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Abstract

In this paper, we consider a quasilinear parabolic systems with the singular

absorption term

ou; 1 . .
T At s ey T ) nex(0.T),
1
w; =00on 8Qx[0,T], u; >0 on @ =Qx(0,T),
u;(x, 0) = @;(x) in Q.

In particular, we prove the existence of discrete approximate solutions by means

of the Rothe discretization in time method under some conditions on a;, f;, and

pi,i =12
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1. Introduction

In this paper, we study a quasilinear parabolic systems involving

p;-Laplacian operators of the type (S)

o ()

+ filx, ug, ug) in Q@p =Qx(0,7T), (1.1)

ou 1 .
6_t2 —ApyUg = )2 + folx, g, ug) in Q@p = Qx(0,7), (1.2)
Uz

U =ug =00n 0Qx[0,T],u; >0 and ug >0 in Qp = Qx (0, T),
(1.3)

(u1(x, 0), ug(x, 0)) = (¢1(x), @2(x)) in Q, (1.4)

where A, u; = div([Ve| P72 Vi), 1 < p; < », Q is a bounded domain in

RN with smooth boundary 6Q, and the functions a;, f;, i =1, 2, satisfy

some conditions specified later.

Systems (S) appears in the study of non-Newtonian flows, chemical

heterogeneous catalyst kinetics, combustion. We refer to the survey
Hernandez et al. [15], the book Ghergu and Radulescu [6] and the

bibliography therein for more details about the corresponding models.

Recently, Badra et al. [3] discussed the existence and long-behaviour

of solutions of the quasilinear and singular parabolic equation

vV V) = = + flx,w) in @,
ot 40
u‘t=0 = LLO(JC) in Q,

Uon =0on 0Qx[0,T], u>0 on Q.

In this paper, motivated by the ideas in [3], we generalize and extend

the results of [3] to systems (S).
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This is the plan of paper. We recall our assumptions and state main
results in Section 2. In Section 3, we show the existence of discrete
scheme. And, after showing some estimates on there approximations, the

passage to the limit and the existence results are given in Section 4.
2. Assumptions and Main Results

2.1. Notations and assumptions

Let QO be a smooth and bounded domain in RN(N > 2). Set for
t>0,Q =Qx(0,¢t),S; =0Qx(0, t).

The norm in a space X will be denoted as follows:

Il if X =L'(Q), 1<r<+xo
1,q q
[-|x otherwise;

and (.,.) denotes the duality between Wol’p (Q) and W 5P(Q). For any
.. . , 1 1 .
p =1, we define it’s conjugate p' by > + > = 1. On this paper, C; and

C will denote various positive constants.

In the sequel, the same symbol ¢ will be used to indicate some
positive constants, possibly different from each other, appearing in the
various hypotheses and computations and depending only on data. When
we need to fix the precise value of one constant, we shall use a notation
like M;, i =1, 2, ..., instead.

To control the singular term %, we need to consider solutions in
u 1
the cone C;, where C; is the set of functions v € L*(Q) such that 3¢, ¢y

with
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d(x) v <cod(x) if a; <1,

1
i ) < v < eyd(x)log P (L

1
pi ; if o =
c;d(x)log (d(x) d(x)) with k large and if o; =1,

cld(x)# <v< c2d(x)# if a; >1,
with d(x) = dist(x, 0Q).
In the sequel, we shall present the following assumptions:
(H1) f; e CHQxR" xRY), (i =1, 2).
(H2) (u, v) - f;(x, u, v) is increasing function.
Lemma 2.1 (Theorem 1.3, cf. [2]). Let ge L*(Q) and

Then for any A > 0, there exists a unique w, in

0<9; <2+

T

Wol’pi (Q)N C; such that
1 .
w—k(Apiw+T):g in Q,
w 13

LU‘aQ = 0.

2.2. Existence theorem
Let us introduce the function space

Definition 1.

Vi(Qp) = {ui cu; e LP(0, T; Wy P Q)N L*(Qr ), a(;i e L*(Qr )}-

Then, we define

Definition 2. A pair of functions u = (uy, ug) € V1(Qr ) x Vo(Qr ) is

called a weak solution (resp., subsolution, supersolution) of (S) if

(1) for any compact K € Qp, essg inf u; > 0, essg inf uy > 0,
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(2) for every test function ¢ = (¢1, ¢9) € V1(Q7 ) x Vo(Qr ),

ou; .
[ Shoidz— [ [vulP o vu). Ve dz
T Qr

1 = —
- '[QT (ui)oni ¢;dz — J.QTfi(x, u)(l)idz =0 (0,2 0), z = (x, t),

3) u;(x, 0) = ¢;(x) (<£0,>0)ae. in Q.
We refer the readers to [7, 13, 16] for the existence of supersolution

and subsolution for systems (S).

Using a time discretization method, and existence of supersolution

and subsolution, we prove the following result concerning (S):
Theorem 3. Let p; >2,0<q; <2+ﬁ,(i=1,2) and ¢; eWOLPi @)nNe;
-
be given.
Suppose that f; verify (H1) and (H2) and that (S) has a u,u a
supersolution, subsolution. Then, for each T > 0 given, systems (S) has
at least one weak solution u = (uy, ug) € C; x Cy uniformly for t € (0, T).

Proof. The main tools in the proof of this theorem are discrete

scheme (2.1)

. 1 _ — .

%— Aplu;" = W-ﬁ‘ fl(x, uln 1, uél 1) mn Q, (21)
u!
1

ul’ =0 on 0Q,

where Nt = T 1is a fixed positive real, and 1 < n < N.
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We can write (2.1) as

1 .
w-MApw+——)=g inQ,

wi

w‘@Q =0,
where w = u', A = 7, 8; = a;, and g = 7f(x, Wl ul )+ uf_l.

From Lemma 2.1, we define by iteration u e Wol’pi (@)Nc¢; and
0 _ 1, p;
u; =¢; € WyPH(Q)NC,.

So consequently, (u;)_, (%;), setby: Forall n € {1, ..., N},

(). () = u,

vt € [(n - 1), n1]
(i).(0) = Cm DD gty

are well defined and satisfied in addition

o),
R ppy ), =

fi(x, (ua), (- = 1), (), (- = 7).

1
R
((w); )™

(2.2)
We first establish some energy estimates of (u; )., (&; )..
We need several lemmas to complete the proof of Theorem 3. a

I < u;, imply

Lemma 2.2. For any n e N*, the relation u; < u'”
no_ -
that u; < u;' < u,.

Proof. By the above assumptions, we have

ul —ull
%_(Al’iuin —Apiﬁi)— nl(x- - _la'
()" ()™
< fl(x’ u{l_l’ ug_l)_ fz(x’ El’ EZ)'
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We obtain with " < #; and (H2)

fi(x7 u{L_l’ ug_l) - fl(x7 Eb ﬁ2) = fl(x7 u{L_l’ ug_l)

— filx, m, ud ™) + fix, w, ul ) - fi(x, W, @) < 0.
We therefore obtain
n —

u. —Uu;
L T : _(Apiu?_Apiﬁi)_{ nlm - _1m]
(@ )" ()™

< fila, uf ™ W) - filx, wm, ). (2.3)

Multiplying (2.1) by (u" —%; ), , the monotonicity of w —>—(Apiw—w7°‘i )

implies

Similarly, we obtain u; < u'. O

Lemma 2.8. There exists a positive constant C(T, ¢, ¢9) such that,

foralln=1,.., N
ul e L°(0, T; L*(Q)), 2.4)
(u;),, (@), € Cj, (2.5)
(% )., (&; ), are bounded in LPi(0, T} Wé’pi Q)N L*(0, T; I*(Q)), (2.6)

a 7.
% is bounded in L*(Qr), (2.7)

and

(u;)., (&;), are bounded in L*(0, T W&’pi (Q)). (2.8)
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Proof. (a) By Lemma 2.3, for any n € N, (i =1, 2) are bounded;

whence (2.4).

(b) Multiplying (2.1) by ’ruin, summing from n = 1 to N and

integrating over Q, we obtain

ZI { ; ] ndxHZJ VP d
N N
= ul 1% dx + J (x, w7, ud N uld.
PYNCE PYRCT T T

(2.9)

By Young inequality, for ¢ > 0 small, there exists C.(7T') such that
N N
TZJ fi(x, w7 uf M uldx < TZJ' VulPidx + C(T).  (2.10)
n=1 Q n=1 Q

With the aid of the identity 2a(a — b) = a® — b2 + (a — b)?, we get

N u — L 1 N 5 5 Lo
. . -1 —
TZIQ[%}L;M:EZJQ(W L
n=1 n=1
1 Y 2
=5 2 f ol -

n=1

112 1 N2 1 2
Y )dx+§jg|ui | dx-§IQ|<pi| dx.

Since a; < 2+
i

N TJ. (u; )l_ai dx < 40, if o; <1,
T I (u )% dx < (2.11)
Z; o TJ. (u; Y %dx < 40, if a; > 1.
Q

Gathering the above estimates, we get (2.5) and (2.6).
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(c) Multiplying the Equation (2.1) by u - u?_l and summing from

n =1 to N, wet get

N Ut gl 2

TZJ‘Q[?J dx+2j |Vu;' |pl vu! - V(u' - infl)dx
N n

_ng[ui(un)% ] Zj filx, ui ™, g_l)(uin—uin_l)dx.

2.12)

By Young inequality, we get

N

-1 -1 -1
E Jgﬁ(x, w' ", uy ) (w! -l )dx
n=1

n 2
C(T)+—ZJ.( _ lex (2.13)

1
—a;

From the convexity of the expressions IQ|Vw|pi dx and - T

Ile_“ix, we get the following inequality:

pij |Vuy|pzdx-—j Vu™ 1|pldx<J- VUl P2 vu vl - u ™ )da,
1 YQ

(2.14)
and

n

n-1
i < {ﬁ]d
Q u. 12
1

(2.15)

1 -1\l-o; 1
jg(ug Yoy -

l—ai

which imply with (2.12), (2.14), and (2.15) that
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N no_ g n- -1)2 N
.
EZJ. [ ]dx+—J- |Vui |Pidx

1 J‘ 1
< dx + C. 2.16
1-04 Q(ul )it : (2-16)

The above expression together with

o= ma [ (@), [ (1)l

yields (2.7) and (2.8). a
By Lemma 2.3, there exists M; > 0 independent of T such that

;). — (% )T"LOO(O,T;LZ(Q)) 11<I;La<)zivllu - uin_1 ||L2(Q) < Mr. (2.17)

Therefore, taking ™ — 0%, and up to subsequence, wet get that there
. . O
exists u;, v; € L”(0, T; W&’pl (Q)N L*(Q)) such that % e L*(Qr),

u;, v; € C; uniformly and as 7 — 07,
(), > u; in L*(0, T; Wy Pi(Q) N L*(Q)),

(@), Sv; in L*(0, T; Wy Pi(Q) N L*(Q)),

o(a;), N ou;

From (2.17), it follows that uw; = v;. From (2.17), from Lemma 2.3,

compactness Sobolev imbedding, the interpolation inequality and Ascoli

Arzela theorem, we get that

(w;),, (@), = w; in L*(0, T; L% (Q)), Vg; > 1. (2.18)
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Now, multiplying (2.1) by (u;). —u; and using (2.19), we get by

straightforward calculations

J‘OTJ‘Q(%— aaliij((ﬁi)T - u; )dxdt —J.0T< Api(ui)T, (ui)T —u; > di
- J()T.[Q(ui)i_ai((ui)T - u; )dxdt

+ ITJ £:(x, (), (= 7). (ug). (. — 7))dxdt + o, (1), (2.19)
0JQ

where 0.(1) - 0 as T — 0%,
From convexity of the term — IQ(ui )"%dx and since (u; ), = u; in

LPi(o, T; Wol’pi (Q)), we get that

[ 1@, ()~ wsryPa - IOT< Ay (W), — Apt, (), ;> di
T ), - e
0JQ

T
< I I £(x, (), (= 1), (ug). (. — 7))dxdt + 0, (1), (2.20)
0JQ
and from (2.19), we have
T
J ] A @) =0, ), (= D)dxdt = o).
0JQ
By Lebesgue theorem and Lemma 2.1,

J‘OTJ‘Q(ui)i_ai((ui)T —u;)dxdt = 0.(1).
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Then

1 ~ ) T

EIQKW)T — ;| A(T)dx —jo < Ap (), = Apts, (), —u; > dt = 0.(1).

(2.21)
Thus,
(i), = u; in L% (0, T; Wy Pi(Q), as - 07,
and consequently,
Ap (). = Apu; in LPi(0, T; WhPi(Q)).

Moreover, from Lemma 2.2 and Lebesgue theorem, we obtain

1 1

BN
(@)t ()™

in L' (0, T; W1Pi(Q)).

Therefore, u; € V;(Q7) and satisfies (S).

2.3. Uniqueness

Let p; >2,0<a; <2+ﬁ,(i=1, 2) and o; eWOI’pi(Q)ﬂCi be
-

given. Let (H1) to (H2) be satisfied. Then (S) has a unique solution

(w1, ug) in Q.

Proof. Let u = (uj,uy) and v = (v, vy) be solutions of (S)

satisfying (uy, ug), (v1, v2) € Vi(Qr ) x Va(Qr ), Vt € [0, T], we have

Jo -[Q ( lat _L)(ui ‘Ui)dxdt_.[o < App = ApUps U —U; > dt
T
) .[ _[ (;"% = v;7%) (w; — v;)dxdt
0Jda

T
[ e us) = file, wn, w)) s — vy)
0JQ
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Since f;(x,.,.) is locally Lipschitz uniformly in Q, the difference

w; = u; —v; satisfies

2 2
1 9 T
EzlwilLZ(Q) + ZIO < Apiui - Apivi, w; > dt
=1 =1
2 .7
- ZJ J (u; % —v; % ) (w; )dxdt
im0 0

<c E J. J. |w; | dt,
i)o Jo
i=1

we observe that if o; <2+ , then w — —(Apiw_w*“i) is

Db

monotone from Wg’pi (Q)Nc¢; to WL P Q)

2 2 T
S il < ey j i (2.22)
=1 =1

We finally deduce from Gronwall’s lemma,

2 2
Z|wi|2 < Z:|wi(0)|2 exp(2¢T), Vit e (0, T).
i=1 =1

Thus, we deduce that u; = vy and uy = vg.
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