Research and Communications in Mathematics and Mathematical Sciences Vol. 5, Issue 1, 2015, Pages 61-67 ISSN 2319-6939 Published Online on May 11, 2015 © 2015 Jyoti Academic Press http://jyotiacademicpress.net

ORBITS OF FINITE SETS UNDER SYMMETRIC GROUPS

FENYAN LIU and JUNLI LIU

College of Mathematics and Information Science Langfang Teachers University Langfang 065000 P. R. China e-mail: lfsylfy@163.com

Abstract

Let *n* be a positive integer and $[n] := \{1, 2, ..., n\}$. Let S_n be the symmetric group on [n]. This article describes the orbits of $[n]^t$ under S_n , computes the number of the orbits and the length of each orbit, where $[n]^t := \underbrace{[n] \times [n] \times \cdots \times [n]}_t$.

1. Introduction

Let G be a group and X be a set, if there is a function $G \times X \to X$ (usually denoted by $(g, x) \to gx$) such that for all $x \in X$ and $g_1, g_2 \in G$:

$$ex = x, (g_1g_2)x = g_1(g_2x),$$

then we say that the group G acts on the set X, where e is the identity element of the group G.

Keywords and phrases: symmetric group, orbit, length of orbit.

Received April 24, 2015

²⁰¹⁰ Mathematics Subject Classification: 20G20, 05E15.

Communicated by Bao-Xuan Zhu.

Let *G* be a group that acts on a set *X*, the relation on *X* is defined by

$$x \sim y \Leftrightarrow gx = y$$
 for some $g \in G$.

It is well-known that the relation is an equivalence relation. The equivalence classes of the above equivalence relation are called the orbits of X under G. For $x \in X$, the orbit of x is the set

$$O_x = \{gx | g \in G\}.$$

For $x \in X$, the subset

$$H_x = \{g \in G | gx = x\},\$$

is a subgroup of G. H_x is called the isotropy group of x.

An action of the group G on the set X is said to be *transitive*, if there is $g \in G$ such that y = gx, for all $x, y \in X$.

Let n be a positive integer and $[n] := \{1, 2, ..., n\}$. Let S_n be the symmetric group on [n]. There is an action of the symmetric group S_n on [n] defined as follows

$$[n] \times S_n \quad \to \quad [n]$$

 $(i, \sigma) \quad \mapsto \quad \sigma(i).$

It is well-known that S_n is transitive on [n].

Let t be a positive integer and $[n]^t := \underbrace{[n] \times [n] \times \cdots \times [n]}_{t}$. Then we can

get the following natural action of S_n on $[n]^t$,

$$[n]^t \times S_n \longrightarrow [n]^t$$
$$((i_1, i_2, \dots, i_t), \sigma) \mapsto (\sigma(i_1), \sigma(i_2), \dots, \sigma(i_t)).$$

If $t \ge 2$, then S_n is not transitive on $[n]^t$ in general. This article describes the orbits of $[n]^t$ under S_n , computes the number of the orbits and the length of each orbit.

Guo et al. [1-7] studied the orbits of subspaces under classical groups, which are subgroups of symmetric groups.

2. Main Results

In this section, we begin with a useful lemma.

Lemma 2.1 ([8]). Let S be a multiset with objects of k different types with finite repetition numbers $n_1, n_2, ..., n_k$, respectively. Let the size of S be $A = n_1 + n_2 + \cdots + n_k$. Then the number of permutations of S equals

$$\frac{A!}{n_1! \, n_2! \cdots ! \, n_k!} \, .$$

Let $(i_1, i_2, ..., i_t) \in [n]^t$. If there are exactly *s* different elements in $i_1, i_2, ..., i_t$, then $(i_1, i_2, ..., i_t)$ is called a *t*-repetitive permutation of size *s*. The set of all *t*-repetitive permutations of size *s* is denoted by $[n]_s^t$ with $1 \le s \le t$. For $(i_1, i_2, ..., i_t) \in [n]_s^t$, let $i_{k_1}, i_{k_2}, ..., i_{k_s}$ be the *s* different elements in $i_1, i_2, ..., i_t$. Assume that i_{k_r} appears m_r times in $(i_1, i_2, ..., i_t)$, where $1 \le r \le s$. If there are exactly *q* different elements in $m_1, m_2, ..., m_s$, and they appear $l_1, l_2, ..., l_q$ times in $(m_1, m_2, ..., m_s)$, respectively, then we define $\Theta(m_1, m_2, ..., m_s) := l_1! l_2! ... l_q!$. By Lemma 2.1, we can obtain the following result.

Lemma 2.2. Let *s* and *t* be positive integers with $1 \le s \le t$. Then

$$|[n]_{s}^{t}| = \sum_{\substack{m_{1}+m_{2}+\dots+m_{s}=t\\m_{r} \ge 1(1 \le r \le s)}} \frac{t!}{m_{1}! m_{2}! \cdots ! m_{s}!}.$$

Theorem 2.3. Let s and t be positive integers with $1 \le s \le t$. Then the number of the orbits of $[n]_s^t$ under S_n is

$$\sum_{\substack{m_1+m_2+\dots+m_s=t\\m_1 \ge m_2 \ge \dots \ge m_s \ge 1}} \frac{t!}{m_1! \, m_2! \cdots m_s! \, \Theta(m_1, \, m_2, \, \dots, \, m_s)},$$

and the length of each orbit is $n(n-1)\cdots(n-s)$.

Proof. Let $i_{k_1}, i_{k_2}, \ldots, i_{k_s}$ be s different elements in i_1, i_2, \ldots, i_t , and i_{k_r} appears m_r times in (i_1, i_2, \ldots, i_t) with $1 \le r \le s$. For any $(i_1, i_2, \ldots, i_t), (j_1, j_2, \ldots, j_t) \in [n]_s^t$, they are in the same orbit under S_n if and only if there exists $\sigma \in S_n$ such that

$$(\sigma(i_1), \sigma(i_2), \ldots, \sigma(i_t)) = (j_1, j_2, \ldots, j_t).$$

By the transitivity of S_n on [n] and the definition of $\Theta(m_1, m_2, ..., m_s)$, the number of the orbits of $[n]_s^t$ under S_n is

$$\sum_{\substack{m_1+m_2+\cdots+m_s=t\\m_1\,\geq\,m_2\,\geq\,\cdots\,\geq\,m_s\,\geq\,1}}\frac{t!}{m_1!\,m_2!\cdots m_s!\,\Theta(m_1,\,m_2,\,\ldots,\,m_s)}.$$

It is easy to see that the length of each orbit is $n(n-1)\cdots(n-s)$.

Corollary 2.4. Let $n \ge t$. Then the number of the orbits of $[n]^t$ under S_n is

$$\sum_{s=1}^{t} \sum_{\substack{m_1+m_2+\dots+m_s=t\\m_1 \ge m_2 \ge \dots \ge m_s \ge 1}} \frac{t!}{m_1! \, m_2! \cdots m_s! \, \Theta(m_1, \, m_2, \, \dots, \, m_s)}.$$

Corollary 2.5. Let n < t. Then the number of the orbits of $[n]^t$ under S_n is

$$\sum_{s=1}^{n} \sum_{\substack{m_1+m_2+\dots+m_s=t\\m_1 \ge m_2 \ge \dots \ge m_s \ge 1}} \frac{t!}{m_1! \, m_2! \cdots m_s! \, \Theta(m_1, \, m_2, \, \dots, \, m_s)} \, .$$

3. Examples

In this section, we give the orbits of $[n]^t$ under S_n for t = 2, 3, 4 in detail.

Example 3.1. If $n \ge 2$, the orbits of $[n]^2$ under S_n are

$$R_0 = \{ (\sigma(1), \sigma(1)) | \text{ for all } \sigma \in S_n \}, R_1 = \{ (\sigma(1), \sigma(2)) | \text{ for all } \sigma \in S_n \},$$

and the lengths of the orbits are

$$|R_0| = n, |R_1| = n^2 - n.$$

Example 3.2. If $n \ge 3$, the orbits of $[n]^3$ under S_n are

$$\begin{split} R_0 &= \{ (\sigma(1), \ \sigma(1), \ \sigma(1)) | \ \text{for all } \sigma \in S_n \}, \\ R_1 &= \{ (\sigma(1), \ \sigma(1), \ \sigma(2)) | \ \text{for all } \sigma \in S_n \}, \\ R_2 &= \{ (\sigma(1), \ \sigma(2), \ \sigma(1)) | \ \text{for all } \sigma \in S_n \}, \\ R_3 &= \{ (\sigma(2), \ \sigma(1), \ \sigma(1)) | \ \text{for all } \sigma \in S_n \}, \\ R_4 &= \{ (\sigma(1), \ \sigma(2), \ \sigma(3)) | \ \text{for all } \sigma \in S_n \}, \end{split}$$

and the lengths of the orbits are

$$|R_0| = n, |R_1| = |R_2| = |R_3| = n(n-1), |R_4| = n(n-1)(n-2).$$

If n = 2, the orbits of $[2]^3$ under S_2 are

$$\begin{split} R_0 &= \{ (\sigma(1), \ \sigma(1), \ \sigma(1)) | \ \text{for all } \sigma \in S_2 \}, \\ R_1 &= \{ (\sigma(1), \ \sigma(1), \ \sigma(2)) | \ \text{for all } \sigma \in S_2 \}, \\ R_2 &= \{ (\sigma(1), \ \sigma(2), \ \sigma(1)) | \ \text{for all } \sigma \in S_n \}, \\ R_3 &= \{ (\sigma(2), \ \sigma(1), \ \sigma(1)) | \ \text{for all } \sigma \in S_2 \}. \end{split}$$

Example 3.3. If $n \ge 4$, the orbits of $[n]^4$ under S_n are

$$\begin{split} R_0 &= \{ (\sigma(1), \ \sigma(1), \ \sigma(1), \ \sigma(1)) | \ \text{for all } \sigma \in S_n \}, \\ R_1 &= \{ (\sigma(1), \ \sigma(1), \ \sigma(2), \ \sigma(2)) | \ \text{for all } \sigma \in S_n \}, \\ R_2 &= \{ (\sigma(1), \ \sigma(2), \ \sigma(1), \ \sigma(2)) | \ \text{for all } \sigma \in S_n \}, \\ R_3 &= \{ (\sigma(1), \ \sigma(2), \ \sigma(2), \ \sigma(1)) | \ \text{for all } \sigma \in S_n \}, \end{split}$$

FENYAN LIU and JUNLI LIU

$$\begin{split} R_4 &= \{(\sigma(1), \, \sigma(1), \, \sigma(2), \, \sigma(3)) | \text{ for all } \sigma \in S_n \}, \\ R_5 &= \{(\sigma(1), \, \sigma(2), \, \sigma(1), \, \sigma(3)) | \text{ for all } \sigma \in S_n \}, \\ R_6 &= \{(\sigma(1), \, \sigma(2), \, \sigma(3), \, \sigma(1)) | \text{ for all } \sigma \in S_n \}, \\ R_7 &= \{(\sigma(2), \, \sigma(1), \, \sigma(3), \, \sigma(1)) | \text{ for all } \sigma \in S_n \}, \\ R_8 &= \{(\sigma(2), \, \sigma(3), \, \sigma(1), \, \sigma(1)) | \text{ for all } \sigma \in S_n \}, \\ R_9 &= \{(\sigma(2), \, \sigma(1), \, \sigma(1), \, \sigma(3)) | \text{ for all } \sigma \in S_n \}, \\ R_{10} &= \{(\sigma(1), \, \sigma(1), \, \sigma(1), \, \sigma(2)) | \text{ for all } \sigma \in S_n \}, \\ R_{11} &= \{(\sigma(1), \, \sigma(1), \, \sigma(2), \, \sigma(1)) | \text{ for all } \sigma \in S_n \}, \\ R_{12} &= \{(\sigma(1), \, \sigma(2), \, \sigma(1), \, \sigma(1)) | \text{ for all } \sigma \in S_n \}, \\ R_{13} &= \{(\sigma(2), \, \sigma(1), \, \sigma(1), \, \sigma(1)) | \text{ for all } \sigma \in S_n \}, \\ R_{14} &= \{(\sigma(1), \, \sigma(2), \, \sigma(3), \, \sigma(4)) | \text{ for all } \sigma \in S_n \}, \end{split}$$

and the lengths of the orbits are

$$|R_0| = n, |R_1| = |R_2| = |R_3| = |R_{10}| = |R_{11}| = |R_{12}| = |R_{13}| = n(n-1),$$
$$|R_4| = |R_5| = |R_6| = |R_7| = |R_8| = |R_9| = n(n-1)(n-2),$$
$$|R_{14}| = n(n-1)(n-2)(n-3).$$

If n = 3, the orbits of $[3]^4$ under S_3 are $R_0, R_1, R_2, \ldots, R_{13}$.

If n = 2, the orbits of $[2]^4$ under S_2 are R_0 , R_1 , R_2 , R_3 , R_{10} , R_{11} , R_{12} , R_{13} .

Acknowledgement

This research is supported by the Foundation of Langfang Teachers University (LSZQ201003) and Natural Science Foundation of Hebei Education Department (YQ2014018).

References

- [1] K. Wang, J. Guo and F. Li, Suborbits of subspaces of type (m, k) under finite singular general linear groups, Linear Algebra and its Applications 431 (2009), 1360-1366.
- [2] J. Guo and K. Wang, Suborbits of *m*-dimensional totally isotropic subspaces under finite singular classical groups, Linear Algebra and its Applications 430 (2009), 2063-2069.
- J. Guo, Suborbits of (m, k)-isotropic subspaces under finite singular classical groups, Finite Fields and their Applications 16 (2010), 126-136.
- [4] K. Wang, F. Li, J. Gu and J. Ma, Association schemes coming from minimal flats in classical polar spaces, Linear Algebra and its Applications 435 (2011), 163-174.
- [5] F. Li, K. Wang, J. Guo and J. Ma, Suborbits of a point stabilizer in the orthogonal group on the last subconstituent of orthogonal dual polar graphs, Linear Algebra and its Applications 436 (2012), 1297-1311.
- [6] J. Guo, K. Wang and F. Li, Association schemes based on maximal isotropic subspaces in singular pseudo-symplectic spaces, Linear Algebra and its Applications 431 (2009), 1898-1909.
- [7] J. Guo, K. Wang and F. Li, Association schemes based on maximal isotropic subspaces in singular classical spaces, Linear Algebra and its Applications 430 (2009), 747-755.
- [8] W. H. Thomas, Algebra, Springer-Verlag, New York, (1974), 46-51; 88-91.
- [9] A. B. Richard, Introductory Combinatorics, China Machine Press, Beijing, (2009), 32-43.