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1. Introduction

Matrix theory is a fundamental area of mathematics with applications
not only to many branches of mathematics but also to science and
engineering. It is a connection to many different branches of mathematics
(cf., e.g., [1, 6, 7, 9, 10]). In this paper, we study some properties for
analytic functions of square complex matrices. We derive a necessary and
sufficient condition for the matrix function to be analytic. Besides, we
discuss matrix real integration, complex integration of matrix functions,
and Cauchy’s integral formula for functions of single complex matrix and
for functions of several square commutative complex matrices.

We shall now introduce certain symbols which will be useful in our

work. Throughout this paper, consider the complex space cVN - of
complex matrices of common order N. The symbol |a| will denote a

matrix, all elements of which are equal to the number a. The symbol |X]|

will denote a matrix whose elements are equal to the moduli of the
elements x;;(2), i, j =1, 2, ..., N of the matrix X, i.e.,

{|X|}ij = |{X}y|

If a certain matrix Y has positive elements which are greater than
the elements of the matrix |X|, we shall write this down in the form of an

inequality

|X] < Y.
In the other words, this inequality is equivalent to the following system
of N? inequalities:

X}l <Y}, ij=12.., N

The symbol for the quotient of two matrices % does not have a definite

meaning. We interpret it as in [5] two ways; as the product AB7! or
B7l4; these products are in general distinct, it is only in an exact

significance and this can be obtained when AB = BA; B is non-singular.
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Definition 1.1. Let the matrix function f(X); X = [x;;(2)]; 4, j =1,
2,3, ..., N, be a square complex matrix whose its elements are functions

of the complex variable z. The limit of this function is defined as follows:

lim f(X) = [ lim f;(2)]. (1.1)
22 222
If,
lim f(X)=A4; lim G(X)=B.
Z2—2 Z2—20
Then,
Jim ’ [X)GX)= AB;  lim : G(X)f(X) = BA,
and

lim {af(X)+bG(X)} = aA +bB; a,beC.
X—)XO
If, X = [x;(2)], Y = [5;(2)] are two commutative matrices in region
D; (D « cV*V),

lim xij = aij; lim yij =b

i
Z—2) 22

Then

22

N N
AB = lim XY = [Zzlggo Xissi] = [Zzlggo Yissj )
s=1 s=1

Definition 1.2. Let f(X) be matrix function of the square complex

matrix X = {x;;(2)}, we say that f(X) is continuous in a region D, if

Hm (X + rI) = f(X)] = O, (1.2)

where I is the unit matrix associated with the square complex matrix X.
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Suppose that X = [xij (2)] is a square complex matrix of finite order

N, whose elements are functions of the complex variable z. The derivative

% f of the matrix function f(X) will be defined as follows (c.f. [5]):

dX A0 h ;0 h=hy +ihg; hy, hg e R (1.3)

Theorem 1.1. If f(X) is differentiable with respect to X in D, then

f(X) is continuous in D, but the converse is not true.

Proof.
. ) o TAX RD - O .
B (X + B1) - F30] = Jim | TR «Jim b =0,
therefore, the matrix function f(X) is continuous. O

To show that the converse is not true consider the following example:

Example 1.1. f(X) = X is continuous but no where differentiable,

X denotes to the conjugate of X.

Proof.
fX+hD) = f(X) _ (X + D)= (X) _ (b)
h B h R’
: (hI) : = :
where limj_,g o does not exist. Therefore f(X) = X is not differen-
tiable. -

Theorem 1.2. Let f(X) be a matrix function differentiable with

respect to X in D and invertible. Then f_1 (X) is also differentiable, and

d .- - d -
e 171X = = 710 (G X)),
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Proof. The following identity can be easily verified:
fHX +hD) - fHX) = FHUX + A [f(X) - f(X +AD]f (1.4)

where

d o (X + R - f(X)
e

Dividing both sides of (1.4) by A and taking the limit as A~ — 0, we get

fo FHE S AD — X)L [N AD ) - AX + DY)
h—0 h h—0 h ’

and

d .- - d -
e 710 = =17 0 (i FE) (X,

2. Cauchy-Riemann Matrix Equations

Theorem 2.1. The necessary condition for the matrix function f(X)

to differentiable in the region D is that

ou ov ou ov
_ov ou _ _ov 2.1
2" BT 2.1)

where f(X) = u(oc, B)+ iv(oc, B)’ X = [xl](z)] = [OLij(.’XI, y)+ lBlj(x7 y)] =a+i,
o and B are commutative matrices for all z e D.

Proof. Suppose that the matrix function f(X) is differentiable in the

region I, then according to (1.3), we get

im TE D= FX) .y iny by hy e R, (22)

f1(X) = }lzl—>o h ’
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and

u(o + I, B+ hol)— u(a, B)

f (X) - hl-l-lllill;lﬁo hl + lh2
i lim v(a+h1[,B+ﬁzI)—v(a, B).
Ay +ihg —0 h‘l + lh2

Since the limit is assumed to exist, & can approach zero from any

convenient direction. In particular, if we choose to let 2~ — 0, through

real part direct of the complex matrix X so that Ay = 0 and A = h;, then

(xy ~ o J&X M) - f(X)
f(X)_hllu—?o hy

. ulo + 1, B)— ul(a,
iy g ML )l

U(OL + hlL B) _ v((x, B)
hl ’

+1 limh1_>0

f’(X)=g—z+i2—Z. (2.3)

Now, let A — 0 through imaginary part direct of the complex matrix X
sothat Ay = 0 and h = hy, and f'(X) can be written in the form:

03y~ 1ien TX R - f(X)
f (X)_iilérgo iZhQ

lim M(OL, [3 + h2I) — u((x, B)

ho—0 lh2
+i lim U(O(, B + h2I) _ U(OL, B)
hg—0 14 h2

_ uﬁ(a’ B) I Uﬁ((l, B)

l l
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thus,
F(X) = i g—g ¥ g—g. 2.4)
From (2.3) and (2.4), it follows that
oo ou o
oo, oa. B B’
le.,
qu _ v and o _ _6_0.
do. OB op oa.
g

To show that the matrix function f(X) may not be differentiable at
the matrix X, = [xij(zo )]; z = 2y although Cauchy-Riemann equations

are satisfied at X; z = 2, consider the following example:

Example 2.1. Let

af .
— if X # 09,9,
f(X) =142 + BQ 2
O2X2’ if X = 02)(2,
where
X 3x 2y y
o = , B = , X = o+ i,
3x x y 2y
we see that
u(a, 0) = u(0, B) = v(a, B) = v(a, 0) = v(0, B) = 0.
Thus,

u(o + kI, 0) - u(0, 0) _

A 0.

uy (0, 0) = %1_1)%

Similarly, ug(0, 0) = 0, v, (0, 0) = 0, and vg(0, 0) = 0.



112 M. A. ABUL-DAHAB and Z. M. KISHKA

Thus, the Cauchy-Riemann equations are satisfied at X = [xij(O)] =0;

i.e., when z = 0. Now, it can be easily seen that the matrix function

f(X) is not differentiable at the matrix X = [x;;(0)] = 0 because

lim f(X) = li (@)= lim —%P
Xli)no f( ) Zl_l;l’(l) f(xlj(z)) x+gg0 (12 + [32

X 3x| |2y y
3x x| |y 2y

= lim -
x+iy—0 [ 102 6x2 5y2 4y?
+
6x° 10x2 | |4y? 5y>
1 31 [2m m]
B 3 1] [m 2m |
10 6] [5m? am?|’
+
6 10] |4m2 5m>

we have used the general path y = mx. Thus, the matrix function f(X)
given in Example 2.1 is not differentiable at the matrix X =0 as

required.

In the following theorem, we prove that Cauchy-Riemann equations
with the continuity of the first partial derivatives give a sufficient

condition for differentiability of the complex matrix function
f(X) = ula, B) + iv(a, B).

Theorem 2.2. Let f(X)= u(a, B)+iv(a, B) be a matrix function

defined in a domain D such that the first order partial derivatives

Ug, U, Uy, and uvg are continuous in D. If the first order partial

derivatives of u, v satisfy the Cauchy-Riemann equations at Xy in D,

then f is differentiable at X in D.
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Proof. Since u(a, B) and its first order partial derivatives are

continuous in D, we have
u(oo + I, B+ hol)—u(a, B)
= hug + hey + haupg + hacy, (2.5)
where ¢¢ > 0 and ¢ —> 0 as .y —» 0 and hy — O.
Similarly,
v(a + I, B+ hol)-v(a, B)
= hvg + ez + hovg + hoey, (2.6)
where ¢ > 0 and ¢4 > 0 as A; > 0 and Ay — 0.
Then
f(X +hl) - f(X) _ 1

! o+ M1, B+ hol) — ulc, B)

+ w(a + M1, B+ hol)—v(a, B)].
Using (2.5) and (2.6), we get

FX + hI) - f(X) _
h

1
W (Pt + houg + hyey (o, by) + hoeg(at, hy)}

+i{hyvg + hovg + hyeg(at, by ) + hgey(a, By )]

1 . .
=7 [hl(ua +1ivy ) + ho(ug +ivg) + MG + hzn],

where { = ¢] +ieg and 1 =eg +i¢y

Lim =0, lim n = 0.
h1—>0,h2—>0 hl—)O,hQ—)O

Using Cauchy-Riemann equations, we get

ou Ov ou ov

o ™ T
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f(X + h}Il) - f(X) _ %[h(ua + vy ) + MG + hom]

= Uy + iU +—C+

Now,s1nce| | <1, |h2 | <1 and

hC + hom hy—>0
| =252 < el + Il > 0 as {37
Hence,
f(X+hl)-f(X) .
}1L_I>I’(1) A = Uy + iUy
Therefore f(X) is differentiable. |

3. Matrix Real Integration

Definition 3.1. Suppose that X = [x;;(¢)] is a square matrix; a <t < b,
a, b € R such that

dX _dX

.W— di X te[a,b],

f(X +hl)-f(X).
- ; tela, bl

f(X) = lim
Then

j F(X)dX = j f(x) X dt—J £ f(X)de

b d b
= [ 1 fa(0lat = 70111, = £l (®) - Flxy(a)

- F(B) - F(A).
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Thus, we can write
b B
[ r@ax = [ 'r0dx = F(8)- Fa),

where A = [x;i(a)] and B = [x;;(b)].

Example 3.1. Evaluate the following integration:

sint t+1
1 . cost 1
I e t+1 sin ¢ ) dt.
t=

% 1 cost
Solution.
sin¢ t+1 sint 41T
T { i } cost 1 { ) }
J e t+1 sin t ] di = e t+1 sin ¢
=5 1 cost
t=3
0 n+l {1
_ eLHl O:| —e 5+l
If
dX  dX
X — + —X; .
X telodl
Then

b B
'[ f(X)dX = I | ['(X)dX # F(B) - F(A).

According to the following example:

Example 3.2.

1 1 x [ 1
X = T ’
¢ ¢ 4¢3 4¢3
X dX 2 dX ,

115
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1+t4 1+t
X? = ,
t+¢8 t* + 8
. 2 21 1 17 N 1
{X t=0 = - = )
2 2| o o] |2 2
1 1 1 1] 4¢3 443
2X% 2 . = 2 )
¢4 14| |43 413 | 417 4t7
o4 o4 1 2 2
_[ 2X—dt_J' 9XdX = - ,
8 8
¢ t =0 1 1

le.,
b B
.[ F(X)dX = j | F(X)dX # F(B)- F(4).
a
Now, we will derive some properties of definite integration of matrix

functions.

(i) Suppose that X = x;;(t) is a square real matrix whose elements

are odd functions, i.e.,
xij(—t)z—xij(t); i, j=123,..., N.

Then

Ifaf(X)dX = JA_Oaf(X)dX + I:f(X)dX

J' _OA £(X)dX + IOA f(X)dX

0; f(X) is odd function in X,

A
ZJ. f(X)dX; f(X) is even function in X.
0
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Example 3.3. Evaluate the following integrations:
®
t t

1 A
jXQ"dxzj X2ax: X =|8 4P tla=l1 1 1l
-1 -A

t° t £3 1 1 1
(i1)
sinh ¢ ¢° sin 8t
1 2 5
J' X2 ¢in XdX: X =| ¢ sin3t  sinht|.
-1
sin 3t sinh ¢ £°
Solution. (i)
X2x+1 A
XX = J' X2dX = 2
J.—l { 2n +1 }
1 1 121 1 1 1
S 1 1 _ 237 1 1
T %9n+1 T 9n+1 )
1 1 1 1 1 1

Solution. (ii)

1
.[ X" sin XdX = 0,
-1
where 0 is the zero matrix associated with the square complex matrix X.

(i) .[ ab f(X)dX = J' AB f(X)dX = - j ; f(X)dX.

(i) J j f(X)dX = j AB f(X)dX = J j £(X)dX + j j £(X)dX,
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where A = [x;(a)], D = [x;;(d)], and B = [x;;(b)]; a<d <b.

a A
Gv) [ FE0dx = [ f(a-X)ax,

dX . .
where A, X, and —— are commutative matrices.

dt

4. Complex Integration of Matrix Functions

Let X = [x;;(2)] be a square complex matrix; z = x + iy, X and Ccll_f
are commutative matrices on the curve I' in DD, then
I f(X)dX = [ lim S, ;1;
r n—0o0
N dx
Snij = ;Gi,-(cmzk; [Gyie)] = FX) S
Therefore, we obtain
[ reax = [ tuta, p)+ivla, ) (do + idp)
r r
= I {udo —vdB} + i.[ {udo + vdB},
r r
where «, B, a—a, 6—“, @, and B are commutative matrices on the
ox Oy Ox oy

curve I'.

Theorem 4.1. If the elements of matrix X = [x;;(2)] are analytic

functions on and inside a simple closed contour T, X,d— are

dz

commutative matrices in T, f(X) is differentiable in T, then

$ f(x)ax = o. 1)
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Proof.
¢ rxyax = 1) X az = $(G(2)dz) = 0
L rax - § 10X a: - § 10,z =0
O
Example 4.1.
z+1 e? 3z sin z
e? z+1 sin z 3z
f eXdX = 0, X-=
[ol=1 3z sin z z+1 e?
sin z 3z e? z+1

Example 4.2. Find the analytic matrix function in C whose real part

is given by
u(a, B) = 2aB +e* cosPB; X = a +1iB,
where
x+1 e® cosy 3x sin x cosh y
e* cos y x+1 sin x cosh y 3x
a =
3x sin x cosh y x+1 e* cosh y
sin x cosh y 3x e” cosh y x+1
and
y e sin y 3y cos x sinh y
e sin y y cos x sinh y 3y
B =
3y cos x sinh y y e® sin y
cos x sinh y 3y e* siny y
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Solution.
F0) = [ rx)ax;
f(X) = uy +ivg.
According to Cauchy-Riemann equations, we have
f(X)=u, - iug = 2B + e cos B — i[2a — e* sin B]
= eX —2iX.
Thus

f(X) = J'(eX ~2iX)dX = X —iX2.

Remark 4.1. In the previous example, the matrices X, ﬂ, o, and

dz
B are supposed to be commutative matrices.
Lemma 4.1.
b FX)axX| = [$r (FX)aX),]1 < [MyL] = |ML, (4.2)

where

M = M| = max[M;;] = max{|f(X);]; X = [x;(2)). 2 € C},

and L is the length of T.
Proof. By definition of M, we have

(X)) < M for all X, zeC.

Now,

b (x)ax| = [|f . 17(X)axy,|]
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dX
< ¢ 1tFx) LX azy,
- frl{f(X)}ij”{%}ijldz

dX
< ¢ My l( %Xz = |z,

5. Cauchy Integral Formula for Complex

Matrix Functions

Theorem 5.1. Suppose that X = [x;;(2)]; i, j =1,2,3, ..., N, and let
f(X) be function analytic on and inside the closed contour T that encloses

zq, then

() X = [x;;(2)]; xj5(2), i, j =1, 2, ..., N are analytic functions of the

complex variable z in D.

. f(X +RI) - f(X)

A exists for all zin D.

i) limy,_,

(111) X and ax are commutative matrices in ), we have

dz
_ 1 f(X)
In general,
() x zﬂ..x} g X g 5.2
f ( 0) {dzn (flj( )) =2 271 fl" (z—zo)n+l < (5.2)

where T' is a simple closed contour in the domain 1.
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Proof. Choose a circle I7 with center z; and radius r; such that I}

lies 1n the interior of T, it follows that

fﬂdz :fl“l &dz

rz-zg 2—-2

_ f(X) - f(Xo) + f(Xo)] |,
) ﬁl[{ z ‘020 : }ij]d

101 Y, g o),
ij I

2 =2 12—20

2 =20

e
(1= 1) )}U gty
T

fX) - f(Xo)}_ dz + (X)) (2ni).
y

2 — 2
Thus,

f(X) , _
r?-%0 dz_jgr

1

[{M}sz + f3(Xy) (2mi). (5.3)
Y

z -z
Since f(X) is function analytic in and on T, it is continuous at
Xo = [x;5(20)]-
From [5] given ¢ > 0, there exists 6 > 0 such that
[HX = Xo ;] < 3] = [[{F(X) = F(Xo)y; (1 <[]
If we choose ry < 8, then

(X = Xo iy 11 < lroll = [11F(X) = (X0 1] < [ell-

By Lemma 4.1, we have

g ({ F(X) - f(Xo)}lez| < () (@m) = 2m

2 —Z
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Since ¢ is arbitrary, we have

§ ({10 e o

From (5.3), we get

f(Xo)::sz.j{ &dz,

r =20
therefore
f(X +Ih)—f(X )_L 1 >
: h : _2nifr [2 (zg +h) z- zo}f(X)d
- e (e e 0
1 (z - =0) }c
<2m'>5£ Lz (20 + 1)) (z - 20)
_ 1 (z—29—h+h) }f
<2m‘>f Lz (20 + 1)) (z - 20)
M [(z — 2 — ) + ()] }
(Zm) (z - (20 + 1)) (z — 20)°
_ 1 fX) 4. h f(X) da.
@md) Jr (2 = 29)? @70 Jr (2 = (2 + 1)) (2 - 20)?
Thus
f(Xo +hI) - f(Xp) 1 X
h (27:1) ro(z- ZO)
h f(X) dz. (5.4)

T @)U (2= (29 + ) (2 - 20)°
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Now, let M denote the maximum value of |f(X)| on I'. Let L be the

length of I' and we choose h so small such that || < %, we have

lz =29 — h| = |z — 2| - |B] > 8_%:%
Hence
| <2’Li> fr (z - (20 f(h)){))(z —2) 4l = 2,[('3'2]‘)4?% )
From (5.4), we have
([Xo+hD) - f(Xp) 1 X)) < ML
h @m) Jr (2 - 24)? n(e?)
taking limit as A — 0, we get
m{“x‘) R dz} -0
i [0 D= f(Xo) _ 1 0 FX) 4 g
h—0 h 2mi) I (2 - 2,)?

Similarly, it can be shown that f"(X()) is analytic function of X, we get

f"(Xo) = (227111') fr ( f(X) dz.

z— 20)3

By using mathematical induction on n, we can prove that for any positive

integer n, that

f<”><Xo)={OZ—';(nj(X))} L L

1 .
z=z( r (2 —?0 )n+
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Lemma 5.1. The higher-order chain rule or Faa de Bruno formula
established (c.f. [2, 8]). We will define the higher-order chain rule of
complex matrix functions provided that the following conditions are
satisfied:

() X =[x;(2)]; x4(2), i, j =1, 2, ..., N are analytic functions of the
complex variable zin D.

f(X +RI) - f(X)
h

(1) limy,_,q exists for all zin D.

(1) X and ax are commutative matrices in .

dz

Thus, the complex matrix function f(X) has the n-th derivative with

respect to z in the general form
*\n _ n! * D* (X) 1 (D ) (X) —
(D) f(X) = D o (D) OO =) G =) D7 =

(5.6)

It can also be expressed in terms of Bell polynomial B,, ; as

d”fy([xl,(Z)]) Zn:dsfij([xij(z)])

e B, (X, X" X",.., X"75) (5.7)

§=

where

| X X .
B, = l( .y ) ( =3 )kZ...(T';)kn; s=1,23,..,n (5.8

n,s
lkl=s, [k]|=r

k= (ky, kg, ..., ky ),
k| = ky + kg + ...+ Ky,
Ik = k1 + 2kg + ... + nky,,

K=k kgl Ky
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Example 5.1. Evaluate the following integrals:

@
X
f ¢ dz,
r z2+4
sin z 22 +1
where I''is [z -4 =2, X =
2241 sin z
(i1)
2
f X° +51 dz,
r z-3
2
_ cos z e 3 ) _ )
where T is |z =4, X = ,I is the unit matrix
2
e? 3 cos z

associated with the square complex matrix X.

(iii)

X
fr 02>

cos mz? sin nz?
where T is [2] = 2, X =
sin nz? cos mz2
Solution. (i)
11 1

224 2+22-2

1

-

4i

S S S
z2—-21 z+2

).
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Now, 2i lies inside I', then we get

rin 2 -3 }
X c o
f € __dz = 2miel 3 sin 2]
r 2—2i
Also, — 2i lies outside I and hence
X
f ¢ dz,
r Z+ 2l

is analytic inside and on I', then

eX
f -dz =0,
FZ+2Z

l.e.,

5 =

rm 2i -3 } rm 21 -3 }
X
e 1 . in 2i T |- in 2i
f dz = — | 2nie 3 sin 2i —ol=2Z, 3 sin 2i )
r z2+4 l 2

Solution. (ii) Since f(X) = X2 + 51 is analytic inside and on || = 4

and z = 3 lies inside it, then

X2 4 5] R cos2(3) + e 2 cos(3)e!?
56 P e-3 OO 12 2 24
2 cos(3)e cos“(3) +e
Solution. (ii1) Let
X
9-z

Clearly f(X) is analytic within and on T, then

f(X)
jgr (9—22)(2—1) jg i

il
=—-——1.
4
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Example 5.2. Evaluate

X
e
f —dz,
r z
2
‘ 1 PRI cosh z
where T is |z] = 5 X =
2

cosh z e? +3

Solution. We can identify, z5 = 0, n = 2, and f(X) = eX . Clearly

f(X) is analytic within and on T'. Then we get

{de(X):| _ |:6X(£)2 +eX d2_§:| ,
z=z dz dz z=z

dz?
2 2
N dX 422e22°+3) | ginh? 2 4ze% *3 sinh 2z
were(a)— 20y ) o Pas) s ,
4ze* ° ginh z 4z%e“\* *°) 4 ginh” 2z
2
dax |27 3227 +1) cosh z
2 9 :
dz cosh z 2¢% t3(22% +1)
Then
63 1
X . 2¢3 1
€ gz = 2 el ¢
T 23 -2 3
1 2e

6. Cauchy’s Integral Formula for Functions of

Several Complex Matrices

In order to simplify notation, we introduce multi-indices: Let n;,

1<i <k be non-negative integers and let Xj, Xy, X3, ..., X; Dbe

commutative matrices in CV*N. We define
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n = (ng, ng, ..., n;), |n|=n+ng+...+n,
X =(X;, Xg, ..., X;;) and z = (21, 29, ..., 2}, ).

Theorem 6.1. Let f(X) be a function; of the several square
commutative complex matrices X, Xo, ..., X}, which and their elements

are analytic functions of the complex variables &;,1=1,2,..., k in the

NxN

domain D < C , which is the product of the domains Dy, Do, ..., D,

oX; . . . )
and X;, EL are commutative matrices in D;; i =1, 2, ..., k. Then we
i

have

[T, »
n;.
_ i=1 "

nay = | 2" f(X)
A) = | — ;X =
f*(A) {ai? (f]( ))Li=2i (2ni)k frljgrz ffk Hle(éi_zi)niﬂ
dgdgy ... d&,

where T; is a simple closed contour containing z; and entirely in the

domain Di; I = 1, 2, ey k, A = ([Xl,ij(zl)]’ [X2,ij(22)]’ ey [Xk,u(zk)])

Proof. From Cauchy’s integral formula for functions of single
complex matrix, we get

1 f(Xy, X9, ..., XP)

A)=— d
f(A) o I, B - 2 &1
1 11 X, Xo, X3, ..., XD
_ 1 11 Xy, Xy, X5 k)di2 d,,
2m )y |8 -2 2m Co — 29

and after k-steps, we get

= L k f(Xl, Xo, .0y Xk)
f(A) B ( 27 ) fl"lfl"gn.fl"k (al _21)(E_,2 _22)---(§k _Zk) d&ld&,z dik

Therefore, partial differentiation of the function of the several square

commutative complex matrices X, Xo, ..., X; with respect to the

complex variables &;; as in the case of single complex matrix, lead to
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k
fWA%zéiOMX» :ILﬂm¥ﬁﬁ?_f f(X)

oen (2mi)*

k +1
T Hizl(ii -zt

d&dég ... dE;,

&=z

n;, =0,1,2,...,and i =1,2, ..., k

(1]

(2]

(3

(4]

(5]

(6]

(7

(8]

(9]

(10]
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