof of Theorem 4.

Proof of Theorem 5. Choose 1 < r < p in Theorem 2 and notice

w'™? e A;, then we have, by Lemmas 3 and 4,

1% (Pl (ut-ay < IM(TP Dl ot-a) < CIME (TP (FDl g ot-a)

<cy [ DBl i o) | 0M, 1,00 (P 3 110

jaf=m

= C Y 1D%l g M, e P

jaf=m

< C 3 1Dl i ) 2 ()

jal=m
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This completes the proof of Theorem 5.

1-

w

Proof of Theorem 6. Choose 1 < r < p in Theorem 2 and notice

9 ¢ A;, then we have, by Lemmas 5 and 7,

||Tb(f)”Lq,<P(wl—Q) < "Mn(Tb(f))"Lq’(P(wl‘q) < C"Mg,n(Tb(f))”Lq’(P(wl_q)

< C Y 100l g o)l Mp 0 (Pl 010

jaf=m

= C YDl | Mo P90

o|=m

<C Z "Dab"Lipﬁ(w)"f”LP’(P(w)-

jaf=m

This completes the proof of Theorem 6.
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