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Abstract 

Many new models of wave turbulence – frozen, mesoscopic, laminated, decaying, 
sand-pile, etc. – have been developed in the last decade aiming to solve problems 
seemingly not solvable in the framework of the existing wave turbulence theory 
(WTT). In this short review, we show that very often the reason of these 
discrepancies is that some necessary conditions of the WTT are not satisfied: 
Initial energy distribution is not according to the assumptions of the theory; 
nonlinearity is not small enough; duration of an experiment is not sufficient to 
observe kinetic time scale; etc. Two alternative models are briefly presented 
which can be used to interpret experimental data, both giving predictions at the 
dynamical time scale: (a) a dynamical energy cascade, for systems weak and 
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moderate nonlinearity; and (b) an effective evolution equation, for systems with 
distributed initial state and small nonlinearity and dissipation. 

1. Introduction 

The pioneering paper of Zakharov and Filonenko, [1], laid in 1968 the 
very foundations for the theory of weak (or wave) turbulence (WTT) in 
systems with distributed initial state. Current developments of the WTT 
have been summarized in 1990, [2], where the general method for 
deducing the wave kinetic equation was presented, together with the 
method of finding its stationary solutions called kinetic energy spectra 
(K-spectra). K-spectra in a system with dispersion relation of the form 

( ) 1,~ >αω αkk  satisfy a power law scaling, .νk  Here k=k  is the 

modulus of the wave vector and exponent ν  is a constant as soon as the 
dispersion relation ( )kω=ω  is known. Formation of the energy spectra 

takes place on the kinetic time scale described in detail hereinafter. 
Presently this theory is called kinetic WTT, to be distinguished from 
discrete WTT. 

The discrete WTT has been developed for weakly nonlinear systems 
with localized initial state. In this case, the total energy of the system is 
captured by a few independent clusters of resonantly interacting waves, 
without energy flow between the clusters, on the dynamical time scale. 
The main properties of these clusters have first been described by 
Kartashova in the 1990s, [3-5]. The concept of “discrete WTT” came to 
use in [6], and was explained in detail in [7]. The current state of the art 
in discrete WTT is summarized in [8]. 

In the last decade, many new models of WTT were developed, e.g., 
laminated [6], frozen [9], mesoscopic [10], decaying [11], sand-pile model 
[12], etc. to solve problems seemingly not solvable in the framework of 
the existing (kinetic and discrete) WTT. 

In this short review, we present studies of cases taken from literature 
showing that very often the reason for these discrepancies is not that the 
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WTT should be improved. It is rather that some necessary conditions of 
the WTT are not fulfilled and the theory can not be applied at all. When 
possible, we will also give references to some other theories or models 
which are more appropriate for application in these specific cases. 

Three main sources of misunderstanding are listed below: 

● Any prediction of the WTT is comprised of two elements: A 
phenomenon (e.g., energy spectrum) and a time scale for the phenomenon 
to occur; very often the spectrum is taken neglecting the time scale. 

● A dispersion function of decay type does not guarantee that we 
have a 3-wave system. 

● In contrast to exact resonances, quasi-resonance clustering depends 
on both geometry and dynamics. 

As a starting point we give some definitions. Regard a weakly 
nonlinear dispersive evolutionary PDE 

( ) ( ),vv /ε−=/ NL   (1) 

such that ( ) ,0=φL  for any [ ]tiA ω−=φ xkk exp  with constant ,kA  

wave vector k and dispersion function ( ) ( ) .0, ≠″ωω=ω kk  Resonance 

conditions and dynamical systems (canonic variables, 3-wave resonances, 
3WR) read 

( ) ( ) ( ) ;, 321321 kkkkkk =+ω=ω+ω   (2) 

;,, 213312321 BZBBiBZBBiBZBBi −=== ∗∗   (3) 

and the kinetic equation for this system (3WKE) takes the form 

( ) ( ) ( ) ,21323121213213
22

3 kkkkk ddBBBBBBZBT
∗∗ −−⋅−−δω−ω−ωδ>=< ∫d

d  

(4) 

where ( ) ,,const ε=≠= tTTBB ii  are slowly changing amplitudes 

depending on T. 
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2. Time-Scale 

The fundamental assumption of WTT is separation of scales: The 

parameter of nonlinearity ,10~,10 2−ε=ε< kA  must be chosen so 

small that only one type of resonance, i.e., three-wave resonances and if 
not present four-wave resonances must be taken into consideration. For 
small ,ε  3WR and 4WR occur at different dynamical time scales εt  and 

,2εt  respectively. 

Based on the definitions given above, and both relying on separation 
of scales, there are two main subjects of study in WTT: Resonance 
clusters formed by resonant triads or quartets of solutions of (2), (3) 
connected via common modes in discrete WTT and a stationary solution 
of (4) in kinetic WTT. Kinetic time scales at which stationary spectra are 

forming are 2εt  (3WKE) and 4εt  (4WKE). 

Laboratory experiments, [13], and numerical simulations, [14] 
demonstrate that time scale separation breaks when ε  is tending to 

;10 1−  this means that the predictions of both discrete and kinetic WTT 
are not applicable anymore. 

Case. In [15], surface water waves with a wavelength of 25cm were 
studied in a water flume with dimensions 6 × 12 × 1.5 meters and 
compared against the predictions of kinetic WTT. The main finding was, 
that in accordance with kinetic WTT for a wide range of excitation 

amplitudes the energy spectrum has a power-law scaling, ,νk  however 
the exponent ν  was found to be non-universal, ranging from − 6.5 to about    
− 3.5 for different levels of wave excitations. Duration of an experiment: 
the longest experiments took about 20 minutes (S. Lukaschuk personal 
communication). 
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Analysis. Surface water waves have a dispersion relation ,2 kg=ω  
so the period of linear water waves with a wave length of m25.0=λ  is 
computed as 

.sec4.02sec7.15m12.252 11 ≈ωπ=⇒≈=ω⇒≈λπ= −− tgkk  

(5) 

Surface water waves are a 4-wave system, and for a small parameter in 
the magnitude of 01.0=ε  the corresponding time scales can easily be 

computed. The dynamical time scale is of the order of 70~2εt  

minutes and the kinetic time scale is of the order of 463~4εt  days. 

This means that kinetic WTT can not be applied, or put it the other way, 
you cannot draw conclusions on this theory based on the findings of the 
experiment. 

As an alternative, a theoretical approach which can be used for 
describing energy spectra in the experiments described above is the 
increment chain equation method recently introduced in [16], for NLS-
type equations (here NLS means nonlinear Schrödinger equation). This 
method allows to compute dynamical energy spectrum (D-spectrum) in 
wave systems with small and moderate nonlinearity, 4.01.0 ÷=ε  (for 
gravity water waves), under the effect of narrow initial excitation. 

The main mechanism underlying the formation of the dynamical 
energy cascade is modulation instability; the corresponding time scale is 

.2εt  Properties of the dynamical cascade and the computation of the 
energy spectra for gravity water waves are described in [17], while the 
general description of the time scales for kinetic and dynamical cascades 
in different wave systems is given in [18]. 

In particular, the energy spectra in wave systems with a dispersion 

relation of the form ( ) αω k~k  have exponential form ( )kk βexp~E  with 
a function β  depending on the initial conditions (amplitude of excitation 
and frequency of excitation) and also on the form of the dispersion 
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function. As ( ) ( ) ,!exp 0 n

n

n
kk β=β ∑∞

=
 by special choice of initial conditions 

the shape of the energy spectrum can be sometimes approximated by a 
few or even one term having of the power-law form. For instance, for 

surface gravity water waves the notable Phillips spectrum ( ) 5~ −ωωE  

has been obtained as a particular case of the D-spectrum for this wave 
system [16]. 

All these theoretical results are obtained for different modifications 
in the nonlinear term in the focusing NLS equation, and can be directly 
used, e.g., in optics and for description various water wave systems, such 
as gravity surface waves, capillary waves, and gravity-capillary waves. 
Notice that in the latter case, the shape of the D-spectrum is more 
complicated and contains a transcendental function [19]. 

The focusing modified Korteweg-de Vries equation and its higher 
order generalizations also demonstrate formation of the D-cascades, 
which were studied numerically [20-22]. The generalized KdV-type 
equations are used in the shallow water model, for the description of the 
internal waves in water and acoustic waves in plasma etc. 

3. 3- or 4-Wave Resonances? 

In some cases, there are simple rules to determine whether it is 
possible at all that a particular set of resonance conditions can be 
satisfied in a given physical system. For instance, it has been proven that 

in a 2D system with a dispersion function of the form αω k~  there are 
solutions to the three-wave resonance conditions (2) if and only if ,1>α  

[23]. A dispersion function of this special form is said to be of decay type. 
It was concluded, and is still widely assumed, that in any                       
two-dimensional system with a dispersion function of decay type one has 
a guarantee that this is a three wave system, i.e., actually has 3 wave 
resonances. 
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Case. As capillary waves have a dispersion function 23~ kω  which 
is of decay type, a 3-wave kinetic equation of the form (4) has been 
written in [1] and the corresponding form of the energy spectrum was 
computed. Some 30 years later numerical simulations were conducted to 
establish this energy spectrum empirically [24]. Instead of a continuous 
spectrum, it was found that the energy stayed in whatever modes were 
excited, although the duration of the simulations was sufficiently long. 
This phenomenon was called “frozen wave turbulence”. 

Analysis. The resonance conditions (2) are formulated for the 
coordinates of wave vectors, say ,2,2 yyyxxx LmLm π=π= kk  etc., 

where yx LL ,  are the sizes of the interaction domain in the x- and           

y-directions correspondingly, and xm  and ym  are indexes of the Fourier 

harmonics, i.e., integers. After obvious normalization, without loss of 
generality, we can regard only integer wave numbers. As it was proven in 
[3], in the special case of capillary water waves there are no such integer 
solutions to the resonance conditions (2). 

In this case, the kinetic WTT gives no definite prediction on what 
would happen. Two different scenarios are possible: 

(1) Detuned 3-wave resonances, that is, resonances satisfying (2) only 
approximately: 

( ) ( ) ( ) ,, 321321 kkkkkk =+ω∆=ω−ω+ω   (6) 

with ( ) 0>ω∆  being called resonance detuning. 

(2) Exact 4-wave resonances 

( ) ( ) ( ) ( ) ., 43214321 kkkkkkkk +=+ω+ω=ω+ω  

The numerical results presented in [24] reveal the emergence of rare 
detuned 3-wave interactions while 4-wave interactions were not taken 
into account in this model. The properties of the detuned interactions of 
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capillary waves were studied in [25], it was shown that the minimal 
angle between two approximately interacting capillary waves is 78°, i.e., 
they are almost perpendicular. 

This fact contradicts another assumption of the kinetic WTT that all 
wave vectors should be almost collinear; this assumption provides 
convergence of the integral in the right hand side of the kinetic equation 
(4). Accordingly, capillary water waves must be treated as a four wave 
system (7) when applying the kinetic WTT. 

This conclusion is supported by the results of the experimental 
studies conducted by a few different groups of researchers where the 
evidence of strong four-wave coupling was found in experimental data 
with capillary water waves [13, 26, 28]. 

Just to complete the picture: even if there are three wave resonances, 
in a typical 3-wave system 40 to 60% of all modes do not take part in the 
exact resonances. This means that at the dynamical time scale ,εt  they 

just keep their energy and appear to be “frozen”. We illustrate this with 
Figure 1 below reproduced from [5] for reader’s convenience. In this 
figure, the results of numerical simulations with the barotropic vorticity 
equation on a rotating sphere are presented. 
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Figure 1. Characteristic time evolution of resonant modes (left panel) 
and non-resonant modes (right panel). Total initial energy is the same in 
both panels. Vertical and horizontal axes denote energy and time 
correspondingly, in non-dimensioned units. 1- Total energy of all modes 
in the spectral domain studied; 2- total energy in three modes; and           
3, 4, 5- energy of each of three initially excited modes. 
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Applying this to our case, we find that the numerical results, 
analyzing three wave interaction and not taking into account four wave 
interaction, perfectly agreed with what was to be expected from discrete 
WTT, there is no need to introduce a new type of wave turbulence. 

4. Detuned Resonances 

The discrete WTT describes the structure and dynamics of the exact 
integer solutions to the resonant conditions (2) in terms of resonance 
clusters. To demonstrate how the clusters are constructed, regard 
spherical planetary waves with dispersion function ( ),1~ +ω nnm  

where m and mn −  are longitudinal and latitudinal wave numbers 
correspondingly. Resonance conditions for these waves have first been 
found in [29] and solved in [30, 33]; some explicit solutions can be found, 
e.g., in [31]. 

In particular, it is shown that the resonant triad with three            
two-dimensional wave vectors ([4, 12], [5, 14], [9, 13]) is isolated while the 
two resonant triads ([2, 6], [3, 8], [5, 7]) and ([2, 6], [4, 14], [6, 9]), have 
one joint mode [2, 6]. Accordingly, they form a resonance cluster 
consisting of 5 resonant modes. This is illustrated schematically in 
Figure 2, where each two-dimensional Fourier mode with wave vector 
( )nm,  is presented by a node on the integer lattice with axes M and N. 

Two triangles drawn in bold red and bold grey lines with joint vertex 
( )11, nm  represent a cluster of two connected resonant triads. 
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Figure 2. Graphical illustration of the notions of resonance cluster and 
resonance detuning. 

The dynamics of this two-triad cluster are described by two connected 
dynamical systems (3). It follows from the form of (3) that the dynamical 
system for a cluster depends on whether the connecting mode is the    
high-frequency mode in one or both or none of the two triads a and b. 
Each case is described by different dynamical system, namely: 
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Indexes a and b correspond to different triads, indexes of modes “1” and 
“2” are interchangeable and index “3” corresponds to the high-frequency 
mode, e.g., aB3  is the high-frequency mode in triad a. 

This simple concept can be used for describing resonance clusters 
consisting of dozens or even hundreds of triads, e.g., [32], and can also be 
generalized for description of clusters in a 4-wave systems [8]. 

However, this constructive approach can not be used without 
modification for describing clustering of detuned resonances (6) as it has 
been done in many recent publications in the field of discrete WTT. The 
main reason for this is that condition (6) does not define a unique object. 
In fact, this definition is quite open, admitting many types of solutions 
with completely different dynamics. 

We mention two of them, which have some prominence in literature 
and may be seen in analogy to resonant and non-resonant tori in KAM 
theory, naming them: 

● Quasi-resonances: Solutions for (6) having wave vectors with 
integer coordinates, and two of three modes belonging to a resonant triad. 

From the integer nature of the wave vectors follows that detuning 
ω∆  can not be arbitrarily small [34]. The general dynamics of clusters 

and time scales has not been studied yet. 

● Non-resonant interactions: Solutions having wave vectors with real 
coordinates, which means that for any two arbitrarily chosen wave 
vectors there is a third one that (6) is fulfilled.  

Detuning in this case may be arbitrarily small. The general dynamics 
of non-resonant triads are well understood. It has been shown that their 
contribution to energy exchange is negligible at time scale ,εt  e.g.,    

[35, 36]. 
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The difference between these two types of detuned resonances is 
illustrated schematically in the Figure 2. Three wave vectors ( ),, 11 nm  

( ) ( )3322 ,and,, nmnm  satisfying exact conditions of resonance (2) are 

connected by bold red lines. Quasi-resonant triads ( ) ( ),,1,, 2211 nmnm −  

( ),, 33 nm  and ( ) ( ) ( )332211 ,,,1,, nmnmnm +  are shown by green 

dashed-dotted and blue dotted lines correspondingly. Obviously, the set 
of all quasi-resonances for a given resonant triad is countable (finite in 
the fixed spectral domain) and is defined uniquely. 

On the other hand, detuning for non-resonant interactions can be 
regarded, e.g., as a circle with a radius R around one node of the lattice 
( )NM ,  shown as a yellow circle around the node ( )., 22 nm  Obviously, 

any point on this circle gives the same resonance detuning .ω∆  This 
means that an infinite number of waves, differing in the length of wave 
vector and also in the phases will produce the same ,ω∆  i.e., in this case 
no unique representation in space-k  exists for the set of non-resonances. 

Different as they are, these two types of approximate resonances 
have some properties in common: 

(1) If the dispersion function depends on a constant, e.g., periodic 

Rossby waves on a plane-β  with ( ) ( ) ( )nmnmm ,,22 =+β=ω kk  [36], 

dynamics will be determined by the interplay of three parameters 
,, ω∆ε−  and .β  

(2) Dynamical systems will have much more complicated form 

including multiplicative coefficients of the form tie ω∆−  with “fast” time t, 
see [33]. 

This means, that any conclusion about cluster dynamics, form of 
dynamical system, etc. made above is not valid any more. There is no 
general theory for describing clusters of detuned triads, and each specific 
case should be treated separately. In other words, kinematical and 
dynamical properties can be studied separately for resonance clusters but 
not for clusters of detuned triads. 
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Case. In [38], an attempt was undertaken to estimate the role of 
quasi-resonances in the overall energy exchange of Rossby waves. The 
authors constructed numerous detuned triads (it cannot be concluded 
from the paper how they are defined), and concluded that their 
contribution must be considerable; the parameter β  did not appear in the 
result. 

Analysis. Dealing with exact resonances, you may cancel out ,β  but 

not so, as we know from above, if you are dealing with quasi-resonances. 
So their result cannot be correct as it does not depend on .β  However, 

this may be repaired writing βω∆  in place of ω∆  in the result. 

Much more of an issue is dynamics: for exact resonances, the dynamic 
system of any resonant triad may be solved and its energy transfer 
determined. If we have an approximate resonance as defined above, the 
dynamical systems are much more complicated and no general solution is 
known. In some special cases we may say more: For big βω∆β,  can be 

made small enough and the contribution of non-resonant interactions for 
plane periodical Rossby waves is negligible [36]. Moreover, as it was 
shown by Newell in 1960s, the time-scale at which they should appear is 

,ε⋅ tC  with a constant ,1>C  i.e., longer than dynamical time scale 

.εt  

For quasi-resonances ω∆  cannot be arbitrarily small, so there will be 
no quasi-resonances in this case. For small ,β  without studying 

dynamical systems we simply do not know what will happen. This means 
that any conclusions on the role of detuned resonances, made without 
taking into account β  and explicit study of dynamical systems are 

meaningless. 

5. Final Remarks 

● The discrete WTT was developed for the wave systems with very 

small nonlinearity, 210~ −ε  and localized initial state. Its predictions 
(formation of resonance clusters with known structure and dynamics) are 
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given for dynamical time scales and can be verified experimentally, see, 
e.g., classical laboratory studies of capillary, gravity-capillary and gravity 
surface water waves by the late Joe Hammack and his collaborators [39-
41]. 

● Later experiments reported, e.g., in [13, 15, 26-28, 43], have been 

performed with bigger nonlinearity, 110~ −ε  and localized initial state. 
Various scenarios of the time evolution of the system were observed: 

spectrun-k  consists of only discrete modes, i.e., no continuous energy 

spectrum is formed; spectrun-k has discrete and continuous part; the 

shape of the energy spectrum is a power law, with exponent depending on 
the parameters of excitation; the energy spectrum has exponential shape, 
etc. 

● Experimental studies of wave systems with very small nonlinearity, 
210~ −ε  and distributed initial state suitable for verifying the kinetic 

WTT are not known to us. It looks like this type of systems appears 
everywhere in nature and the kinetic WTT can be used in oceanology, 
magnetohydrodynamics, physics of atmosphere and many other branches 
of physics. 

“But does the hand of wave turbulence really guide the behaviour of 
ocean waves, capillary waves and all the examples above for which one 
might expect the theory to apply? Although there had been notable 
successes, the theory also has its limitations. One might compare its 
current standing, particularly with respect to experiments, to the 
situation regarding pattern formation in the late 1960s. By that time, 
there had been many theoretical advances, but the experimental 
confirmation of the predictions fell very much in the ‘looks like’ category. 
It took the pioneering experimental works of Ahlers, Croquette, Fauve, 
Gollub, Libchaber, and Swinney in the mid- to late 1970s (which 
overcame some extraordinary challenges of managing long-time control of 
external parameters) to put some of the advances on a firm footing. For 



ELENA TOBISCH 102

wave turbulence, we are only at the beginning of the experimental stage” 
(p. 78, [43]). These are the last words in the excellent recent review on 
the kinetic WTT written in 2011 by Newell and Rump. 

● It is difficult to make any predictions about the future technical 
progress in the development of experimental facilities. But if at least one 
of the difficulties mentioned above - establishing a suitable distributed 
initial state in an experiment - would be overcome, it would become 
possible to test a new constructive mathematical theory that is being 
developed for describing energy spectra at the dynamical time scales     
[44, 45], which are much shorter than the kinetic time scales of the WTT. 
Quite obviously, this method has great potential for future use in 
applications. 

The main idea of this method is not to reduce the original weakly 
nonlinear PDE to the wave kinetic equation as is done in WTT but to 
reduce it to the so-called effective PDE which contains only resonant 
terms [46]. The effective PDE can be solved analytically or numerically. 
Preliminary results of numerical simulations with a 1-dimensional 
nonlinear Schrödinger equation with random forcing clearly demonstrate 
the formation of an energy spectrum obeying a power law scaling 
predicted by the effective PDE for this case [47]. 

A similar approach has been used in [48], where an incompressible 
two-dimensional flow on a plane-β  with periodic boundary conditions is 

considered, and a similar effective PDE is written out. 
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