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Abstract 

We introduce a different method to deal with some partial stochastic and 
ordinary differential equations otherwise, mainly in financial mathematics, 
including the notions of “maximal regularity” and “random process 
separabilisation” using composition with appropriate random variables or 
Brownian motion. We have chosen as model, presented at the Introduction, the 
problem of Asian options, we then connect it to the Cauchy problem in 
autonomous and non autonomous cases. 

1. Introduction 

A lot of stochastic differential equations (SDE) that treat replication 
problems by a filing (self or not) financing portfolio strategy leads to, in 
deterministic approach, to partial differential equation (PDE), but in 
interesting cases, results are restricted to the autonomous case (i.e., time 
independence of operators). 
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Our model is the analysis of the Asian options as presented in [1]. 
After convenient applications of Itô’s formula and following the same way 
of Black-Scholes [2] for portfolio replication, Prüss et al. [1, 7] proved that 
it suffices to resolve the equation: 

( ) ,0. =∆−−∂ uyxAt   (E) 

where A is the d-dimensional Black-Scholes operator and yxB ∇= .  is 

the path dependence of the price averaging in Asian options. The 
principal argument was that the operator yxA ∆+= .A  defined on 
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For more details, see (Lemma 3.2; [1]) and (Proposition 3.1; [1]). 

Our purpose is not to restitute the ideas of the authors, but to give an 
appropriate reason to generalize their approach for non autonomous case. 
Several authors have already studied the non autonomous Cauchy 
problem, mainly Aquistapachi, Terreni, Hubert, Arendt and others, see 
[4], [5], [6], and [7]. 

The purpose is to contribute modestly to those masterpieces with a 
new notion: “separabilisation of the range”. The main tools are “maximal 
regularity” and “Monte Carlo method of integral calculus”, concepts 
which are developed in the sequel. The maximal pointwise regularity 
that must possess the operator family ( )tAoX  should be susceptible of 

being simulated numerically in order to give meaning to the 
approximation stated above. We will study the impact of the support of 
the random variable X on the choice of model and then we will develop 
the practical case of a usual law simulated by the Monte Carlo method. 
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2. The Maximal Regularity 

The summarized results in this section are extracted essentially from 
[8], [9], and [10]. Notations adopted are those of [8]. 

Let D and X be two Banach spaces, where D is continuously and 
densely embedded into X. We can see D as a subspace of X with the 
injection XDi →:  continuous and we will note, up to now, .XD   

2.1. Autonomous case 

Let 1>p  and let A denote a single operator from ( )XD,L  (i.e., A is 

time-independent). We write pMRA ∈  and say that A has maximal-pL  

regularity, if the problem 
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has a unique solution u in ( ) ( )DbaLXbaW pp ,,,,,1 ∩  for all 

( )DbaLf p ,,∈  and some interval [ ]., ba  

The notation pMRA ∈  or just MRA ∈  is immediate consequence of 

the most important properties of maximal regularity summarized as 
follows: 

(i) The maximal-pL  regularity is independent of the bounded 

interval [ ].ba,  

(ii) If pMRA ∈  for some ,1>p  then pMRA ∈  for all .1>p  

(iii) If ,MRA ∈  then A−  is a generator of a holomorphic 

semigroup-0C  on X. 

(vi) The converse in (iii) is not true in general Banach spaces with in 
conditional basis [12]. 

(v) If ,MRA ∈  then for all x in the trace space 
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{ ( ) ( ) ( ) ( )},,,,,,: ,1 DbaLXbaWbaMRuauTr pp ∩=∈=  

the homogeneous Cauchy problem 
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is well posed. 

2.2. Non autonomous case 

D and X as below, let 1>p  and [ ]T,0  be a bounded and fixed 

interval. We consider the family ( )( ) [ ]TttA ,0∈  and assume that 

[ ] ( ) ( )XDtATt ,,0 L∈→∈  is continuous. We will say that A has 

maximal-pL  regularity if for every ( ),,,0 XTLf p∈  the problem 

( ) ( ) ( ) ( ) [ ]
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has a unique solution [ ].,0 TMRu ∈  

A great and important result in this case is the possibility to 
construct an evolution family, which enables us to resolve the non 
autonomous Cauchy problem with initial value x in the trace space Tr as 
defined above. We recall the result and one can see fructuously Lemma 
2.2 and Proposition 2.3 in [8]. 

Proposition 2.1. Let ( )TMRA p ,0∈  for .0 0 TT ≤<  Then for every 

position x in Tr and every time [ ],,0 0Ts ∈  the ( )sNCP  
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is well posed in the sense of [13]. 
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Moreover, if ( ) ( )tustu =,  for ( ) [ ]20,0, Tst ∈  and ,st ≥  then 

( ){ } stTstu ≥>0
,  is a bounded and strongly continuous evolution family       

on Tr. 

The continuity of ( )tAt 6  is not necessary. Arendt and his 

collaborators have proved that boundness, measurability of ( )( ) [ ]TttA ,0∈  

and its relative continuity, as defined in [8] are sufficient and less 

restrictive conditions for well-posedness under the maximal-pL  

regularity. Our main result is to establish that the well-posedness 
remains under less expansive hypothesis, which obliged the family 

( )( ) [ ]TttA ,0∈  to have the punctual maximal-pL  regularity (at least in the 

continuous case). 

3. Random Separabilisation 

To better understand a given space, we usually tend to describe its 
elements with a small number of others so called privileged. In 
mathematics, mainly in algebraic approaches, the bases are the best 
candidates. But, in the analytic point of view, one must have at least a 
dense set of such elements at his disposal. It is the fundamental principle 
of “separabilisation”. 

Definition 3.1. Let [ ] EA →1,0:  be a family of operators, where E 

is Banach space. Let X be a random variable from a probabilised space Ω  
(we choose R=Ω ) into [ ].1,0  We say X separabilise A, if 

( )( ) ( ) [ ] ( ) Htttw tAXAwXA ∈∈ == 1,0DD  and H is dense in [ ].1,0  

Proposition 3.2. Let [ ]1,0: →RX  with N∈n  and ( ) .1≥= kkqQ  

( ) ( ).1
2
1 uuXu n Q=6  Then X separabilise A. 
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Proof. 

( ).  It is trivial because ( ) [ ]1,0∩QX =R  and obviously ( ) =RX  

[ ].1,0  

( ).  Moreover, X as defined, is a probability density because 
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where σ  is the usual counting measure. 

Theorem 3.3. Let ( )( ) [ ]TttA ,0∈  be an operator family. Assume that for 

each [ ],,00 TT ∈  A has a maximal regularity property in [ ( )],, 0TXO  

where X is random variable separabilising A. Then the problem 
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is well posed for all ,,0 TrxTs ∈<  where Tr, in the course of this paper, 

denotes the trace space as described in [8]. 

Proof. We begin by noting two main differences with the statement 
of Proposition 3.2 in [8]. First, when A is not required to have MR for all 
t, but just for values in countable set. Second, the choice of ( )0TX  is 

arbitrary provided that the operator retains ownership property of MR 
for all images by X. 

To prove Theorem 3.3, we need two lemmas. 

Lemma 3.4. Let δ  be a jauge (see [13]) [ ]( )+→δ R1,0:.,.ei  and 

[ ] .,,1,0,,0 niTti …=∈  Then, there exists a subdivision ( )nii 1=Λ  such 

that { } [ ] [ ].,,1,,1,0 1 ii titiiii tttni δ+δ−⊂ΛΛ∈−∈∀ +…  
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Proof. Suppose by contradiction that the conclusion does not hold, 

i.e., there does not exist a subdivision ( )nii 0=τ  such that 

[ ] [ ].,, 1 ii titiii tt δ+δ−⊂ΛΛ +   (1) 

Consider two sequences ( ) 0≥nna  and ( ) 0≥nnb  with bbaa == 00 ,  and if 

na  and nb  are constructed, then one of [ ]2, nn
n

baa +  or [ ]n
nn bba ,2

+  

verifies the assumption below, otherwise, connecting the two 
subdivisions, we will recover [ ]nn ba ,  in which, to find the property (1) is 
impossible. Therefore, we construct a decreasing net of nested intervals, 
whose intersection, since [ ]ba,  is compact, is reduced to { }.0c  Thus, as 

,0,0 00 >∃>δ kc  

[ ] ] [.2
1,2

1, 0000 000 cc ccbac δ+δ−⊂∈ kk  

It holds that, [ ]00 , kk ba  satisfies (1), this is a contradiction. 


 

Remark. The previous lemma is a classical result for Henstock-
Kurzweil integral theory. It can be proved in many different ways but one 
must always use a compactness argument. 

Now, let A be a single operator and [ ] ( )XDLB ,1,0: →  be a family 
of operator such that for random variable presented in Lemma 3.4; 

XB D  is measurable and satisfies a regularity inequality 

( ) ,,; XDtX xxtXBtXx η+α≤∈∀∈∀ DR   (2) 

for some constants tα  such that the norm of the operator 

( ) ( ),,,,,: XbaLDbaLL pp →  

( ),: AuutLu A +→→ �  

with the appropriate domain verifies ( ) .2
1,

t
ALR

α
≤λ  
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We can prove the following lemma: 

Lemma 3.5. Assume that MRA ∈  and B verifies the inequality (2). 
Then, for every ,0>λ  the following problem: 

( ) ( )

( )
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=++λ+
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has a unique solution for every Trx ∈  and ( ).,, XbaLf p∈  

Proof. It suffices to reshuffling the functional argument in [8]. The 
adaptation is obvious because ( )tB  and ( )tXB D  verify simultaneously 

the inequality (2). 
 

The first main result in this paper is the following theorem: 

Theorem 3.6. Let [ ] ( )XDLTA ,,0: →  be relatively continuous    

(see [8] for precise definition of relative continuity) such that the mapping 
( )tAt 6  is measurable, for all ( ).tX  Let X be a random variable 

separabilising A. Assume that ( ) MRtXA ∈D  for all [ ]1,0∈t  and that 

for every ϕ  in the dual set ∗X  relative to X, the mapping XA DDϕ  is 

measurable. 

Then [ ]τ,0pMRA ∈  for all [ ]T,0∈τ  and .1>p  

Proof. Let ( )XTLf p ,,0∈  and A relatively continuous means that, 

for each [ ],,0 Tt ∈  there exists 0>δt  such that 

( ) ( ) .2
1

XtDt
t xxxsAxtAts η+

α
≤−⇒δ<−  

By Lemma 3.4, we can find a subdivision ( )nii 0=Λ  and a sequence 

Tttt n =<<<= …10 0  such that [ ] [ ].,, 1 titiii tt δ+δ−⊂+ττ  
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For all { } ( ),,,,1,0 itXAni D…∈  by assumption, is in MR, there 

exists { }nji ,,1,0 …∈  such that ( ) [ ]., 1+∈ ii jjitX ττ  Consider for all 

[ ],, 1+∈ ii jjs ττ  the perturbation 

[ ] ( ),,,: 1 XDLB iii jjj →
+

ττ  

( ) ( ).itXAsAs D6 −  

The operator ijB  satisfies Proposition 2.1 and the problem 
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has a unique solution. 

To achieve the proof, it suffices to prove the strong measurability of 
( )tXAt D6  on [ ].,0 T  Fortunately, X and A  are measurable, by 

composition ( )xtXAt D6  is measurable too. On the other hand, by the 

separabilisation tool, XA D  has a separable rank. One can deduce easily 
using Pettis theorem (see [14]). 
 

4. Separabilisation with Brownian Motion 

Our second main result concern how to separabilise operators by 
Brownian motion. The main tools are: 

Lemma 4.1. The Brownian motion in one dimension space is 
recurrent. In the other words, [ ] ( ) .0,0,,0 >=>∃∈∀ xBtPTx t  

Note that in ,3R  this property does not hold and one can easily prove 

that { } +∞== xBt t;inf  for x in some U open subset of .3R  

Lemma 4.2. One-point sets in ,R  are not polar, i.e., ( ) ,0>∞<Ax TP  

R∈∀x  (i.e., for all ,0≥x  the hitting time AT  are stopping times and 

events ( )∞<AT  are measurable for each [ ]TA ,0⊂ ). 
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The proofs of Lemmas 4.1 and 4.2 are very classical (see [12]). 

Theorem 4.3. Let ( ) 0≥ttB  be a Brownian motion, A is a family of 

operator such that pMRA ∈  for every 1>p  and relatively continuous. 

Let ( ) 0≥nnt  be a dense sequence in [ ].,0 T  Consider { }.,0 iti tBtE =>=   

Then ( )tBA D  is pMR  and the problem 

( ) [ ]
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is well posed for every ( )DTLf p ,,0∈  and x in Tr. 

Proof. For each ,0>i  the set iE  is trivially measurable and by 

Lemma 4.2 is not empty. By Lemma 4.1, the probability to reach each ,it  

by Brownian motion, is not null. 

Let ,0>ε  by relative continuity of A, for all ,0>t  there exist ,η  

0>δt  such that 

( ) ( ) ,2
1

XDt
xxxsAxtAst η+

α
≤−δ<−  

where tα  denote the constant in relation (2). By Lemma 3.4, there exists 

a finite subsequence ( )njnjt 0=  and a subdivision ( )njjτ  such that 

[ ] [ ],,, 1 jnjjnjj tntnjjn ttt δ+δ−⊂∈ +ττ  

for every [ ],, 1+∈ jjiEs ττ∩  the small perturbation ( ) ( ) ( )sAtAsB jn −=   

remains relatively continuous. So, the problem 

( ) ( ) ( ) [ ]
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is well posed. By connecting as in [8], the proof is complete. 
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