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Abstract 

For spacetimes embedded into flat 5-space, with Lanczos invariant different to 
zero, we obtain the inverse of the corresponding second fundamental form. 

1. Introduction 

4R  can be embedded into 5E  (that is, the 4-space has class one) if 

and only if, there exist the second fundamental form caac bb =  satisfying 

the Gauss-Codazzi equations [1] 

( ),ciajcjaiacij bbbbR −=    (1) 
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,;; jiccij bb =   (2) 

where acijR,1±=  is the Riemann tensor; and r  means covariant 

derivative. It is well-known [2] that whenever ( ) ,0det ≠jib  then (1) 

implies (2), in other words, when a nonsingular matrix b~  satisfies the 
Gauss equation, then the Codazzi equation is verified automatically. 

However, in general, the construction of b~  for a given spacetime should 
involve the study of both (1) and (2) together. 

In [3] were obtained the following results: 

( ) ,det24 2 acij
ijacji RRKb ∗∗≡=−  (3) 

,3,2
1

48
1

2 ac
acjr

ijrcicic GbpGRgKpb =−=  (4) 

such that 2K  is a Lanczos invariant [4-6] defined in terms of double dual 

of curvature tensor 

,4
1

mnac
mn

rt
ijrtacij RR ηη=∗∗  (5) 

with ijrtη  denoting the Levi-Civita symbol, and acG  is the Einstein 

tensor [1]. Besides, the Bianchi identities [1] adopt the compact form [5] 

.0; =∗∗ irjicR  (6) 

The present work deals with the case ,02 ≠K  thus in according to (3), 

this implies the existence of inverse matrix .1ijb−  In the next section,   

1~−b  is constructed as a projection of b~  onto double dual tensor. 

2. Inverse of Second Fundamental Form 

If (1) is employed in the Lanczos identity [4, 7] 

,42
jqc

arjqcra RRgK ∗∗=  (7) 
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it is immediate that 

,82
jcq

arjqcra bbRgK ∗∗=   

and its multiplication by iab 1−  implies 

,81
2

jcrjicri bRbK ∗∗− =   (8) 

thus 1~−b  essentially is the projection of b~  onto (5). It is interesting to 
observe that (2), (6), and (8) generate the differential condition 

( ) ,0;
1

2 =−
i

ribK   (9) 

that is, (8) is a conserved tensor [8] for any 4-space of class one with 
.02 ≠K  

The relations (1) and (4) permit to deduce an alternative expression 

for ,~ 1−b  in fact, if the Gauss equation is applied into (4) 

,24
1

2
rj

jciricic GbbgKpb +−=  

whose multiplication by acb 1−  leads to 

,24
1 1

2 iaariria pgGbbK −=−   (10) 

in harmony with (8). 
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