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Abstract 

We introduce the Favard spaces for resolvent family, extending some of the 
well-known theorems for semigroups. 

1. Introduction 

Favard class for semigroups was developed as early as 1967 by 
Butzer and Berens, presented in the monograph [3]. In semigroup theory, 
the Favard class plays an important role, particularly in perturbation 
theory. The body of knowledge has increased steadily since then; the 
recent monograph of [6] gives a good account of modern developments. 
Applications appear, in particular, in [11, 13, 5], but are certainly not 
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restricted to this. However, these concepts have been slightly introduced 
to Volterra integral equations in [8, 9], although they are closely related 
to perturbation theory, which play an important role in various fields and 
have been treated by Favard spaces. The aim of this paper is to give an 
extension to a Favard classes for Volterra integral equations similar to 
the one for semigroups. In fact, we recover several well-known theorems 
for semigroups, if we consider ( ) .1=ta  

In Section 2, we give some preliminaries about the concept of 
resolvent family, and the relationship between linear integral equation of 
Volterra type with scalar kernel. It is well-known that for a Cauchy 
problem, there are strong relations connecting its semigroup solution and 
its associated generator. Likewise, for a Volterra scalar problem, there 
are some results connecting its resolvent family and the domain of the 
associated generator; which will be reviewed in Section 3. There are 
many results available from semigroup theory concerning the Favard 
spaces [6]. In Section 4, we define the Favard spaces for scalar Volterra 
integral equations, and for these spaces, we account for some results 
which are similar to those of semigroups. 

2. Preliminaries 

In this section, we collect some elementary facts about scalar Volterra 
equations and resolvent family. These topics have been covered in detail 
in [12]. We refer to these works for reference to the literature and further 
information. 

Let ( )⋅,X  be a Banach space, A be a linear closed densely defined 

operator in X, and ( )+∈ R1
locLa  is a scalar kernel. We consider the linear 

Volterra equation 

( ) ( ) ( ) ( )

( )







∈=

≥+−= ∫
,0

,0,

0

0

Xxx

ttfdssAxstatx
t

  (2.1) 

where ( )., Xf +∈ RC  
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We denote by ( )[ ]AD  the domain of A equipped with the graph-norm. 

We define the convolution product of the scalar function a with the 
vector-valued function f by 

( ) ( ) ( ) ( ) .0,:
0

≥−=∗ ∫ tdssfstatfa
t

 

Definition 2.1. A function ( )XCx ,+∈ R  is called 

(1) Strong solution of (2.1), if ( ( )[ ])ADx ,+∈ RC  and (2.1) is satisfied. 

(2) Mild solution of (2.1), if ( ( )[ ])ADxa ,+∈∗ RC  and 

( ) [ ] ( ) .0, ≥∗+= ttxaAtfx   (2.2) 

Obviously, every strong solution of (2.1) is a mild solution. Conditions 
under which mild solutions are strong solutions are studied in [12]. 

Definition 2.2. Equation (2.1) is called well-posed if, for each 

( ),ADv ∈  there is a unique strong solution ( )vtx , on +R  of 

( ) ( ) ( ) ,0,, ≥∗+= ttAxavvtx   (2.3) 

and for a sequence ( ) ( ) 0, →⊂ nn xADx  implies ( ) 0, →nxtu  in X, 

uniformly on compact intervals. 

Definition 2.3. Let ( ).1
loc

+∈ RLa  A strongly continuous family 

( )( ) ( )XtS t L⊂≥0  is called resolvent family for Equation (2.1), if the 

following three conditions are satisfied: 

(S1) ( ) .0 IS =  

(S2) ( )tS  commutes with A, which means ( ) ( )( ) ( )ADADtS ⊂  for all 

,0≥t  and ( ) ( )AxtSxtAS =  for all ( )ADx ∈  and .0≥t  
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(S3) For each ( )ADx ∈  and all ,0≥t  the resolvent equations hold 

( ) ( ) ( ) .
0

xdssASstaxxtS
t

−+= ∫  

Note that the resolvent for (2.1) is uniquely determined and further 
information on resolvent can be found in the monograph by Prüss [12]. 
We also notice that the choice of the kernel a classifies different families 
of strongly continuous solution operators in ( ):XL  For instance, when 

( ) ,1=ta  then ( )tS  corresponds to a semigroup-0C  and when ( ) ,tta =  

then ( )tS  corresponds to cosine operator function. 

The existence of a resolvent family allows one to find the solution for 
the Equation (2.1). Several properties of resolvent families has been 
discussed in [2, 12]. 

The resolvent family is the central object to be studied in the theory 
of Volterra equations. The importance of the resolvent family ( )tS  is 

that, if it exists, then the solution ( )tx  of (2.1) is given by the following 

variation of parameters formula in [12]: 

( ) ( ) ( ) ,
0

dssfstSdt
dtx

t
−= ∫   (2.4) 

for all ,0≥t  and 

( ) ( ) ( ) ( ) ( ) ,0
0

dssfstSftStx
t

′−+= ∫   (2.5) 

where 0≥t  and ( ),,1,1 XWf +∈ R  gives us a mild solution for (2.1). 

The following well-known result [12, Proposition 1.1] establishes the 
relation between well-posedness and existence of a resolvent family. In 
what follows, R  denotes the range of a given operator. 
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Theorem 2.4. Equation (2.1) is well-posed if and only if (2.1) admits 
a resolvent family ( )( ) .0≥ttS  If this is the case we have in addition 

( )( ) ( ),ADtSa ⊂∗R  for all 0≥t  and 

( ) ( ) ( ) ,
0

xdssSstaAxxtS
t

−+= ∫   (2.6) 

for each .0, ≥∈ tXx  

From this, we obtain that if ( )( ) 0≥ttS  is a resolvent family of (2.1), we 

have ( ) ( )⋅∗ SaA  is strongly continuous and the so-called mild solution 

( ) ( ) 0xtStx =  solves Equation (2.1) for all Xx ∈0  with .0=f  A 

resolvent family ( )( ) 0≥ttS  is called exponentially bounded, if there exist 

0>M  and R∈ω  such that ( ) tMetS ω≤  for all ,0≥t  and the pair 

( )ω,M  is called type of ( )( ) .0≥ttS  The growth bound of ( )( ) 0≥ttS  is 

{ ( ) }.0,0,,inf0 >≥≤∈ω=ω ω MtMetS tR  The resolvent family is 

called exponentially stable if .00 <ω  

Note that, contrary to the case of semigroup,-0C  resolvent for (2.1) 

need not to be exponentially bounded: A counterexample can be found in 
[4, 12]. However, there is checkable conditions guaranteeing that (2.1) 
possesses an exponentially bounded resolvent operator. 

We will use the Laplace transform at times. Suppose Xg →+R:  is 

measurable and there exists ,,0 R∈ω>M  such that ( ) tMetg ω≤  for 

almost .0≥t  Then the Laplace transform 

( ) ( ) ,ˆ
0

dttgeg tλ−∞

∫=λ  

exists for all C∈λ  with .Re ω>λ  

A function ( )+∈ R1
locLa  is ( ) llyexponentia-.,resp +ωω  bounded, if 

( ) ∞<ω−∞
∫ dssae s

0
 for some ( ).0.,resp >ω∈ω R  
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The following proposition stated in [12], establishes the relation 
between resolvent family and Laplace transform. 

Proposition 2.5 ([12]). Let ( )+∈ R1
locLa  be lyxponentiale-ω  bounded. 

Then (2.1) admits a resolvent family ( )( ) 0≥ttS  of type ( ),, ωM  if and only 

if the following conditions hold: 

(1) ( ) 0ˆ ≠λa  and ( ) ( ),ˆ
1 Aa ρ∈
λ

 for all .ω>λ  

(2) ( ) ( ) ( )
1

ˆ
1

ˆ
1:

−







 −

λλλ
=λ AIaaH  called the resolvent associated to 

( )tS  satisfies 

( )( ) ( ) ( ) .! 1 N�∈ω>λω−λ≤λ +− nandallforMnH nn  

Under these assumptions, the Laplace-transform of ( )⋅S  is well-

defined and it is given by ( ) ( )λ=λ HŜ  for all .ω>λ  

3. Domains of A: A Review 

Assuming the existence of a resolvent family ( )( ) 0≥ttS  for (2.1), it is 

natural to ask how to characterize the domain ( )AD  of the operator A in 

terms of the resolvent family. This is important, for instance, in order to 
study the Favard class in perturbation theory (see [8, 9]). For very special 
case, the answer to the above question is well-known. For instance, when 
( ) 1=ta  or ( ) Atta ,=  is the generator of a semigroup-0C  ( )tT  or a 

cosine family ( )tC  and we have 

( ) ( ) ,existslim:
0 






 −∈=

+→ t
xxtTXxAD

t
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and 

( ) ( ) ,existslim: 20 





 −

∈=
+→ t

xxtCXxAD
t

 

respectively (see [12]). 

Since A is a closed operator, we may consider the graph of A with the 
appropriate norm ( ),AG  and ( ) ( ) AxxAxx AG +=,  for ( ) ( )., AGAxx ∈  

This space is isometrically isomorphic to ( )AD  with the graph norm. We 

call this space ( )., 11 ⋅X  It is continuously embedded in X. If the 

resolvent set ( )Aρ  of A is nonempty, ( ) ,: 1
2

1 XADA →  with ,1 AxxA =  

is a closed operator in 1X  and ( ) ( ).1AA ρ=ρ  On the other hand, we may 

consider ( ) ( )AGXX ×  with its natural norm. It is isometrically 

isomorphic to the completion of X with the norm 

( )
( ),inf1 Ayxyx

ADy
−+=

∈−  

for .Xx ∈  

We call this space ( )., 11 −− ⋅X  The operator ( ) 1: −→ XADA  is 

continuous and densely defined, its (unique) extension to X as domain 
makes it a closed operator in ,1−X  and it is called .1−A  We have 

( ) ( ).1−ρ=ρ AA  

It was observed in [8] that ( )AD  has the following characterization. 

Proposition 3.1. Let (2.1) admits a resolvent family with growth 
bound ω  (such that the Laplace transform of the resolvent exists for 

ω>λ ) for lyxponentiale-ω  bounded ( ).1
loc

+∈ RLa  Set for 20 π<θ<  

and 0>  

( ) .arg,Re:ˆ
1:







 θ≤λ+ω>λ

λ
=Ωθ 

a  
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Then the following characterization of ( )AD  holds: 

( ) ( ) .lim: 1

, 0 











−µµ∈= −

Ω∈µ∞→µ θ

existsxAIAXxAD  

Without loss of generality, we may assume that ( ) 0
0

≠∫ dssa pt
 for all 

0>t  and some .1 ∞<≤ p  Otherwise, we would have for some 00 >t  

and 10 ≥p  that ( ) 0=ta  for almost all [ ],,0 0tt ∈  and thus by definition 

of resolvent family ( ) ItS =  for [ ].,0 0tt ∈  This implies that A is 

bounded, which is the trivial case with ( ).ADX =  

In what follows, we will use in the forthcoming sections the following 

assumption on ( )+∈ RpLa loc  with .1 ∞<≤ p  It corresponds to               

[8, Assumption 2.3] when .1=p  

( )paH ,  There exist 0>a  and ,0>at  such that for all ,0 att ≤<  

we have 

( ) ( ) .
00

dssadssa pt
a

t aa

∫∫ ≥   

This is the case for functions a, which are positive ( ( ) ] ])1,0.,resp ⊂Ia  at 

some interval [ [0,0 tI =  for ,1=p  and ,1>p  respectively. For almost 

all reasonable functions in applications, it is easy to see that they satisfy 
this assumption. There are nonetheless examples of functions that do 
not. 

Now, let us define the set ( )AD~  as follows: 

( ) ( )
( ) ( ) .exists1lim::~

0 







∗
−∈=

+→ ta
xxtSXxAD

t
 

It was proved in [8] that under ( ),1,aH  

( ) ( ) { ( )
( ) ( ) }.1lim:~

0
Axta

xxtSXxADAD
t

=
∗

−∈==
+→

 (3.1) 
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From now and in view of this result, we say that the pair ( )aA,  is a 

generator of a resolvent family ( )( ) .0≥ttS  

Remark 3.2. When ,11 k∗+=a  the Volterra system (2.1) with 
( ) 0x=tf  is equivalent to the following integro-differential Volterra 

system: 

( ) ( ) ( ) ( ) .0,
0

≥−+= ∫ tdssAxsttAxtx
t
k   (3.2) 

Furthermore, if (3.2) admits a resolvent family ( )( ) ,0≥ttS  then it is easy to 

see that 

( ) { ( )
[ ( )] ( ) }Axt

xxtSXxAD
t

=
∗+∗
−∈=

+→ k111lim:~
0

 

( ) .lim:
0 






 =−∈=

+→
Axt

xxtSXx
t

 

In the case when ( ),loc
+∈ RBVk  with ( )+RlocBV  is the space of 

functions of locally bounded variation, the operator A becomes a 
generator of a semigroup-0C  ( )( ) ,0≥ttT  which is a necessary and 

sufficient condition for the existence of a resolvent family (see [12]). 

Whence ( )AD~  is also characterized in term of ( )( ) 0≥ttT  and we have 

( ) ( ) ( ) .lim:lim:~
00 






 =−∈=







 =−∈=

++ →→
Axt

xxtSXxAxt
xxtTXxAD

tt
 

4. Favard Spaces with Kernel 

In semigroup theory, the Favard space sometimes called the 
generalized domain is defined for a given semigroup ( )( ) 0≥ttT  (with A as 

its generator) as 

( ) ( ) ,10,sup::~
0

≤α<






 ∞<

−
∈=

α>

α

t
xxtTXxAF

t
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with norm 

( )
( ) ,sup:

0
~

α>

−
+=α

t
xxtTxx

tAF  

which makes ( )AF α~  a Banach space, ( )tT  is a bounded operator on this 

space but is not necessary strongly continuous on it. 1X  is a closed 

subspace of ( )AF α~  and both spaces coincide when ,1=α  and X is 

reflexive (see, e.g., [6]). It is natural to ask how to define in a similar way 

( )AF α~  of the operator A in terms of the resolvent family. In fact, these 

spaces can be defined for general resolvent family in a similar way. In 
fact, it can be defined for all A, for which there exists a sequence ( )nnλ  

with ( )An ρ∈λ  and ∞→λn  in a similar fashion, as was proved in [8] 

for resolvent family and in [9] for integral resolvent family and in [10] for 
( ) resolvent-, ak  family for the case .1=α  Remark that both [8] and [9] 

have not considered the Favard class of order .α  These spaces will be the 
topic of this section and will be useful for the notion of the admissibility 
in Section 5. 

This leads to the following definition which corresponds to a natural 
extension, in our context, of the Favard classes frequently used in 
approximation theory for semigroups. 

Definition 4.1. Let (2.1) admits a bounded resolvent family ( ( ) )0≥ttS  

on X, for llyexponentia-+ω  bounded ( ).1
loc

+∈ RLa  For ,10 ≤α<  we 

define the Favard space of order α  associated to ( )aA,  as follows: 

( ) ( ) ( ) 











∞<





 −

λλ
λ∈=

−
−α

ω>λ

α xAIaAaXxAF
1

1
ˆ
1

ˆ
1sup::  

( ) .sup:






 ∞<λλ∈= α

ω>λ
xAHXx  

Similarly, we define the Favard spaces of 1−A  denoted by ( ).1−
α AF  
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Remark 4.2. (i) As for the semigroups, it is natural to define the 
following space: 

( ) ( )
( ) ( )

,
1

sup::~
0 











∞<
∗

−
∈=

α>

α

ta
xxtSXxAF

t
 

for ( )aA,  generator of a resolvent family ( ( ) )0≥ttS  on X. 

(ii) It is clear that ( ) ( )AFAD 1~~ ⊂  and in virtue of Proposition 3.1, we 

have ( ) ( ).1 AFAD ⊂  Moreover, if a satisfies ( ),1,aH  then ( ) ( )AFAD 1~⊂  

due to the fact that ( ) ( )AFAF 11 ~⊂  (see [8]). In this way, for different 

functions ( ),ta  we obtain different Favard class of order α  with may be 

considered as extrapolation spaces between ( )AD  and X. 

(iii) When ( ) ,1=ta  we recall that and ( )( ) 0≥ttS  corresponds to a 

bounded semigroup-0C  generated by A. In this situation, we obtain 

( ) ( )






 ∞<−λλ∈= −α

>λ

α xAIAXxAF 1
0

sup:  and ( ) ( ).~ AFAF αα =  This 

case is well-known. See, e.g., [6]. 

(iv) The Favard class of A with kernel ( )ta  can be              

alternatively defined as the subspace of X given by 

( ) ( ) .ˆ
1

ˆ
1suplim:

1
1













∞<





 −

λλ
λ∈

−
−α

∞→λ
xAIaAaXx  As a consequence of 

( )tS  being bounded, the above space coincides with ( )AF α  in Definition 4.1 

and that ( ) ( )
( ) ( )

.
1

sup::~
10 











∞<
∗

−
∈=

α≤<

α

ta
xxtSXxAF

t
 

(v) Let k∗+= 11a  and ( )aA,  be a generator of a bounded resolvent 

family ( ( ) )0≥ttS  on X. In this case, ( ) ( )






 ∞<

−
∈=

α≤<

α

t
xxtSXxAF

t 10
sup:~  
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( ( ) ( ) )11limtodue
0

=
∗

+→ t
ta

t
 and we have ( ) ( ( )) ( ),AFAFtS αα ⊂  for all 

] ]1,0∈α  and 0≥t  thanks to [7, Theorem 7] (( ) 1−−µ AI  commutes 
with ( )tS  for all ( )).Aρ∈µ  

The proof of the following is immediate. 

Proposition 4.3. The Favard classes of order α  of A with kernel 
( ) ( ),, AFta α  and ( )AF α~  are Banach spaces with respect to the norms: 

( ) ( ) ( ) xAIaAaxx AF

1
1

ˆ
1

ˆ
1sup:

−
−α

ω>λ






 −

λλ
λ+=α  and ( ) +=α xx AF :~  

( )
( ) ( )

,
1

sup
10 α≤< ∗

−

ta
xxtS

t
 respectively. 

As for the semigroups case, we obtain the natural inclusions between 
the Favard class for different exponents. 

Proposition 4.4. Let (2.1) admits a bounded resolvent family  
( )( ) 0≥ttS  on X, for lyxponentiale-+ω  bounded ( ).1

loc
+∈ RLa  For all 

,10 ≤α<β<  we have 

(i) ( ) ( ) ( ).AFAFAD βα ⊂⊂  

(ii) ( ) ( ) ( ).~~~ AFAFAD βα ⊂⊂  

Proof. (i) Let ( ),AFx α∈  then for all ,ω>λ  we have 

( ) ( ) ( ) ( ) xAIaAaxAIaAa

1
1

1
1

ˆ
1

ˆ
1

ˆ
1

ˆ
1 −

−αα−β
−

−β






 −

λλ
λλ=






 −

λλ
λ  

 ( ) ( ) xAIaAa

1
1

ˆ
1

ˆ
1 −

−αα−β






 −

λλ
λλ=  

 ( ) ( ) xAIaAa

1
1

ˆ
1

ˆ
1sup1 −

−α

ω>λβ−α 





 −

λλ
λ

λ
≤  

 ( ) ( ) ,ˆ
1

ˆ
1sup1 1

1 xAIaAa

−
−α

ω>λβ−α 





 −

λλ
λ

ω
≤  
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which implies that ( )AFx β∈  and from Remark 4.2 (2), we deduce that 

( ) ( ).AFAD α⊂  

(ii) Let ( ),~ AFx α∈  and .10 ≤< t  We have 

( )
( ) ( )

( )

( )

( )
αα−ββ

∫∫
−

=
∗

−

dssa

xxtS

dssa
ta
xxtS

tt

00

1
1

 

 
[ ]

( )

( )

.sup.

0

101,01 α≤<

β−α

∫
−

≤

dssa

xxtSa
ttL

 

Hence ( )AFx β∈ ~  and that ( ) ( )AFAD α⊂ ~~  due to Remark 4.2 (2). 


 

Note that under ( )1,aH  we have (i) ( ) ( )AFAF 11 ~⊂  (see Remark 4.2 

(2)), where as the inclusion (ii) ( ) ( )AFAF 11~ ⊂  was proved under the 

strong assumption in [8, Assumption 3.1]. 

Now we will prove that (ii) holds for all nonnegative ( ).1
loc

+∈ RLa  

Proposition 4.5. Let (2.1) admits a bounded resolvent family 

( )( ) 0≥ttS  on X, for lyxponentiale-+ω  bounded nonnegative ( ).1
loc

+∈ RLa  

Then, we have ( ) ( ).~11 AFAF =  

Proof. Since ( )ta  is a nonnegative, ( )1,aH  is satisfied and by [8], we 

have ( ) ( ).~11 AFAF ⊂  Now, let ( )AFx 1~∈  and set ( )
( ) ( )ta

xxtS
t ∗

−

≤< 1sup
10

 

.: ∞<= xJ  We write ( ) ( ) ( ),ˆ
1

ˆ
1 1

λλ=





 −

λλ

−
AHAIaAa  for all .ω>λ  
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Using the integral representation of the resolvent (see Proposition 2.5), 
we obtain 

( ) ( ) ( ) ( ) xaxHaxAH
λ

−λ
λ
λ=λλ ˆ

1
ˆ  

( ) ( ) 





λ
−λ

λ
λ= xxHa

1
ˆ  

( ) ( )( )dsxxsSea
s −

λ
λ= λ−

∞

∫0ˆ  

( ) ( ) ( ) ( )
( ) ( ) .1.1.ˆ 0

dssa
xxsSsaea

s
∗

−∗
λ
λ= λ−

∞

∫  

The resolvent family ( )( ) 0≥ttS  being bounded; ( ) MtS ≤  for some 

0>M  and for all .0≥t  Then we obtain 

( ) ( ) ( ) ( ) ( )
( ) ( )ta

xxtSdssaeaxAH
t

s
∗

−
∗

λ
λ≤λλ

>

λ−
∞

∫ 1sup.1ˆ 00
 

( ) ( ) ( ) ( ( )
( ) ( ) )ta

xxtSxLdssaea t
s

∗
−

+∗
λ
λ≤

≤<

λ−
∞

∫ 1sup.1ˆ 100
 

( ) ( ) ( )1 .ˆ xa L x Ja
λ

= ∗ λ +
λ

 

,xJxL +=  

with ( ) ( ) .11
1

a
ML

∗
+=  This implies that ( ) ,sup ∞<λλ

ω>λ
xAH  which ends 

the proof.  
 

Note that in the semigroup case, i.e., ( ) ,1=ta  we have the well-

known result that ( ) ( )AFAF αα =~  [6]. In what follows, we investigate 

conditions on the kernel a to prove that this is the case for the ( )aA,  

generator of the resolvent families. 
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Note that for all llyexponentia-; +ωa  bounded function, it is clear 

that ( )α∗ a1  is also llyexponentia-+ω  bounded ( for1todue xx +≤α  

] ]).1,0and0 ∈α≥x  

We will consider the following assumption on ( )+∈ R1
locLa  and 

:10 ≤α<  

( ) aHa :α  is llyexponentia-+ω  bounded and there exists ,0, >αa  

such that for all ,ω>λ  

( ) ( ) ( ) .1..ˆ
0

, dttaea t
a

αλ−
∞

α
α ∗λ≥λ ∫  

Note that conditions ( )α
aH  and ( )λλâ  is bounded are independent (e.g., 

see Example 4.6 (2)). 

Example 4.6. (i) The famous case ( ) 1=ta  satisfies the condition 

( )α
aH  for all 0≥α  due to 

( ) ( ) ( )( ) ( ) ,0allfor111ˆ 0
>λ+αΓ=∗⋅

λ
λ αλ−

∞α

∫ dttea
t  

which corresponds to the semigroup case (here Γ  denotes the Gamma 
function). 

(ii) Consider the standard kernel ( ) ( )βΓ
=

−β 1tta  for [ [ a.1,0∈β  is 

nonnegative and for all ,0>λ  

( ) ( ) ( )( )
( )( ) ( )1

1ˆ
1

0 +αβΓ⋅βΓ⋅β

λ=∗⋅
λ

λ
βα

−αβ−β+α
αλ−

∞α

∫ dttaea
t  

 
( ) ( )

( )( ) ( )
.

1

11

+αβΓ⋅βΓ⋅β

λ=
βα

β−⋅−α
 

Thus a satisfy ( ).α
aH  



AHMED FADILI et al. 82

(iii) Let ( ) .0,0,10, >>µ<β<+µ= β ννtta  Then we have 

( ) ( )1ˆ
1 +βΓ

λ
+

λ
µ=λ

+β
νa  for 0>λ  and ( ) ( ) .11

1

+β
+µ=∗

+βttta ν  Further, 

for ] ],1,0∈α  we have 

( ) ( ) ( )( ) dttaea
t αλ−

∞α
∗

λ
λ ∫ 1ˆ 0

 

( ) ( ) dtttea
t α

+β
λ−

∞α

+β
+µ

λ
λ= ∫ 1ˆ

1

0
ν  

( ) ( ) ( ) ( ) dttteadtttea
tt α

+β
λ−

∞α
α

+β
λ−

α

+β
+µ

λ
λ+

+β
+µ

λ
λ= ∫∫ 1ˆ1ˆ

1

1

11

0
νν  

( ) ( ) ( ) ( ) .1
1

1
1

αβ−αα λ⋅
µ

+α+αβΓ
+β

+µ+
µ
+αΓ

+β
+µ≤ νν  

Then ( )α
aH  is satisfied. Note that, in the particular case of  ,1=β  

( ) ,tta ν+µ=  Equation (2.1) corresponds to the model of a solid of Kelvin-

Voigt (see [12]). 

(iv) Let k∗+= 11a  with ( ) .tet −=k  We have ( ) ( )1
2ˆ
+λλ
+λ=λa  for all 

0>λ  and ( ) ( ) tetta t 2121 ≤−+=∗ −  for all .0≥t  Hence 

( ) ( ) ( )( ) ( ) ( ) dtteadttaea
tt αλ−

∞α
αλ−

∞α

∫∫ λ
λ≤∗

λ
λ 2ˆ1ˆ 00

 

( ).122
1 +αΓ⋅⋅

+λ
+λ= α  

Then a satisfy ( ).α
aH  

(v) Let k∗+= 11a  with ( ) .tet −−=k  We have ( ) 1
1ˆ
+λ

=λa  for all 

0>λ  and that ( ) ( ) teta t ≤−=∗ −11  for all .0≥t  Hence 
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( ) ( ) ( )( ) ( ) dttedttaea
tt αλ−

∞
ααλ−

∞α

∫∫ +λλ≤∗
λ

λ
00

11ˆ  

( ).1 αΓ⋅
λ
+λ=  

Then a satisfy ( ).α
aH  

The following result establishes the relation between the spaces 

( )AF α~  and ( )AF α  and therefore generalizes [6, Proposition 5.12]. 

Proposition 4.7. Let (2.1) admits a bounded resolvent family 

( )( ) 0≥ttS  on X, for lyxponentiale-+ω  bounded ( )+∈ R1
locLa  and α<0  

.1≤  

(i) If a satisfies ( )1,aH  and ( )λλâ  is bounded, then ( ) ( ).~ AFAF αα ⊂  

(ii) If a is nonnegative satisfying ( ),α
aH  then ( ) ( ).~ AFAF αα ⊂  

Proof. (i) Let ( )AFx α∈  and .10 ≤< t  Then ( )xAH λλα
ω>λ

sup  

.: ∞<= xK  Using the integral representation of the resolvent               

(see Proposition 2.5), we obtain 

( ) ( ) ( ) ω>λλλλ−λλ= forˆ xAHaxHx  

.: λλ −= yx  

Since ( )ADx ∈λ  and using (S2)-(S3), we have 

( ) ( ) ( ) dsAxsSstaxxtS
t

λλλ −=− ∫0
 

( ) ( ) dsAxsSsta
t

λ⋅⋅−≤ ∫0
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( ) dssaAxM
t

∫⋅⋅≤ λ
0

 

( ) ( ) ( )taxAHM ∗⋅λ⋅λλ⋅= α−α 11  

( ) ( ).1. 1 taMKx ∗⋅λ≤ α−  

On the other hand, ( )( ) 0≥ttS  is bounded by M and we have 

( ) ( ) λλλλ +≤− yytSyytS  

( ) λλ +⋅≤ yytS  

( ) λ⋅+≤ yM 1  

( ) ( ) ( )xAHaM λλλ⋅+= ˆ1  

( ) ( ) ( ) α−α λ⋅λλ⋅λ⋅+= 1ˆ1 xAHaM  

( ) ( ) .ˆ1 1 α−λ⋅λ⋅+≤ aKM x  

This implies 

( )
( ) ( )

( ) ( )
( ) ( )

( ) ( )
( ) ( ) α

α−

α

α−

α ∗

λλ⋅+
+

∗

∗λ
≤

∗

−

ta
aKM

ta
taMK

ta
xxtS xx

1
ˆ1

1
1

1

11
 

( ) ( )( ) ( ) ( ) ( ) ( )( ) α−α−
α

α−α−
α

∗λ⋅λλ⋅
+

+∗λ≤ taaKMtaMK

a

x

a

x 1ˆ11. 11


 

( ) ( )( ) ( ) ( ) ( )( ) .111. 11 α−α−
α

α−α−
α

∗λ⋅
′+

+∗λ≤ taKKMtaMK

a

x

a

x


 

The third inequality is realized under ( ) ( ) ( ) ( ) ( )tataH aa ∗≥∗ 11:1,   

and that ( ) Ka ′≤λλ ˆ  for some .0>′K  Substituting ( ) ( ) ω>
∗

=λ ω
ta

N
1  

for ] ]1,0∈t  with ( ) ( ),111 aN ∗ω+=ω  we obtain 
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( )
( ) ( )

( ) ,1
1

1

α

α−
ω

α

α−
ω

α

′+
+≤

∗

−

a

x

a

x NKKMNMK
ta

xxtS


 

for all .10 ≤< t  Thus ( )
( ) ( )

,
1

sup
10

∞<
∗

−
α≤< ta

xxtS
t

 and hence ( ).~ AFx α∈  

(ii) Let ( )AFx α∈ ~  be given, then ( )
( ) ( )

.:
1

sup
10

∞<=
∗

−
α≤<

x
t

J
ta

xxtS  For 

,ω>λ  we write ( ) ( ) ( ) ,ˆ xAHaxxH λλλ=−λλ  then 

( ) ( ) ( ) 






λ
−λ

λ
λ=λλ xxHaxAH 1

ˆ  

( ) ( )( ) ;ˆ 0
dtxxtSea

t −
λ
λ= λ−

∞

∫  

 ( ) ( ) ( ) ( ) ( ( )
( ) ( )

) .
1

1ˆ 0
dt

ta
xxtStaeaxAH t

α
αλ−

∞α
α

∗

−∗
λ

λ=λλ ∫  

The fact that a is nonnegative and satisfying ( ),α
aH  we obtain 

( ) ( )
( ) ( )

.
11

1with
, αα
α

αα

∗

+=
+

≤λλ
a

MLJxLxAH
a

x


 

Therefore, ( ) ,sup ∞<λλα
ω>λ

xAH  which ends the proof. 


 

Remark 4.8. Let ] ].1,0∈α  

(i) ( ) .1=ta  Then ( )λλâ  is bounded for all 0>λ  and a satisfies 

( ).1,aH  Furthermore, a satisfies ( )α
aH  (see Example 4.6 (1)) and by 

virtue of Proposition 4.7, we obtain ( ) ( ).~ AFAF αα =  Hence, we recover a 

result for semigroups-0C  case, which corresponds to [6, Proposition 5.12]. 
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(ii) ( ) tta =  satisfies ( )1,aH  and we have ( )
λ

=λλ 1â  is bounded for 

all .0>λ  By virtue of Proposition 4.7 (1), we obtain ( ) ( ).~ AFAF αα ⊂  

(iii) Let a be a completely positive function. Then (see [12]) a is 

nonnegative and ( )
( )1

0 1

1ˆ ,a
∞

λ λ =
+ + λkk k

 for all ,0>λ  where ,00 ≥k  

,0≥∞k  and 1k  is nonnegative decreasing function tending to 0 as 

.∞→t  That is ( )λλâ  is bounded and by Proposition 4.7 (1), we obtain 

( ) ⊂α AF  ( ).~ AF α  

(iv) Consider the standard kernel ( ) ( ) ,
1

βΓ
=

−βtta  with [ [.2,1∈β  Then a 

satisfies ( )1,aH  and that ( ) ,ˆ 1 β−β− λ=λ⋅λ=λ⋅λ a  for all 0>λ  is 

bounded, thus from Proposition 4.7 (1), ( ) ( ).~ AFAF αα ⊂  

(v) ( ) ( ) ,
1

βΓ
=

−βtta  with [ [.1,0∈β  Then a is nonnegative and 

( ) ( ) ( )( )
( )( ) ( )1

1ˆ
1

0 +αβΓ⋅βΓ⋅β

λ=∗⋅
λ

λ
βα

−αβ−β+α
αλ−

∞α

∫ dttaea
t  

( ) ( )

( )( ) ( )
,

1

11

+αβΓ⋅βΓ⋅β

λ=
βα

β−⋅−α
 

which is bounded, for all 0>λ  due to [ [,1,0∈β  and according to 

Proposition 4.7 (2), we can conclude that ( ) ( ).~ AFAF αα ⊂  

(vi) Let ( ) .0,0,10, >>µ<β<+µ= β ννtta  In virtue of Proposition 4.7, 

we have ( ) ( )AFAF αα =~  according to the Example 4.6 (3). 
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(vii) Let .11 k∗+=a  With ( ) ,tet −±=k  Proposition 4.7 yields 

( ) ( )AFAF αα =~  according to the Example 4.6 (4)-(5). In general, for 

( ) llyexponentia-,1
loc

++ ω∈ RLk  bounded, we have ( ) ( ),ˆ1ˆ λ+=λλ ka  

which is bounded for all ,0>λ  according to the Riemann-Lebesgue 

lemma (see [1]). If in addition, a satisfies ( ),1,aH  Proposition 4.7 (1) 

asserts that ( ) ( ).~ AFAF αα ⊂  Now, if ( )tk  is negative with ( ) ,10ˆ −≥k  

then we obtain a nonnegative kernel a satisfying ( ) ( ) .10 tta ≤∗≤  

Hence, both ( )1,aH  and ( )α
aH  are satisfied (see Example 4.6 (4)). 

Thanks to Proposition 4.7, we have ( ) ( ).~ AFAF αα =  

References 

 [1] W. Arendt, C. J. K. Batty, M. Hieber and F. Neubrander, Vector-Valued, Laplace 
Transforms and Cauchy Problems, Birkhäuser Ulm and Oxford and Darmstadt and 
Batton Rouge, 2010. 

 [2] W. Arendt and J. Prüss, Vector-valued Tauberian theorems and asymptotic behavior 
of linear Volterra equations, SIAM J. Math. Anal. 23(2) (1992), 412-448. 

 [3] P. L. Butzer and H. Berens, Semi-Groups of Operators and Approximation, Springer-
Verlag, New York, 1967. 

 [4] W. Desch and J. Prüss, Counterexamples for abstract linear Volterra equation, 
Differ. Integral Equ. Appl. 1(5) (1993), 29-45. 

 [5] W. Desch and W. Schappacher, Some generation results for perturbed semigroups, in 
semigroups theory and applications, (Proceedings Trieste 1987) (P. Clément,             
S. Invernizzi, E. Mitidieri and I. I. Vrabie, eds.) Marcel Dekker, Lect. Notes in Pure 
and Appl. 116 (1989), 125-152. 

 [6] K. J. Engel and R. Nagel, One-Parameter Semigroups for Linear Evolution 
Equations, New York, Berlin, Heidelberg, 2000. 

 [7] R. Grimmer and J. Prüss, On linear Volterra equations in Banach spaces, Comput.  
Math. Appl. 11(1) (1985), 189-205. 

 [8] M. Jung, Duality theory for solutions to Volterra integral equations, J. M. A. A.     
230 (1999), 112-134. 

 [9] C. Lizama and V. Poblete, On multiplicative perturbation of integral resolvent 
families, Journal of Mathematical Analysis and Applications 327(2) (2007),         
1335-1359. 



AHMED FADILI et al. 88

 [10] C. Lizama and H. Prado, On duality and spectral properties of (a, k)-regularized 
resolvents, Proc. Roy. Soc. Edinburgh Sect. A 139 (2009), 505-517. 

 [11] J. M. A. M. Van Neerven, The Adjoint of a Semigroup of Linear Operators, Lecture 
Notes in Math., Springer-Verlag, Berlin, 1992. 

 [12] J. Prüss, Evolutionary Integral Equations and Applications, Birkhäuser-Verlag, 
Basel, 1993. 

 [13] E. Sinestrari, Favard classes and hyperbolic equations, Rend. Instit. Mat. Univ. 
Trieste 28 (1997), 323-336. 

g 


