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Abstract

We obtain the inequality {(s){(s + 2) > [{(s + 1)]2, s > 1, for the Riemann zeta

function, which implies the inequality of Laforgia-Natalini [1].
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1. Introduction

Laforgia-Natalini [1, 2] employ a generalization of the Schwartz

inequality to deduce the following inequality for the Riemann zeta

function [3]:
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Here, we use known properties of {(s) [4] to show that
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which 1s stronger than (1), that is, (2) implies (1). It is unknown a closed
expression for the Riemann zeta function valued at positive odd integers,
then we consider very useful to obtain from (2) a narrow inequality for

{(2n+1),n=1,2,..., which implies a corresponding inequality for

Faulhaber [5]-Bernoulli [6] numbers.
2. Formula of Titchmarsh

In [4] page 6, we find the expression
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where ®(n) is the amount of numbers less than n and prime to n. Then

for s > 1 are valid the relations
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whose all terms are positive and T > s thus each term in
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is greater than the corresponding term in {s +1) , therefore (2)
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1s correct for s > 1. Besides, > 1, then (2) implies (1).
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3. Inequalities for {(2n +1),n =1, 2, ...
Ifin (2), we use s = 2n and the result of Euler (1735) [3, 4]
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with the Faulhaber [5]-Bernoulli [6] numbers
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we deduce the following inequality for Riemann zeta function at odd

integers:
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For example, if in (6), we employ n = 1, 2 and the values (5), then
{(3) < 1.334 297702, {(5) < 1.049 330 278,

in accordance with the values {(3) = 1.202 056 903 and {(5) = 1.036 927755

reported in the literature.

In [4] page 191 is the inequality
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where we may use s = 2n +1 and (4) to obtain that

n B n
(2n)? +1[2(42—:22)!]1/2 <y2n+1), n=123, .., ®)

which for n = 1, 2 implies the correct inequalities

1.008 634 256 < {(3),  1.000 497164 < I(5).
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Thus, the expressions (6) and (8) give us an interval for {(2n + 1) and

also the following inequality for Faulhaber-Bernoulli numbers:
2(1’1 + ].) (Zn)' B4n+2 < - 4”(4” + 1)’ ! B2n32n+2. (9)

For example, (9) can be verified with the values (5). The relations (2), (6),

(8), and (9) are not in the literature.
4. Conclusion

Employing known relations [4] for Riemann zeta function it is
possible to obtain, in elementary manner, the inequality (2), which
implies the result of Laforgia-Natalini [1]. Besides, the approach here

presented leads to an inequality for {(2n +1), n =1, 2, ..., expressions

(6) and (8), and the corresponding inequality (9) for Bernoulli numbers.
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