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Abstract 

The harmonicity and stability for foliations on Riemannian manifolds are 
studied by Kamber and Tondeur, and are generalized to canonical foliations on 
locally conformal Kähler manifolds. These results are based on the hypothesis 
under the metric is bundle-like. In this paper, we study harmonicity and 
stability for foliations with metrics which is not bundle-like. In fact, we show 
harmonicity and stability for canonical foliations on Inoue surfaces with Tricerri 
metric. 

1. Introduction 

Let ( )MgJM ,,  be a compact locally conformal Kähler manifold with 

locally conformal Kähler form ,Ω  i.e., there exists a closed 1-form ,ω  
called the Lee form, satisfying .Ωω=Ω d  A foliation F  on compact 

Riemannian manifold ( )NgN ,  is harmonic if all leaves of F  are 
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minimal submanifolds. It is equivalent to be an extremal of the energy 
functional under special variations if the metric Ng  is bundle-like with 

respect to F  (Kamber-Tondeur [6]). In [4], we obtained sufficient 
conditions that a harmonic foliation on a compact locally conformal 
Kähler manifold is stable: if F  is a harmonic foliation on M with bundle-
like metric Mg  foliated by complex submanifolds, then F  is stable. This 

is an analogue of the theorem “a holomorphic map between two compact 
Kähler manifolds is stable as a harmonic map”. In general, satisfactory 
results for foliations on a Riemannian manifold are under the assumption 
that the metric is bundle-like with respect to the foliation. In this paper, 
we show stability for harmonic foliations does not satisfy the assumption. 

Inoue [5] constructed non-Kähler complex surfaces ( ) ,, ;,,,
+

trqpNM SS  

( )−
rqpNS ,,,  as quotient manifolds ,GCH ×  where G is a group of 

suitable automorphisms acting on ,CH ×  and Tricerri [8] constructed 
locally conformal Kähler metrics, called the Tricerri metrics, on these 
surfaces (with R∈t ). There are foliations on these surfaces foliated by 
complex submanifolds, which is called the canonical foliation (as 
foliations on locally conformal Kähler manifolds). For MS  each leaf 

corresponds to the upper half-plane .H  The canonical foliations on Inoue 
surfaces have no compact leaves and Tricerri metrics are not bundle-like 
with respect to the foliations. The main result is the following: 

Theorem 1.1. The canonical foliations on Inoue surfaces with 

Tricerri metrics ( ) ( ) ( )−+ ∈ rqpNtrqpNM StSS ,,,;,,, ,, R  are extremal of the 

energy functional for special variations and are stable. 

This paper is organized as follows. In Section 2, we review the theory 
of harmonic foliations by Kamber and Tondeur and notions for locally 
conformal Kähler manifolds. Then Section 3 is devoted to the definition of 
Inoue surfaces and compute the Levi-Civita connections associated with 
Tricerri metrics. Finally, the proof of Theorem 1.1 is given in Section 4. 
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2. Preliminaries 

Let ( )NgN ,  be an n-dimensional compact Riemannian manifold and 

let F  be a foliation given by an integrable subbundle .TNL ⊂  We 
define a torsion free connection ∇  on normal bundle LTNQ =  by 

[ ] ( ) ( ) ( ) ( )( )

( ) ( )( ) ( ) ( ) ( )( )





σΓ∈σ=Γ∈σΓ∈∇π=∇

σΓ∈σ=Γ∈Γ∈π=∇

,and,for,

,and,for,,

QSYQSQXYS

QSYQSLXYXS

SS
N
XX

SSX
 

(2.1) 

where TNQ →σ :  is a splitting such that ( )Qσ  coincides with the 

orthogonal complement ⊥L  of L in TN with respect to .Ng  Here, the 

torsion ∇T  is defined by ( ) ( ) ( ) [ ]YXXYYXT YX ,, π−π∇−π∇=∇  for any 

( )., TMYX Γ∈  If the normal bundle Q is equipped with a holonomy 

invariant fiber metric ,Qg  i.e., ( ) ( ) ( )TSgTSgTSXg XQXQQ ∇+∇= ,,,  

for all ( ),LX Γ∈  the foliation F  is called a Riemannian foliation or an 

R-foliation. There is a unique metric Qg  for an R-foliation with a torsion 

free connection ∇  on the normal bundle Q. A Riemannian metric Ng  on 

N is called a bundle-like metric with respect to the foliation F  if the 
foliation becomes an R-foliation in terms of the fiber metric Qg  induced 

on Q. From now on, we assume that a fiber metric on Q is always induced 
from the metric Ng  on N. 

Tricerri metrics on Inoue surfaces are not bundle-like with respect to 
the canonical foliations. However, in the case where the metric Ng  is not 

necessarily bundle-like, the connection ∇  defined in (2.1) satisfies the 
following lemma: 

Lemma 2.1. 0=∇ QX g  for all ( ).QX Γ∈  
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Proof. For ( ),, QTS Γ∈  by setting ( ) ( ),, TYSY TS σ=σ=  we have 

( ) ( ) ( ) ( )T
N
XSNTS

N
XNTSMTSQ YYgYYgYYXgYYXg ∇+∇== ,,,,  

( ( ) ( )) ( ( ) ( ))T
N
XNS

N
XM YSgTYg ∇σπσ+σ∇σπ= ,,  

( ( ) ) ( ( ))T
N
XQS

N
XQ YSgTYg ∇π+∇π= ,,  

( ) ( ).,, TSgTSg XQXQ ∇+∇=  

 

Denoting by ( )QN ,1Ω∈π  the canonical projection from TN onto Q, 

we have ( ) ( )QNCdQNd ,,,2 ∞∗
∇∇ ∈πΩ∈π  and so forth. Then we have 

the following fact (Kamber and Tondeur [6, 3.3]). 

Proposition 2.2. Let F  be a foliation on a Riemannian manifold 
( )., NgN  Then the following three conditions are equivalent: 

(i) π  is harmonic form, 

(ii) all leaves for the foliation are minimal submanifolds of N, 

(iii) .0=π∗∇d  

A foliation is said to be harmonic if it satisfies the equivalent 
conditions as in above proposition. In addition, if N is compact and 
oriented, Ng  is bundle-like, and F  is an R-foliation, then these 

conditions are equivalent to .0=π∆  

We next see a variational characterization of harmonic foliations on 
compact Riemannian manifold ( )., NgN  We define the energy of the 

foliation F  by 

( ) ,,2
1

2
1 2 ππ=π=FE  

where π  is the canonical projection from TN onto Q and is considered as 

a Q-valued 1-form on N. Let { }αβα
α γ,, fU  be the Haefliger cocycle 
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representing .F  Namely, { }αU  is an open cover of N with qUf R→α
α :  

such that αβγ  are local diffeomorphisms on ( )φ≠βα UU ∩  satisfying 

.βαβα γ= ff  Here q denotes the codimension of .F  On ( ) ., qTfQU R∗α
α =  

Note that if Ng  is not bundle-like, there exist no metrics αg  on qR  

satisfying ( ) ( ) ( )xgxgf Q=α
∗α  for all x in .αU  

For ( ),QΓ∈ν  we put 

( ) ( ( ( ))) ( ),,,,exp εε−∈∈=Φ α
ααα tUxxtfx xt ν   (2.2) 

where .
α

=α
Uνν  We then have a variation αΦt  of ,0

αα Φ=f  where ε  is 

sufficiently small. Since ( ) ( )xx tt
βαβα Φγ=Φ  on ,βα UU ∩  the local 

variations { }αΦt  define a variation tF  of the foliation .F  Moreover, we 

have 

( ) ( ),,1
0 QUtt

t
α

α
∗

α
= Ω∈∇=Φ∇=π

∂
∂ ν�   (2.3) 

where we regarded π�  as a section in ( )QΓ  via the identification 

( ) qTfQ R∗α=  (cf. Kamber-Tondeur [6] and Eells-Sampson [3]). These 

variations are called special variations associated to sections of Q. If the 
metric Qg  on Q is bundle-like, then F  is harmonic if and only if it is an 

extremal of the energy functional for special variations of F  (Kamber-
Tondeur [6, 4.12]). In the case where Qg  is not bundle-like, this does not 

hold in general. In Section 4, we shall prove the canonical foliations on 
Inoue surfaces with Tricerri metrics are extremal of special variations. 

Note that the definition (2.2) is different form the Kamber-Tondeur’s 
original definition as in [6], because the original definition works out for 
bundle-like metrics only. Our definition (2.2) is well-defined for metrics 
which is not necessarily bundle-like, and coincides with original one if the 
metric is bundle-like. 
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To obtain the second variation, we need a 2-parameter variation ts,F  

of FF =0,0  defined locally as ,,
αΦ ts  where 

( ) ( ( ( ) ( ))),exp, xtxsfx xts
αααα +µ=Φ ν  

for ( )εε−∈∈ α ,,, tsUx  and ( )., QΓ∈µν  By (2.3) and the compactness 

of N, we have 

( ) 0,
0

,,
0,0

2
,

0,0

2
,,2

1
s

s
tsts

ts
ts

ts
stsEts π∇
∂
∂=ππ

∂∂
∂=

∂∂
∂

=====

νF  

 µ∇∇+π∇∇= ν,ν,s  

 ( ) µ∇∇+ππµ+π∇∇= ∇ ν,ν,ν, ,Rs  

 ( ) ,,,, µ+ππµ−π∇∇= ∇∇
∇ ddRs ννν,  

where ∇R  denote the curvature operator for Q. Hence the second 
variation formula is given by 

( ) ( ) .,,,,,
0,0

2
µ+π∇∇+µππ−=

∂∂
∂

∇∇
∇

== ∂
∂ ddREts s

ts
ts

νννF   (2.4) 

Definition 2.3. A harmonic foliation F  is said to be stable if it is an 
extremal of the energy functional for special variations and for every 

( )QΓ∈ν  

( ) .002

2
≥= tt E

dt
d F  

Remark 2.4. For a harmonic foliation F  with bundle-like ,Ng  the 

second variation formula is given by 

( ) ,,,
0,0

2
νµ=

∂∂
∂

∇
==

JF ts
ts

Ets  
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where ∇∇ ρ−∆=J  is the Jacobi operator of .F  Here ∇ρ  is the Ricci 

operator for Q. Let ( )FλV  be the eigenspace associated to eigenvalue .λ  

The index of a harmonic foliatrion F  is defined by 

( ) ( ).dimindex
0

FF i
i

Vλ
<λ
∑=  

Then F  is stable if and only if index ( ) ,0=F  i.e., 0, ≥∇ ννJ  for all 

( ).QΓ∈ν  

The remainder of this section we review some definitions and 
properties of locally conformal Kähler manifolds we need later. For 
details, see Dragomir-Ornea [2] for instance. 

Let ( )gJM ,,  be a Hermitian manifold, Ω  be the fundamental          

2-form associated with ( )., JgM  If there exsits a closed 1-form ω  such 

that ,Ωω=Ω d  then Ω  is called a locally conformal Kähler form and 

ω  is called the Lee form. We define the Lee vector field and the anti-Lee 

vector field by �ω=B  and ,: JBA −=  respectively. Here �  denotes the 

raising of indices with respect ot .Mg  If the distribution BA RR ⊗  

generated by vector fields A and B on M defines a foliation ,F  then the 

foliation is called the canonical foliation on M. In this case, every leaf is a 
1-dimensional complex submanifold of M and is a minimal submanifold 
by the following lemma (Dragomir-Ornea [2, Theorem 12.1]): 

Lemma 2.5. Any complex submanifold N of a locally conformal 
Kähler manifold M is minimal if and only if the Lee vector field B for M is 
tangent to N. 

This lemma together with Proposition 2.2 leads the harmonicity for 
the canonical foliations on locally conformal Kähler manifolds. 
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3. Inoue Surfaces and Tricerri Metrics 

In this section, we review definitions of Inoue surfaces and Tricerri 
metrics, and compute Levi-Civita connections associated with Tricerri 
metrics. Let { }21 1zzz −+==C  be the set of complex numbers and let 

{ }0;1 221 >∈−+== wwww CH  be the upper half-plane. 

3.1. Surface .MS  Let ( ) ( )Z,3SLmM ij ∈=  be a unimodular matrix 

with one real eigenvalue α  and two non-real complex eigenvalues ., ββ  
Consider the eigenvectors ( )321 ,, aaa  and ( )321 ,, bbb  associated to the 
eigenvalues α  and ,β  respectively. Let MG  be the group of complex 
automorphisms of CH ×  generated by transformations 

( ) ( ),,, zwzw βα6  

( ) ( ) .3,2,1,,, =++ jbzawzw jj6  

The quotient space MM GS CH ×=:  is an Inoue surface. The metric 

zddzwwddwwgM ⊗+⊗= −
2

2
2  on CH ×  defines a locally conformal 

Kähler metric, called the Tricerri metric, on MS  with Lee form 

.2
1

2 dww−=ω  Indeed, the fundamental 2-form of Mg  is given by 

,1 22
2











+−=Ω zddzw

w
wddw

M   

and satisfies .2
1

2 MM dwwd Ω=Ω −   We now choose an orthonormal 
frame for the tangent bundle MTS  as follows: 

.1,1,,
22

4
12

3
2

22
1

21 zw
Ezw

EwwEwwE
∂
∂=

∂
∂=

∂
∂=

∂
∂=  

We then have 

[ ] [ ] [ ] .2
1,,2

1,,, 442332121 EEEEEEEEE −=−=−=   (3.1) 

The distribution generated by 2EB =  and 1EJBA =−=  defines the 

canonical foliation F  with complex leaves by (3.1). 
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The dual frame of { }iE  is given by the 1-forms 

.,,, 22
4

12
3

2
22

2
11 dzwdzww

dw
w
dw

=θ=θ=θ=θ  

Differentiating these relations, we obtain 

.2
1,2

1,0, 4243232211 θθ=θθθ=θ=θθθ=θ  dddd  

By k
kk θω∑−=θ iid  and ,0=ω+ω k

k i
i  we also have 

.2
1,2

1, 44
2

2
4

33
2

2
3

12
1

1
2 θ=ω−=ωθ=ω−=ωθ=ω−=ω  

Therefore, we obtain 









−=∇

=∇









−=∇

=∇







−=∇

=∇

,2
1

,2
1

,2
1

,2
1

,

,

24

42

23

32

12

21

4

4

3

3

1

1

EE

EE

EE

EE

EE

EE

E

E

E

E

E

E
  (3.2) 

by ( ) .mi
m

mE EEEi kk ω∑=∇  

3.2. Surface ( ) .+
trqpNS ;,,,  For a unimodular matrix ( )ijnN =  in 

( ),,2 ZSL  let ( )1>α  and α1  be eigenvalues of N with eigenvectors 

( )21, aa  and ( ),, 21 bb  respectively. Let ( )0,, ≠rrqp  be integers and t be 

a complex number. Define ( )21, cc  as the solution of the equation 

( ) ( ) ( ) ( ) ,,,,, 1221
212121 qpr

ababeeNcccc t −
++⋅=  

where 

( ) ( ) .2,1,12
112

1
212122221111 =+−+−= iabnnbannbanne iiiiiii  (3.3) 

Let ( )+
trqpNG ;,,,  be the group of complex automorphisms of CH ×  

generated by 
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( ) ( ),,, tzwzw +α6  

( ) ( ) ,2,1,,, =+++ icwbzawzw iii6  

( ) ( ).,, 1221
r

ababzwzw −
+6  

We define ( ) ( ) .: ;,,,;,,,
++ ×= trqpNtrqpN GS CH  

3.3. Surface ( ) .−
rqpNS ,,,  Let ( ) ( )Z,2GLnN ij ∈=  with det 1−=N  and 

two eigenvalues ( ) .1,1 α−>α  Let ( ) ( )2121 ,,, bbaa  be eigenvectors 

associated to ,1, α−α  and let ( )0,, ≠rrqp  be integers. Define ( )21, cc  

as the solution of the equation 

( ) ( ) ( ) ( ) .,,,, 1221
212121 qpr

ababeeNcccc t −
++⋅=−  

Here ,2,1, =iei  are as in (3.3). Let ( )−
rqpNG ,,,  be the group of complex 

automorphisms of CH ×  generated by the 

( ) ( ),,, zwzw −α6  

( ) ( ) ,2,1,,, =+++ icwbzawzw iii6  

( ) ( ).,, 1221
r

ababzwzw −
+6  

We set ( ) ( ) .: ,,,,,,
−− ×= rqpNrqpN GS CH  It is well-known that ( )−

rqpNG ,,,  

coincides with ( )+
0;,,, 11

2 rqpN
G  for some 21, pp  and then ( )−

rqpNS ,,,  has 

( )+
0;,,, 11

2 rqpN
S  as its unramified double covering. 

3.4. Tricerri metrics on ( )+
trqpNS ;,,,  and ( ) .−

rqpNS ,,,  If we consider a 

Hermitian metric 

( )
( )

( ) zddzwddzzddww
zwddw

w
zgN ⊗+⊗+⊗−⊗

+
=

2
2

2
2

2
21  
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on ,CH ×  then the fundamental 2-form NΩ  is given by 

( )
( )

( ) ,11
2
2

2
2

2
2











++−

+
−=Ω zddzwddzzddww

zwddw
w

z
N   

and satisfies .2
1

2 NN dwwd Ω=Ω −   The following holds (Tricerri           

[8, Lemma 3.2]): 

Proposition 3.1. The metric Ng  on CH ×  defined above is invariant 

under the action of ( ) .,,,
−

rqpNG  It is invariant under the action of 

( )+
trqpNG ;,,,  if and only if t is real. 

Hence the metric Ng  induce locally conformal Kähler metrics on 
( ) ( ) ( ) ,, ,,,;,,,

−+ ∈ rqpNtrqpN StS R  which is denoted by the same notation .Ng  

Easy computation gives us the Lee form ω  of Ng  is .2
1

2 dww−  Note that 

on ( )+
trqpNS ;,,,  with RC \∈t  there are no locally conformal Kähler 

metrics (see Belgun [1]). 

If we choose an orthonormal frame of CH ×  

,,,,
2

4
1

3
2

2
2

22
1

2
1

21 zEzEzzwwEzzwwE
∂
∂−=

∂
∂−=

∂
∂+

∂
∂=

∂
∂+

∂
∂=  

then 

[ ] [ ] [ ] .,,,,, 341442121 EEEEEEEEE −=−=−=   (3.4) 

The dual frame of { }iE  is given by the 1-forms 

.,,, 22
2
24

11
2
23

2
22

2
11 dzdww

zdzdww
z

w
dw

w
dw

−=θ−=θ=θ=θ  

We then have 

.,,0, 4244132211 θθ=θθθ=θ=θθθ=θ  dddd  
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By k
kk θω∑−=θ iid  and ,0=ω+ω k

k i
i  














θ−=ω−=ω

θ−=ω−=ω

=ω−=ω














θ−=ω−=ω

θ−=ω−=ω

θ−=ω−=ω

.2
1

,

,0

,2
1

,2
1

,

14
3

3
4

44
2

2
4

3
2

2
3

34
1

1
4

43
1

1
3

12
1

1
2

 

Therefore, we obtain 
















−=∇

−=∇

=∇

=∇









−=∇

=∇
















−=∇

=∇

−=∇

=∇

,

,2
1

,

,2
1

,2
1

,2
1

,2
1

,2
1

,

,

24

13

42

31

14

41

34

43

12

21

4

4

4

4

3

3

1

1

1

1

EE

EE

EE

EE

EE

EE

EE

EE

EE

EE

E

E

E

E

E

E

E

E

E

E

  (3.5) 

by ( ) .mi
m

mE EEEi kk ω∑=∇  

4. Proof of Main Theorem 

Let ( )gS,  be one of the surfaces ( ) ( ( ) ) ( )R∈+ tgSgS NtrqpNMM ,,, ;,,,  or 

( ( ) ).,,,, NrqpN gS −  By 21 EJE =  and (3.1) or (3.4), the distribution 21 EE RR ⊗  

on S define the canonical foliation F  on S. By (2.3), Lemma 2.1 and 
Stokes theorem, 

( ) ( )kk
k

EEdt
d

tt π∇=π∇=ππ=π ∑
=

= ,,,
4

3
0 νν�  

 { { ( )} } ,0,,
4

3
=∇+∇= ∫∑

=

dvEgE Q
S

kkkk
k

νν   (4.1) 

where we set 
kk E∇=∇ :  and use ( )QΓ∈ν  and (3.2) or (3.5). Note that 

the connection ∇  is defined in (2.1) and is the composition of the 
canonical projection π  and the Levi-Civita connection ∇  associated to 
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the Tricceri metric for .4,3=k  It follows that the canonical foliations on 

Inoue surfaces are extremal of the energy functional under special 
variations. 

We next compute the right-hand side in (2.4). As (4.1), we have 

{ { ( )} } ,0,,,
4

3
=∇∇+∇∇−=π∇∇ ∫∑

=

dvEgE sQ
S

ss kkkk
k

ννν  

by (3.2) or (3.5) and Stokes theorem. We also have 

[ ] [ ] ,0and0 4,443,33 4433 =∇=∇=∇=∇=∇=∇ EEEEEE EEEE νννν  

by (3.2) or (3.5). Hence, 

( ) ( [ ] ) .0, ,

4

3
=∇−∇∇−∇∇=ππ ∑

=

∇
kkkkk

k
k

EEER Eνννν  

We now conclude that 

( ) ,0,
0

2

2
≥= ∇∇

=

νν ddE
dt
d

t
t

F  

as required. 
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