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Abstract 

We obtain the inequality ( ) ( ) ( )[ ] ,1,12 2 >+>+ ssss ζζζ  for the Riemann zeta 
function, which implies the inequality of Laforgia-Natalini [1]. 
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1. Introduction 

Laforgia-Natalini [ ]2,1  employ a generalization of the Schwartz 

inequality to deduce the following inequality for the Riemann zeta 
function [3]: 
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Here, we use known properties of ( )sζ  [4] to show that 
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which is stronger than (1), that is, (2) implies (1). It is unknown a closed 
expression for the Riemann zeta function valued at positive odd integers, 
then we consider very useful to obtain from (2) a narrow inequality for 
( ) ,,2,1,12 …=+ nnζ  which implies a corresponding inequality for 

Faulhaber [5]-Bernoulli [6] numbers. 

2. Formula of Titchmarsh 

In [4] page 6, we find the expression 
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where ( )nΦ  is the amount of numbers less than n and prime to n. Then 

for 1>s  are valid the relations 
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whose all terms are positive and ,11
21 ++

> ss nn
 thus each term in 
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is correct for .1>s  Besides, ,11 >+
s

s  then (2) implies (1). 
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3. Inequalities for ( ) …2,1,,12 =+ nnζ  

If in (2), we use ns 2=  and the result of Euler (1735) [3, 4] 
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with the Faulhaber [5]-Bernoulli [6] numbers 
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we deduce the following inequality for Riemann zeta function at odd 
integers: 
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For example, if in (6), we employ 2,1=n  and the values (5), then 

( ) ( ) ,278330049.15,702297334.13 << ζζ  

in accordance with the values ( ) 903056202.13 =ζ  and ( ) 927755036.15 =ζ  

reported in the literature. 

In [4] page 191 is the inequality 
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where we may use 12 += ns  and (4) to obtain that 
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which for 2,1=n  implies the correct inequalities 

( ) ( ).5164497000.1,3256634008.1 ζζ ≤≤  
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Thus, the expressions (6) and (8) give us an interval for ( )12 +nζ  and 

also the following inequality for Faulhaber-Bernoulli numbers: 

( ) ( ) ( ) .!!144!212 22224 ++ +−<+ nn
n

n BBnBnn   (9) 

For example, (9) can be verified with the values (5). The relations (2), (6), 
(8), and (9) are not in the literature. 

4. Conclusion 

Employing known relations [4] for Riemann zeta function it is 
possible to obtain, in elementary manner, the inequality (2), which 
implies the result of Laforgia-Natalini [1]. Besides, the approach here 
presented leads to an inequality for ( ) ,,2,1,12 …=+ nnζ  expressions 

(6) and (8), and the corresponding inequality (9) for Bernoulli numbers. 
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