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Abstract

Let (x,) be a Weyl number sequence. We show that for any 0 < § < 1, there is

a positive number C = C(§) such that for arbitrary Riesz operator T e L(E)
and any n =1, 2, ---, the inequality

Tt « [T G0t T < o T
i=1 i=1 i=1 i=1
1.1 . 2051
holds, where C < (4e(1 +€))2 is a constant and m = [m] The proof

relies mainly on the relationship between absolutely 2-summing norm and
multiplicity and injectivity of Weyl number.
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1. Introduction

Since Weyl developed the classical Weyl inequality between
eigenvalue of compact operators 7T acting on a Hilbert space and

s-number of operator ([1]), i.e., if H is a Hilbert space and T e K(H),

then

100 < ] [, 1.1
j=1 =

j=1

there have been an extensive literature dealing with inequality between
eigenvalue and s-numbers of bounded linear operators acting on general
Banach space ([2, 3, 4, 5, 6, 7]). Applying s-numbers of operators to
estimate the eigenvalue distribution of operators is a very useful tool
(8, 9, 10]).

Following the basic results on eigenvalues distribution and
s-numbers of operators ([1, 2, 3]), more attention has been paid to the
various inequality by related authors in the recent years, espacially, for
example, Bernd Carl and Aicke Hinrichs ([4, 5, 6, 7]). In [4, 5], the
optimal Weyl inequalities in Banach spaces related to arbitrary

s-numbers are given, 1.e.,

HIM(T)I < n%Haj(T), (1.2)
j-1

J=1

where a j (T') denotes any s-number of operator 7. Subsequently in [6], he

has given the inequality between geometric means of eigenvalue and an
injective and surjective s-numbers sequence in the sense of Pietsch ([13]).
At the almost same time, Weyl type inequality related to injective or
surjective s-numbers sequence and Banach space of weak type 2 have
been given ([7]). In the recent paper [5], the authors proved that Weyl
numbers form a minimal multiplicative s-numbers in the sense of Bernd

Carl and Aicke Hinrichs. However, a well-known inequality between
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geometric means of eigenvalues and Weyl numbers is concerned with
double Weyl number sequence, which is different from general Weyl

inequalities (cf. [2], Lemma 13), i.e.,
n 1 1 1
([ @ < e(J Jxi@yn, n=12 -, (1.3)
i=1 i=1

where the double sequence x;(T) is defined by x5;(T) = x;(T) and
x3;_1(T) = x;(T). In [11], the constant e is displaced by +2e. In the

present paper, we will give a Weyl inequality between geometric means
of eigenvalues and single Weyl number sequence (cf. Theorem 2.2)
instead of double Weyl number sequence. In the sense of minimal
multiplicity (cf. [4]), this inequality can be improved. Its type is similar to
the results of [6, 7], where all the constants ¢ depend on a given positive
number 8. Compared our result with the previous results, We can easily

n+l

observe that m = [ ] in [2, 11] and m = n in [4], while in this

paper, [E] < m < n. Speaking in a certain sense, our result can be seen

as a supplement and generalization of the previous results [2, 4, 11]. And
they are very good quantities for estimating the asymptotic behaviour of

eigenvalues.

First, we introduce s-number sequence in the sense of Pietsch [13]. A
non-negative sequence (s, ):Lozl is called an s-number sequence if for all
operators T e L(E, F)- —the class of all bounded linear operators

between Banach spaces, the sequence satisfies the following:

) |7 = $1(T) 2 so(T) 2 --- 2 0, for T e L(E, F);
(2) $,(T +5) < s,(T)+|s|, for T, S e L(E, F);

(3) $,(RTS)<|R]s, (T)|s||, for Se L(Ey, E),T € L(E, F),Re L(F, Fy );
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(4) If dim(7T') < n, then s,(T) = 0;

(5) s,(I,) =1, where I, :l5 — I35 is an identity map from I; to
itself.

Now we describe some important examples. For 7' € L(E, F) and

n =1, 2, -+, we define the n-th approximation number
a,(T) =1inf{|T - S|; S € L(E, F), rank S < n},
the n-th Gelfand number

en(T) = inf{|TJ 57 |; M < E, codim M < n},

where Jﬁ denotes the canonial embedding from M to E, the n-th

Kolmogorov number
d,(T) = inf{|QYT|; N < F, dim N < n},

where Qﬁ is the canonical map of F onto the quotient space F /N and
the n-th Weyl number:

%, (T) = sup{a,(TA); A e L(ly, E), |A] < 1}.
An s-number function s is called injective if the following property is
satisfied: Let M be a subspace of F, then s,(J37T)=s,(T) for all

T € L(E, M). An s-number function s is called surjective if the

following property is satisfied : Let E /N be a subspace of E, then

$,(TQK) =s,(T) for all T e L(E/N, F). An s-function is called
multiplicative if s,,,,_1(ST) < s,,(S)s,(T), for T € L(E, F), S € L(F, G)
and m, n =1, 2, ---. The following properties hold:

(1) the approximation numbers a,(7') are the largest s-number;

(2) the Gelfand numbers ¢, (T") are the largest injective s-number and

the Weyl numbers x,,(T") are injective s-number;
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(3) the Kolmogorov number d,,(T") are the largest surjective s-number;

(4) the approximation number a,(T"), the Gelfand number c,(T),

and the Weyl number x,,(7') are multiplicative;

(5) the Weyl number are a minimal multiplicative s-number sequence

in the sense of Carl and Hinrichs, i.e., let s,(T") be a multiplicative s-
number sequence with the property that s, (7)< x,(T) for all T € L

and n =1, 2, ---, then
4 1
Xop-1 < (H%(T));- (1.4)
k=1

2. Our Main Results

We assume that a Riesz operator T € L(E) acting on a complex
Banach space, we assign an eigenvalue sequence A,(T") as follows: The

eigenvalues of T are arranged in an order of non-increasing absolute
values and each eigenvalue is counted according to its algebraic

multiplicity
2 (T)] 2 [Ao(T) 2 -+ 2 0.
If T possesses less than n eigenvalues A with A =0, we let

AM(T) =2p,1(T)=---=0. In the following, we give the main theorem

about geometric means of eigenvalues and Weyl numbers of Riesz

operators. For this, we first list a useful lemma.
Lemma 2.1 ([12], p. 234). Assuming Es, a 2n-dimension Banach
space, then there is an isomorphism u € L(E,,, Z%n) such that
1 _
o) = 2n)2, ut| =1, (2.1)

where n9(u) denotes absolutely 2-summing norm of u (cf. [2], Section 5).



6 MAOZHU ZHANG

In the sequel, [x] is the integer part of x for 1 < x < © and [x] =1 if

0<x<1.

Theorem 2.2. If T and |L,(T)| are the above, then for any 0 < 8 <1,
there is a positive number C = C(8) such that for arbitrary Riesz operator

T e L(E) andany n =1, 2, ---, the inequality

n 1 me2l2] 11 2 1 m 1
[Tt < QT8 [t < o [sont - @2
=1 =1 =1 =1

2[ %]
[1+3§]

o3

holds, where x;(T) denotes the Weyl number of T and m = | |. For

1
the constant C, we get C < (4e(1 + % ))z.

Remark 2.3. Using the formula (1.3), we can obtain Weyl inequality
between eigenvalue and minimal multiplicity s-number in the sense of
Carl and Hinrichs (cf. [4]).

Proof. If |1,(T)| = 0, then there is nothing to prove. So we assume
that |1, (T)| # 0. When n =1, the result is obvious. If we have proved
when n = 2p(p € N), the result is true, then the inequality still holds

when n = 2p + 1, which follows from the inequality:

2p+1

1 2p 1
([ Tr@pzes < (] Jiramhes.
i=1 i=1

Therefore, it is sufficient to prove that the result holds for all even

natural numbers.

Without loss of generation, we replace n by 2n. In the following, we

prove

2n m
(JTr@ne < e Jxi@m,
i=1 i=1
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where m = [12+_n6] From Riesz operator T € L(E), we can find a

2n-dimensional subspace Ejy, of E invariant under 7' such that the
restriction of T to E,, has precisely A(T), Ao(T), -, Ao, (T') as its
eigenvalues (cf. [8], 3.2.23; [12]). Following the above lemma, we can

obtain that there is an isomorphism map u € L(E,,, l%”) such that

1
ng(u) = (2n)2, ||u_1 | = 1. With the principle of related operators (cf. [8],

3.3.4; [4]), we draw a conclusion
2n 1 2n 1
(J[r@nzr = (] [1mi @z ))yen. (2.3)
i=1 i=1

On finite dimensional Hilbert spaces, all s-numbers of bounded operators

coincide, which is just the singular value of operator. Applying classical

Weyl inequality to the operator uTQnu_1 (cf. [1]), we can get
2n 1 2n 1
(] J1%iTomu™er < (] [i(@ ™ pn. (2.4)
=1 =1
2n .
Let m = [m], for 0 < § <1, we may arrive at

2n m
([ T o™ V2 < (] Joxtoipeics (wnue™ D)o (2.5)
=1 =1

For the right hand of the above inequality (2.5), with the multiplicity of

Weyl number and Lemma 2.1, we have
Xsifio1 (Tt ™) < a0y (T )™ = 2@ (T, )-

By absolutely 2-summing norm and [2] Lemma 8, with [8i] < n, we have

(i) 151 (w) < 7o) = (20)7.
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Let Iy, be -canonical injection from FEy, into E. Obviously
1,,Ty, = Tly,. According to injectivity and the definition of Weyl

number, we can obtain
xi(TZn) = xi(IQnT2n) = xi(TIZn) < xi(T)"IZn " = xi(T)'

Therefore,
([ Ttoieia s < ([ [ [ J g 2w, @0
=1 =1 1=1

:[Zn]2 n

T+35 T35 Following again from

We observe that [5i] > %,

m
Taylor expanding theorem with m_' < e™, we have
m!

m

(H ] 2 Y < (de(1+ = ))2 @2.7)
=1

Combined with the above (2.3)-(2.7), the proof is complete.

Remark 2.4. In a special case, if 8 =1, we can obtain a better

inequality

(Hn ()7 < <H(

)z>—(1‘[ ()i <@(H i ()i

[%]

hold, where m = 2[—] Indeed H < (2e)™ according to the

above proof. It follows that C < V2e.
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