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Abstract

We investigate in this paper the Demyanov metric for classes of unbounded

closed, convex sets in Rd, the Cesari’s property (@) for multifunctions is

discussed.

1. Introduction and Preliminaries

The concept Cesari’s property was first introduced by Cesari in [2] as

a useful variant of Kuratowski notion of upper semicontinuity of set-

valued maps (multifunctions) and since then it has found important

applications in calculus of variations and optimal control. We compare

the Cesari’s property with the D-continuous set-valued maps. We

introduce the following family subsets of RY:
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C = {A e R? : A = 0, convex, closed}; K = {A € C: A is compact}.

Let A eRd,ueRd.

The support function of a set A we define as

pau) =sup < a, u >,
acA

where < . > is the scalar product.

By A(u) = {a € A:<a, u>= py(u)}, we denote the face of a set A.

Let A, B ¢ K% and by Sd_l, we denote the unit sphere in the space

R?. The Hausdorff metric define as

pr(A, B) = sup |py(v)- pp()],
veSd_1

and the Demyanov metric is defined as

pp(4, B) = sup pg(AQ), B()).
vesd1

We refer to [3] for detailed discussion.

By 0"A=1{ue RY VaeaVi=0a +tu € A}, we denote the recession

cone of a set A € C and the polar set to A we define as

A ={veR?:V, 4 <a,v><0}
2. The Space Cx

We introduce the following equivalence relation on C:

A=B < 0"A=0"B.

For the nonempty, closed, convex cone K, we denote by Cg the
equivalence class of all sets in C having a recession cone K. In particular,

the class Cy having the recession cone {0} is the class of sets convex and

compact (Co = k).
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Now we introduce the following metrics for A, B € Cg:

p1(A, B)=  sup  [pa(v)- pg(v),
UeriKoﬂSd_l
and
pa(A, B)=  sup  pg(A@), Bw)),
veriKoﬂSd_l

where ri denote the relative interior.
We remark that if K = {0} then p;(A, B) = pg(A, B) and py(A, B)
=PD (A9 B)

The following example showed that if K = {0}, then Cg contains
elements for which p;(A4, K) = py(A, K) = .

Example 2.1. Let K = {(x;, x9): %; € R, x5 > 22} and K = {(0, x5)
: x9 > 0}. Then p;(A, K) = o so also ps(A, K) = .

Now we introduce a subclass Cx consisting of all a sets A € Cx

such that
p2(4, K) < .
Observe that Cy = C( = K.
The metric py has the following properties:
Lemma 2.1. Let A, B,C, D € Cg, 0. > 0 and B € [0, 1]. Then
(1) pa(4 + C, B+ C) = pg(4, B).
(2) p2(aA, aB) = apy(A, B).
(3) p2(BA + (1 - B)C, BB + (1 - B)D) < Bpa(4, B) + (1 - B)p2(C, D).

This lemma is easy to prove using definition of a metric and the

properties of a support function.
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From lemma, we can prove the following theorem:

Theorem 2.1. Let (A,), (B,) be a sequence sets contains in Cg
converges, respectively, in pg metric to A and B and a sequence o,

converges to a. for all a,, a > 0. Then
(1) lim,,_,,, pa(A, + B,, A+ B) = 0.
(2) lim,,_,, pa(a,4,, ad) = 0.
Proof. Using lemma, we have that

po(A, + B,, A+ B)<py(A, +B,, A+ B,)+py(A+B,, A+ B)
= p2(Ayp, A)+p2(By, B).
For scalar multiplication, we get (assume that a > a,,):
p2(a,dy,, 0d) < py(a,dy,, 0,A) +pa(a,A, aA)
= oype(An, A)+po(a, 4, ad).
From lemma and assumption, we obtain that
p2(apA, 0A) = pa(a, A + K, 0, A + (00— 0y )A) = pa(K, (00 -0 )A)
= pa((a -0, )K, (o =, )A) = (a - a, )p2(A, K).
For o <a,, the proof similar.
The following example showing that the space C k 1s not separable.
Example 2.2. Let K = {(0, x3) : x9 > 0}.

We consider the family sets

Ay ={(x1, x9):0<x; €1, x9 > axg, a € [0, 1]},

where py(A,, Ag) = \/1 + (max{a, p})? > 1.
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Theorem 2.2. The space (Cg, ps ) is complete.

Proof. Let {A,} be a Cauchy sequence in Cg. Due to definition py,

the sequence {4, (v)} is a Cauchy sequence in {K¢, py ) which is known

to be complete. So for any v e riK° N S%™, py (A, (v), A)) - 0. Hence

ps(A,, A) - 0. We proof that A e Cg. Using the triangle inequality,

we obtain
pZ(A’ K) < pZ(A’ An)"" pQ(An’ K)
So py(A, K) < .

3. On D-Continuity of Multifunction

and Cesari’s Property

Consider the multifunction F : R? — C k- We say that multifunction

Fis D-continuous at x( € R if lim pa(F(x), F(xg)) = 0.
X—>X0

Now recall the Cesari’s property. We say that a multifunction

F:R? 5 C i satisfies the Cesari’s property at xq if

F(xo):ﬂclco U F(x),

5>0 xeB(xg,d)
where B(xg, 8) = {x € R : |x — x| < 8}
Lohne in [5] give definition upper C-limits multifunction F by

lim sup F(x) = U lim sup F(x,,) = ﬂ clcoU F(xp,).
n—o

x=%0 Xp X0 neN k>n

Now we give the following result:
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Theorem 3.1. Let F : R? - C be a D-continuous at xq € RY,

0+F(XO)

Then for all v e ri(0% F(xy))° N 8471

(o)) = [eleo | ) (F@)@).

3>0 xeB(xg,d)
Proof. Let x € R? and assume that F is D-continuous at xg9. Then
for all v e ri(0* F(xy))° N 8471

Jlim p((F@)), (Fxo) () = 0,

Using definition Hausdorff metric, we have that for any w € S d-1

xliggo P(F(x))(0)W) = P(F(x0)) ) W)-

With the aid of ([5], Proposition 2.1), we obtain

P(F(xp)) ()W) = lim sup p(p(x)) (v)w) = lim sup p(p(x, )) )W)
X—>X0 n—»w
2 Plim sup(F(xn))(v)(w)-

Hence lim sup(F(x,,))(v) = (F(xp))(v) for the some sequence x, — xg.
n—oo

So

lim sup(F(x)) (v) < (F(x0)) (),

X—>X0

for all v e ri(0" F(x¢)’ NS @-1 The following equality ([5], Proposition 3.1)

ﬂ clco U F(x) = lim sup F(x),
5>0  xeB(x,d) x=%0

implies the Cesari’s property.

The next example shows the Cesari’s property not implies

D-continuous.
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Example 3.1. Let K = R? where K = {(0, x5) : x5 > 0}.

{(x1,29):0<x; <1, x9 Zﬁxl}, for t # 0,
F(t) =
{(0, x9): x9 > 0}, for t = 0.
Observe that limsup F(¢) = F(0) but limp(F(¢), F(0))=1 and
t—0 t—>0
lim py(F(t), F(0)) = .
t—0

We will close this section with stability result which tells us that set-

valued D-converges is preserved by set-valued integration.

Let T = [a, b] be an interval in R and let F : T — K?. Then we

define
j F(t)dt = {j f@)dt : f e LY, f(t) € F(t) ae. in T).
T T

This is called the Aumann integral.

First proof the following lemma.

Lemma 3.1. Let F : T — K% be a measurable and

sup{lf| : f(t) € F(t)} < ¢(t), ¢ € L', then for v e RY
2 ral®) = [ ProW©aL
Proof. Remark that for all v € R?

= , t)dt >= , t dt
pjTF(t)dt(”) f(tsisg(t) <v ITf( )dt > JTf(tS)EIg(t) <v, f(t) >

= J , Pr()v)dt.
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Theorem 3.2. Suppose F,, : T — K for n =0, 1... are measurable,

sup{lf| : f(t) € F,(t)} < ¢(t) for each n, where ¢ e [NT) and
li_r)n pp(F, (), Fy(t)) =0 foreach t € T.

Then lim pD(J F,(t)dt, '[ Fy(t)dt) = 0.
n—o T T
Proof. Using lemma and the definition Demyanov metric, we get

e[ Ea0a, [ Foydt) = sup pu(([ Fa@)a) ([ Fowan) @)

veS?-

= s prr([ FOWAL [ Fo@)@0) = s sup [pp g o)0@)

Pl Ry )t ()] < ) ::ﬁl ) :;1611371 ITlpFn(t)(v)(u) = PFy(t) (v) (@)

= [ po(B0). Fo®)at.
It remains to use the assumption of theorem.
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