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Abstract 

Let ( )nx  be a Weyl number sequence. We show that for any ,10 ≤δ<  there is 

a positive number ( )δ= CC  such that for arbitrary Riesz operator ( )ELT ∈  

and any ,,2,1=n  the inequality 
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holds, where ( ( ))2
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+≤ eC  is a constant and [
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relies mainly on the relationship between absolutely 2-summing norm and 
multiplicity and injectivity of Weyl number. 

 

 



MAOZHU ZHANG 2

1. Introduction 

Since Weyl developed the classical Weyl inequality between 
eigenvalue of compact operators T acting on a Hilbert space and                
s-number of operator ([1]), i.e., if H is a Hilbert space and ( ),HKT ∈  

then 
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there have been an extensive literature dealing with inequality between 
eigenvalue and s-numbers of bounded linear operators acting on general 
Banach space ([2, 3, 4, 5, 6, 7]). Applying s-numbers of operators to 
estimate the eigenvalue distribution of operators is a very useful tool    
([8, 9, 10]). 

Following the basic results on eigenvalues distribution and                 
s-numbers of operators ([1, 2, 3]), more attention has been paid to the 
various inequality by related authors in the recent years, espacially, for 
example, Bernd Carl and Aicke Hinrichs ([4, 5, 6, 7]). In [4, 5], the 
optimal Weyl inequalities in Banach spaces related to arbitrary                
s-numbers are given, i.e., 
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where ( )Taj  denotes any s-number of operator T. Subsequently in [6], he 

has given the inequality between geometric means of eigenvalue and an 
injective and surjective s-numbers sequence in the sense of Pietsch ([13]). 
At the almost same time, Weyl type inequality related to injective or 
surjective s-numbers sequence and Banach space of weak type 2 have 
been given ([7]). In the recent paper [5], the authors proved that Weyl 
numbers form a minimal multiplicative s-numbers in the sense of Bernd 
Carl and Aicke Hinrichs. However, a well-known inequality between 
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geometric means of eigenvalues and Weyl numbers is concerned with 
double Weyl number sequence, which is different from general Weyl 
inequalities (cf. [2], Lemma 13), i.e., 
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where the double sequence ( )Txi
∗  is defined by ( ) ( )TxTx ii =∗

2  and 

( ) ( ).12 TxTx ii =∗
−  In [11], the constant e is displaced by .2e  In the 

present paper, we will give a Weyl inequality between geometric means 
of eigenvalues and single Weyl number sequence (cf. Theorem 2.2) 
instead of double Weyl number sequence. In the sense of minimal 
multiplicity (cf. [4]), this inequality can be improved. Its type is similar to 
the results of [6, 7], where all the constants c depend on a given positive 
number .δ  Compared our result with the previous results, We can easily 

observe that [ ]2
1+= nm  in [2, 11] and nm =  in [4], while in this 

paper, [ ] .2 nmn <≤  Speaking in a certain sense, our result can be seen 

as a supplement and generalization of the previous results [2, 4, 11]. And 
they are very good quantities for estimating the asymptotic behaviour of 
eigenvalues. 

First, we introduce s-number sequence in the sense of Pietsch [13]. A 

non-negative sequence ( )∞=1nns  is called an s-number sequence if for all 

operators ( ) −−∈ FELT , the class of all bounded linear operators 

between Banach spaces, the sequence satisfies the following: 

(1) ( ) ( ) ( );,for,021 FELTTsTsT ∈≥≥≥=  

(2) ( ) ( ) ( );,,for, FELSTsTssTs nn ∈+≤+  

(3) ( ) ( ) ( ) ( ) ( );,,,,,for, 00 FFLRFELTEELSsTsRRTSs nn ∈∈∈≤   
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(4) If ( ) ,dim nT <  then ( ) ;0=Tsn  

(5) ( ) ,1=nn Is  where nn
n llI 22: →  is an identity map from nl2  to 

itself. 

Now we describe some important examples. For ( )FELT ,∈  and 

,,2,1=n  we define the n-th approximation number 

( ) { ( ) },rank,,;inf nSFELSSTTan <∈−=  

the n-th Gelfand number 

( ) { },codim,;inf nMEMTJTc E
Mn <⊂=  

where E
MJ  denotes the canonial embedding from M to E, the n-th 

Kolmogorov number 

( ) { },dim,;inf nNFNTQTd F
Nn <⊂=  

where F
NQ  is the canonical map of F onto the quotient space NF  and 

the n-th Weyl number: 

( ) { ( ) ( ) }.1,,;sup 2 ≤∈= AElLATAaTx nn  

An s-number function s is called injective if the following property is 

satisfied: Let M be a subspace of F, then ( ) ( )TsTJs n
F
Mn =  for all 

( )., MELT ∈  An s-number function s is called surjective if the    

following property is satisfied : Let NE  be a subspace of E, then 

( ) ( )TsTQs n
E
Nn =  for all ( )., FNELT ∈  An s-function is called 

multiplicative if ( ) ( ) ( ),1 TsSsSTs nmnm ≤−+  for ( ) ( )GFLSFELT ,,, ∈∈  

and ,1, =nm  .,2  The following properties hold: 

(1) the approximation numbers ( )Tan  are the largest s-number; 

(2) the Gelfand numbers ( )Tcn  are the largest injective s-number and 

the Weyl numbers ( )Txn  are injective s-number; 
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(3) the Kolmogorov number ( )Tdn  are the largest surjective s-number; 

(4) the approximation number ( ),Tan  the Gelfand number ( ),Tcn  

and the Weyl number ( )Txn  are multiplicative; 

(5) the Weyl number are a minimal multiplicative s-number sequence 
in the sense of Carl and Hinrichs, i.e., let ( )Tsn  be a multiplicative s-

number sequence with the property that ( ) ( )TxTs nn ≤  for all LT ∈  

and ,,2,1=n  then 

( ( )) .
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n
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2. Our Main Results 

We assume that a Riesz operator ( )ELT ∈  acting on a complex 

Banach space, we assign an eigenvalue sequence ( )Tnλ  as follows: The 

eigenvalues of T are arranged in an order of non-increasing absolute 
values and each eigenvalue is counted according to its algebraic 
multiplicity 

( ) ( ) .021 ≥≥λ≥λ TT  

If T possesses less than n eigenvalues λ  with ,0≠λ  we let 

( ) ( ) .01 ==λ=λ + TT nn  In the following, we give the main theorem 

about geometric means of eigenvalues and Weyl numbers of Riesz 
operators. For this, we first list a useful lemma. 

Lemma 2.1 ([12], p. 234). Assuming nE2  a 2n-dimension Banach 

space, then there is an isomorphism ( )n
n lELu 2

22 ,∈  such that 

( ) ( ) ,1,2 1
2 2

1
==π −unu  (2.1) 

where ( )u2π  denotes absolutely 2-summing norm of u (cf. [2], Section 5). 
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In the sequel, [ ]x  is the integer part of x for ∞<< x1  and [ ] 1=x  if 
.10 ≤< x  

Theorem 2.2. If T and ( )Tnλ  are the above, then for any ,10 ≤δ<  

there is a positive number ( )δ= CC  such that for arbitrary Riesz operator 

( )ELT ∈  and any ,,2,1=n  the inequality 
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holds, where ( )Txi  denotes the Weyl number of T and [
[ ]

[ ] ].1
2 2

δ+
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n
m  For 

the constant C, we get ( ( )) .114 2
1

δ
+≤ eC  

Remark 2.3. Using the formula (1.3), we can obtain Weyl inequality 
between eigenvalue and minimal multiplicity s-number in the sense of 
Carl and Hinrichs (cf. [4]). 

Proof. If ( ) ,0=λ Tn  then there is nothing to prove. So we assume 

that ( ) .0≠λ Tn  When ,1=n  the result is obvious. If we have proved 

when ( ),2 Nppn ∈=  the result is true, then the inequality still holds 

when ,12 += pn  which follows from the inequality: 
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Therefore, it is sufficient to prove that the result holds for all even 
natural numbers. 

Without loss of generation, we replace n by 2n. In the following, we 
prove 
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where [ ].1
2

δ+
= nm  From Riesz operator ( ),ELT ∈  we can find a       

2n-dimensional subspace nE2  of E invariant under T such that the 

restriction of T to nE2  has precisely ( ) ( ) ( )TTT n221 ,,, λλλ  as its 

eigenvalues (cf. [8], 3.2.23; [12]). Following the above lemma, we can 

obtain that there is an isomorphism map ( )n
n lELu 2

22 ,∈  such that 

( ) ( ) .1,2 1
2 2

1
==π −unu  With the principle of related operators (cf. [8], 

3.3.4; [4]), we draw a conclusion 
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On finite dimensional Hilbert spaces, all s-numbers of bounded operators 
coincide, which is just the singular value of operator. Applying classical 

Weyl inequality to the operator 1
2

−uuT n  (cf. [1]), we can get 
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Let [ ],1
2

δ+
= nm  for ,10 ≤δ<  we may arrive at 
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For the right hand of the above inequality (2.5), with the multiplicity of 
Weyl number and Lemma 2.1, we have 
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By absolutely 2-summing norm and [2] Lemma 8, with [ ] ,ni ≤δ  we have 
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Let nI2  be canonical injection from nE2  into E. Obviously 

.222 nnn TITI =  According to injectivity and the definition of Weyl 

number, we can obtain 

( ) ( ) ( ) ( ) ( ).22222 TxITxTIxTIxTx inininnini =≤==  

Therefore, 
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We observe that [ ] [ ] .11
2,2 δ+

≥
δ+

=δ≥δ nnmii  Following again from 

Taylor expanding theorem with ,!
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m
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m ≤  we have 
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Combined with the above (2.3)-(2.7), the proof is complete. 

Remark 2.4. In a special case, if ,1=δ  we can obtain a better 

inequality 
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above proof. It follows that .2eC ≤  
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