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Abstract

The harmonicity and stability for foliations on Riemannian manifolds are
studied by Kamber and Tondeur, and are generalized to canonical foliations on
locally conformal Kédhler manifolds. These results are based on the hypothesis
under the metric is bundle-like. In this paper, we study harmonicity and
stability for foliations with metrics which is not bundle-like. In fact, we show
harmonicity and stability for canonical foliations on Inoue surfaces with Tricerri
metric.

1. Introduction

Let (M, <J, g7) be a compact locally conformal Kéhler manifold with
locally conformal Kéhler form €, i.e., there exists a closed 1-form o,
called the Lee form, satisfying dQ = o A Q. A foliation F on compact

Riemannian manifold (N, gy ) is harmonic if all leaves of F are
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minimal submanifolds. It is equivalent to be an extremal of the energy

functional under special variations if the metric g, is bundle-like with

respect to F (Kamber-Tondeur [6]). In [4], we obtained sufficient
conditions that a harmonic foliation on a compact locally conformal
Kihler manifold is stable: if F is a harmonic foliation on M with bundle-

like metric gp; foliated by complex submanifolds, then F is stable. This

1s an analogue of the theorem “a holomorphic map between two compact
Kahler manifolds is stable as a harmonic map”. In general, satisfactory
results for foliations on a Riemannian manifold are under the assumption
that the metric is bundle-like with respect to the foliation. In this paper,

we show stability for harmonic foliations does not satisfy the assumption.

Inoue [5] constructed non-Kéahler complex surfaces Sj;, S%)p @it

SN p. 0.

as quotient manifolds H x C/G, where G is a group of
suitable automorphisms acting on H x C, and Tricerri [8] constructed
locally conformal Kéihler metrics, called the Tricerri metrics, on these
surfaces (with ¢ € R). There are foliations on these surfaces foliated by
complex submanifolds, which is called the canonical foliation (as
foliations on locally conformal Kéhler manifolds). For Sj;; each leaf
corresponds to the upper half-plane H. The canonical foliations on Inoue
surfaces have no compact leaves and Tricerri metrics are not bundle-like

with respect to the foliations. The main result is the following:

Theorem 1.1. The canonical foliations on Inoue surfaces with

Tricerri metrics Sy, SE\J},)p,q,r;t(t e R), SE\;’)p’ q.r are extremal of the

energy functional for special variations and are stable.

This paper is organized as follows. In Section 2, we review the theory
of harmonic foliations by Kamber and Tondeur and notions for locally
conformal Kdhler manifolds. Then Section 3 is devoted to the definition of
Inoue surfaces and compute the Levi-Civita connections associated with
Tricerri metrics. Finally, the proof of Theorem 1.1 is given in Section 4.
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2. Preliminaries

Let (N, gp ) be an n-dimensional compact Riemannian manifold and

let F be a foliation given by an integrable subbundle L < TN. We

define a torsion free connection V on normal bundle @ = TN / L by
VxS =X, Yg], for X e (L), S € [(Q) and Yg = o(S) € I'(c(Q)),
VxS = n(VviYy), for X e T(o(Q)), S e T(Q) and Yg = o(S) e I'(s(Q)),

2.1)
where o :@Q — TN is a splitting such that o(®) coincides with the

orthogonal complement L* of L in TN with respect to gp. Here, the
torsion Ty is defined by Ty (X, Y) = Vxn(Y) - Vyn(X) - n[X, Y] for any
X,Y e I(TM). If the normal bundle @ is equipped with a holonomy
invariant fiber metric gg, i.e., Xgg(S, T) = g¢(VxS, T') + gg(S, VxT)
for all X e I['(L), the foliation F is called a Riemannian foliation or an
R-foliation. There is a unique metric gg for an R-foliation with a torsion
free connection V on the normal bundle @. A Riemannian metric gp on

N 1is called a bundle-like metric with respect to the foliation F if the

foliation becomes an R-foliation in terms of the fiber metric g¢ induced

on . From now on, we assume that a fiber metric on @ is always induced

from the metric gp on V.

Tricerri metrics on Inoue surfaces are not bundle-like with respect to

the canonical foliations. However, in the case where the metric g is not
necessarily bundle-like, the connection V defined in (2.1) satisfies the

following lemma:

Lemma 2.1. Vxgg = 0 forall X € T'(Q).
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Proof. For S, T e I'(®), by setting Yg = o(S), Yp = o(T), we have
Xgq(Ys, Yr) = Xgy (Ys, Yr) = gn(VXYs, Yr)+ gn(Ys, VXY7)
= gy (on(VYYs), o(T)) + gn(o(S), on(VRYr))
_ N N
= go(n(VxYs), T)+ go(S, n(VxYr))
= 8Q(VxS, T) + gg(S, VxT).
]

Denoting by = € Ql(N , @) the canonical projection from TN onto @,

we have dyn € Q%(N, @), dom € C*(N, @) and so forth. Then we have
the following fact (Kamber and Tondeur [6, 3.3]).

Proposition 2.2. Let F be a foliation on a Riemannian manifold

(N, gn ). Then the following three conditions are equivalent:
(1) = is harmonic form,
(i1) all leaves for the foliation are minimal submanifolds of N,
(iii) dyn = 0.

A foliation is said to be harmonic if it satisfies the equivalent
conditions as in above proposition. In addition, if N is compact and

oriented, gpn 1is bundle-like, and F 1is an R-foliation, then these

conditions are equivalent to Ar = 0.

We next see a variational characterization of harmonic foliations on

compact Riemannian manifold (N, gn ). We define the energy of the
foliation F by

1,2 1
B(F) = LI = 3 (n m),

where n is the canonical projection from TN onto @ and is considered as

a @-valued 1-form on N. Let {U,, f%, y*?} be the Haefliger cocycle
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representing F. Namely, {U, } is an open cover of N with f*: U, »>R?
such that y*® are local diffeomorphisms on U, ﬂUB(;t ¢) satisfying
F* = y*B#B. Here g denotes the codimension of F. On Uy, @ = (f*)TRY.
Note that if g is not bundle-like, there exist no metrics g, on RY
satisfying (%) g, (x) = gg(x) forall xin U,

For v € T(Q), we put

@7 (x) = f*(expy (v (x))), xeUq, te(-¢¢), (2.2)

where v* = 1|;; . We then have a variation @ of f* = ®f, where ¢ is
sufficiently small. Since ®g(x) = y*PoP(x) on U, N Ug, the local

variations {®{'} define a variation F, of the foliation F. Moreover, we

have

=Vl|_o(@), = e Q'(U,, Q), (2.3)

2
ot
where we regarded 7 as a section in T'(Q) via the identification

Q = (f*)'TRY (cf. Kamber-Tondeur [6] and Eells-Sampson [3]). These

variations are called special variations associated to sections of @. If the

metric gg on @ is bundle-like, then F is harmonic if and only if it is an

extremal of the energy functional for special variations of F (Kamber-

Tondeur [6, 4.12]). In the case where gg is not bundle-like, this does not

hold in general. In Section 4, we shall prove the canonical foliations on

Inoue surfaces with Tricerri metrics are extremal of special variations.

Note that the definition (2.2) is different form the Kamber-Tondeur’s
original definition as in [6], because the original definition works out for
bundle-like metrics only. Our definition (2.2) is well-defined for metrics
which is not necessarily bundle-like, and coincides with original one if the
metric is bundle-like.
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To obtain the second variation, we need a 2-parameter variation F; ,

of Fy o = F defined locally as ®¢,, where

Dy 4(x) = f*(expy(sp®(x) + 1% (x))),

for x e Uy, s, t € (—¢, ¢) and v, u € T(Q). By (2.3) and the compactness

of N, we have

o2 o2

= E =2
dsot (Far) = 53 "

1 o
s=0,t=0 0 §<nsvt’ nS,t) - g 0<V'|/, TcS,O)

0,t= §=

= (VSVU, n) + (VU, Vu)
= (VVev, ) + (RY (u, m)v, ) + (Vv, Vi)
= <VVSU7 TE> - <Rv(“7 TE)TE, U> + <dVV’ qu);

where RV denote the curvature operator for . Hence the second
variation formula is given by

62

0sot

E(Fg,)=- (RY (v, m)m, n) + (VV g, 1) + (dyv, dypn). (2.4)
5=0,t=0 o

Definition 2.3. A harmonic foliation F is said to be stable if it is an

extremal of the energy functional for special variations and for every

v e (@)

d2
dr?

t |t=0E(]:t) > 0.

Remark 2.4. For a harmonic foliation F with bundle-like g, the

second variation formula is given by

62
Fen E(Fgy) = (Tvm v),
s=0,t=0
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where Jy = A —py 1s the Jacobi operator of F. Here py is the Ricci
operator for @. Let V, (F) be the eigenspace associated to eigenvalue A.
The index of a harmonic foliatrion F is defined by
index(F) = Y dim V;, (F).
Ki<0
Then F is stable if and only if index (F) =0, ie., (Jyv, v) > 0 for all
v e (Q).

The remainder of this section we review some definitions and
properties of locally conformal Kihler manifolds we need later. For
details, see Dragomir-Ornea [2] for instance.

Let (M, J, g) be a Hermitian manifold, Q be the fundamental
2-form associated with (gps, J). If there exsits a closed 1-form ® such
that dQ = @ A Q, then Q 1is called a locally conformal Kdhler form and
® is called the Lee form. We define the Lee vector field and the anti-Lee
vector field by B = o' and A = —JB, respectively. Here ff denotes the
raising of indices with respect ot g;s. If the distribution RA ® RB
generated by vector fields A and B on M defines a foliation F, then the

foliation is called the canonical foliation on M. In this case, every leaf is a
1-dimensional complex submanifold of M and is a minimal submanifold

by the following lemma (Dragomir-Ornea [2, Theorem 12.1]):

Lemma 2.5. Any complex submanifold N of a locally conformal
Kdhler manifold M is minimal if and only if the Lee vector field B for M is
tangent to N.

This lemma together with Proposition 2.2 leads the harmonicity for

the canonical foliations on locally conformal Kéhler manifolds.
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3. Inoue Surfaces and Tricerri Metrics

In this section, we review definitions of Inoue surfaces and Tricerri
metrics, and compute Levi-Civita connections associated with Tricerri

metrics. Let C = {z = z; + Y- 129} be the set of complex numbers and let
H = {w = w; + V- 1wy € C; wy > 0} be the upper half-plane.
3.1. Surface Sy. Let M = (m;;)e SL(3, Z) be a unimodular matrix

with one real eigenvalue o and two non-real complex eigenvalues B, B.
Consider the eigenvectors (q;, a9, az) and (by, by, by ) associated to the
eigenvalues o and B, respectively. Let Gj; be the group of complex

automorphisms of H x C generated by transformations
(w, 2) = (ow, Bz),
W, z) > (w+aj,z+0b;), j=123.
The quotient space Sy := Hx C /Gy is an Inoue surface. The metric

gym = w§2dw ® dw + wodz ® dz on H x C defines a locally conformal

Kéhler metric, called the Tricerri metric, on S;; with Lee form
O = wildwz. Indeed, the fundamental 2-form of gj; is given by
QM = V—I(M-i— LU2dZ/\d§J,

ws

and satisfies dQj; = wgldwz AQjpr. We now choose an orthonormal
frame for the tangent bundle 7'Sj; as follows:

E1=w2i, E2=w2i, E3=L— E4=L

0 o
Jur BT e
We then have

1 1
[E, Eq] = - Ey, [E2:E3]:—§E3, [EQ’E4]:_§E4- (3.1)

The distribution generated by B = E5 and A = —JB = E; defines the

canonical foliation F with complex leaves by (3.1).
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The dual frame of {E;} is given by the 1-forms

6 - i“;l . 0= % 0° = Jwedzy, 0% = \Jwydzs.

Differentiating these relations, we obtain

dol = 0l A 02, do? =0, d93:%62/\93, d94=%92/\94.

By do' = -2 0)2 A6 and u)i. + o)i-C = 0, we also have

1 1
(o% = —m% = 61, co% = —(D% =§63, 03421 = —(:)‘2L 2594.

Therefore, we obtain

_ 1 1
VElEl —Eg, VE3E2 :EES’ VE4E2 =§E4, (3 2)
— 1 1 .
VElEZ ——El, VE3E3 :——2 E2, VE4E4 :—§E2,

by Vg, Ep = 2, of (E;)E,.

3.2. Surface ng?p’q’r;t. For a unimodular matrix N =(n;) in

SL(2, Z), let a(>1) and 1/a be eigenvalues of N with eigenvectors
(a7, ag) and (b, by ), respectively. Let p, q, r(r # 0) be integers and ¢ be

a complex number. Define (c;, cg) as the solution of the equation

ay — boa
512r 291 (p,

(c1, c9) = (c1, c2) N + (g, eg) + q),

where

1 1 .
e = Enil(nil —l)albl + Eni2(ni2 - 1)a2b2 + nilnizblag, 1 = 1, 2. (33)

Let G

N.p.q.rt be the group of complex automorphisms of H x C

generated by
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(w, z) > (aw, z + 1),

(w,z2) > Ww+aj, z+bw+c¢;), 1=1,2,

W, 2) = (w, Z+M)'
defi (+) — « (+)
We define Sy’ ., =HxC/Gy’, ..

3.3. Surface S{' . Let N =(n;)e GL@ Z) with det N = -1 and

two eigenvalues o(>1), -1/a. Let (a;, ay), (b, by) be eigenvectors
associated to a, —1/ a, and let p, ¢, r(r # 0) be integers. Define (c;, cg)

as the solution of the equation

bias — bya
—(c1, ¢2) = (c1, ) 'N + (e, 92)+%(p: q).
Here e;,i =1, 2, are as in (3.3). Let GE\;)p o be the group of complex

automorphisms of H x C generated by the
(w’ Z) = (O”w’ - 2)9

(w, z2) > (w+a;, z+bw+c¢;), =12,

ays — boa
(0, 2) > (w, 2 + A2 0201y
We set SU) = mxc/G{) It is well-known that G
N,p,q,r ° N,p,q,r" N,p,q,r
coincides with G(+) for some , and then S(_) has
N2, py g1, 70 P1, D2 N,p,q,r
S (Jr% as its unramified double covering.
N, p1,q1,7;0
. . . (+) (-) .
3.4. Tricerri metrics on SN,p,q,r;t and SN,p,q,r' If we consider a

Hermitian metric

2
v 2 e g - 22 (dw @ dF + dz © diD) + dz ® dE
(wy)? We
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on H x C, then the fundamental 2-form Qp; is given by

2
Qy = «/—1[%dw/\dw—;—g(dw/\d2+dz/\dﬁ)+d2/\d§},
Wo 2

and satisfies dQpy = ws'dws AQy. The following holds (Tricerri
[8, Lemma 3.2]):

Proposition 3.1. The metric g)y on H x C defined above is invariant

under the action o - . is invariant under the action o
der the action of GG . . It t under the action of
G if and only if t is real.

N,p,q,r;t
Hence the metric gp induce locally conformal Kéahler metrics on

Sg\}r’)p’q’r;t(t e R), S](\;’)p,q’r, which is denoted by the same notation gy .

Easy computation gives us the Lee form o of gy is wildw2. Note that

on S(+)

N.p.q.rit with ¢ € C\ R there are no locally conformal Kéihler

metrics (see Belgun [1]).
If we choose an orthonormal frame of H x C

0 0 0 0 0 0
E]_ ZWZM-FZZE,EZ =w2@+z2%,E3 =—E,E4 = -—=,

then
[E1, Ex] = -Ey, [Ey, Eq]l=-E,, [E, E4J=-E3. (3.4
The dual frame of {E;} is given by the 1-forms

dw dw z z
ol =W g2 _dWa 3 22 g0 a0t = 22 gy, — dzy.
Wa Wy Wa Wy

We then have

dol =o' A0%, do%? =0, do® =o' A0, do* =0Z n0t.
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By do' == m;;Aek and o)fc+co]C =0,

i

(1)2:—0)%:—61, m%:—mzz ,
wéz—w%:—%eél, mi:—m;‘:—e“,
co4=—(of——%93, m3——co§——%91
Therefore, we obtain

Vi By = Ey, Vi, By = 5 B,

Vg Ey = - Ep, Vi Bl = %E4, Vi, Ey = Ey, o

Vi Es = %E@ Vi, Ey = —%El, Vi, By = —%El, |

Ve By = _%ES’ Ve, Ey = - Ey,

by VEl-Ek = Zm of (E)E,,.
4. Proof of Main Theorem

Let (S, g) be one of the surfaces (Sps, ga7 ), (SE\J})p g gn)(t e R) or

(SN q.r> &N ) By JE; = Ey and (3.1) or (3.4), the distribution RE; ® RE,

on S define the canonical foliation F on S. By (2.3), Lemma 2.1 and

Stokes theorem,

4

LBz = (o 1) = (Y0, m) = 2 (V. E1)

4

= DU Vi) + [ Vileg(n Bidvh =0, @D
=3 S

where we set V; := Vg and use v e (@) and (3.2) or (3.5). Note that

the connection V 1is defined in (2.1) and is the composition of the

canonical projection n and the Levi-Civita connection V associated to



STABILITY FOR CANONICAL FOLIATIONS ON ... 13

the Tricceri metric for k = 3, 4. It follows that the canonical foliations on

Inoue surfaces are extremal of the energy functional under special

variations.

We next compute the right-hand side in (2.4). As (4.1), we have
4
<VVSU’ n) = _Z{<V8U’ VkEk> + jsvk{gQ(vsV’ E} )}dv} =0,
k=3

by (3.2) or (3.5) and Stokes theorem. We also have

VE3E3 = VUE3 = V[U,E3]E3 =0 and VE4E4 = VVE4 = V[U,E4]E4 = O,

by (3.2) or (3.5). Hence,

4
RV(U, TC)TE = Z(VUVkEk - VkVUEk - V[U,Ek]Ek) =0.
k=3
We now conclude that

d2

_2 E(]:t) = <dvU, dv'l/) > 0,

dt”|,_

t=0

as required.
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