Research and Communications in Mathematics and Mathematical Sciences Vol. 5, Issue 1, 2015, Pages 61-67 ISSN 2319-6939 Published Online on May 11, 2015 2015 Jyoti Academic Press http://jyotiacademicpress.net

ORBITS OF FINITE SETS UNDER SYMMETRIC GROUPS

FENYAN LIU and JUNLI LIU

College of Mathematics and Information Science Langfang Teachers University Langfang 065000 P. R. China e-mail: lfsylfy@163.com

Abstract

Let *n* be a positive integer and $[n] := \{1, 2, ..., n\}$. Let S_n be the symmetric group on [n]. This article describes the orbits of $[n]$ ^t under S_n , computes the number of the orbits and the length of each orbit, where $[n]^t := [n] \times [n] \times \cdots \times [n]$. $[n]^t := [n] \times [n] \times \cdots \times [n].$

1. Introduction

Let *G* be a group and *X* be a set, if there is a function $G \times X \to X$ (usually denoted by $(g, x) \rightarrow gx$) such that for all $x \in X$ and $g_1, g_2 \in G$:

$$
ex = x, (g_1g_2)x = g_1(g_2x),
$$

then we say that the group G acts on the set X , where e is the identity element of the group *G*.

Keywords and phrases: symmetric group, orbit, length of orbit.

Received April 24, 2015

²⁰¹⁰ Mathematics Subject Classification: 20G20, 05E15.

Communicated by Bao-Xuan Zhu.

Let *G* be a group that acts on a set *X*, the relation on *X* is defined by

$$
x \sim y \Leftrightarrow gx = y
$$
 for some $g \in G$.

It is well-known that the relation is an equivalence relation. The equivalence classes of the above equivalence relation are called the orbits of *X* under *G*. For $x \in X$, the orbit of *x* is the set

$$
O_x = \{gx|g \in G\}.
$$

For $x \in X$, the subset

$$
H_x = \{g \in G | gx = x\},\
$$

is a subgroup of *G*. H_x is called the isotropy group of *x*.

An action of the group *G* on the set *X* is said to be *transitive*, if there is $g \in G$ such that $y = gx$, for all $x, y \in X$.

Let *n* be a positive integer and $[n] := \{1, 2, ..., n\}$. Let S_n be the symmetric group on $[n]$. There is an action of the symmetric group S_n on $[n]$ defined as follows

$$
[n] \times S_n \longrightarrow [n]
$$

$$
(i, \sigma) \mapsto \sigma(i).
$$

It is well-known that S_n is transitive on $[n]$.

Let *t* be a positive integer and $[n]^t := [n] \times [n] \times \cdots \times [n]$. *t* $n^{t} := [n] \times [n] \times \cdots \times [n]$. Then we can

get the following natural action of S_n on $[n]^t$,

$$
[n]^{t} \times S_{n} \longrightarrow [n]^{t}
$$

$$
((i_{1}, i_{2}, \ldots, i_{t}), \sigma) \mapsto (\sigma(i_{1}), \sigma(i_{2}), \ldots, \sigma(i_{t})).
$$

If $t \geq 2$, then S_n is not transitive on $[n]^t$ in general. This article describes the orbits of $[n]$ ^t under S_n , computes the number of the orbits and the length of each orbit.

Guo et al. [1-7] studied the orbits of subspaces under classical groups, which are subgroups of symmetric groups.

2. Main Results

In this section, we begin with a useful lemma.

Lemma 2.1 ([8])**.** *Let S be a multiset with objects of k different types with finite repetition numbers* n_1, n_2, \ldots, n_k , respectively. Let the size of S *be* $A = n_1 + n_2 + \cdots + n_k$. Then the number of permutations of S equals

$$
\frac{A!}{n_1! n_2! \cdots! n_k!}.
$$

Let $(i_1, i_2, \ldots, i_t) \in [n]^t$. If there are exactly *s* different elements in i_1, i_2, \ldots, i_t , then (i_1, i_2, \ldots, i_t) is called a *t*-repetitive permutation of size *s*. The set of all *t*-repetitive permutations of size *s* is denoted by $[n]_s^t$ with $1 \le s \le t$. For $(i_1, i_2, ..., i_t) \in [n]_s^t$, let $i_{k_1}, i_{k_2}, ..., i_{k_s}$ be the *s* different elements in i_1, i_2, \ldots, i_t . Assume that i_{k_r} appears m_r times in (i_1, i_2, \ldots, i_t) , where $1 \leq r \leq s$. If there are exactly *q* different elements in m_1, m_2, \ldots, m_s , and they appear l_1, l_2, \ldots, l_q times in (m_1, m_2, \ldots, m_s) , respectively, then we define $\Theta(m_1, m_2, \ldots, m_s) := l_1! l_2! \ldots l_q!$. By Lemma 2.1, we can obtain the following result.

Lemma 2.2. Let s and t be positive integers with $1 \leq s \leq t$. Then

$$
\big| \big[n\big]_s^t \big| = \sum_{\substack{m_1+m_2+\cdots+m_s=t\\m_r \;\geq\; 1 (1\;\leq\; r \;\leq\; s)}} \frac{t!}{m_1!\,m_2!\cdots\,!m_s!}\,.
$$

Theorem 2.3. Let s and t be positive integers with $1 \leq s \leq t$. Then the $number~of~the~orbits~of~[n]_{s}^{t}~under~S_{n}~is$

$$
\sum_{\substack{m_1+m_2+\cdots+m_s=t\\m_1\geq m_2\geq \cdots \geq m_s\geq 1}}\frac{t!}{m_1!m_2!\cdots m_s!\,\Theta(m_1, m_2, \ldots, m_s)},
$$

and the length of each orbit is $n(n-1)\cdots(n-s)$ *.*

Proof. Let $i_{k_1}, i_{k_2}, \ldots, i_{k_s}$ be *s* different elements in i_1, i_2, \ldots, i_t , and i_{k_r} appears m_r times in (i_1, i_2, \ldots, i_t) with $1 \leq r \leq s$. For any (i_1, i_2, \ldots, i_t) , $(j_1, j_2, \ldots, j_t) \in [n]_s^t$, they are in the same orbit under S_n if and only if there exists $\sigma \in S_n$ such that

$$
(\sigma(i_1), \sigma(i_2), \ldots, \sigma(i_t)) = (j_1, j_2, \ldots, j_t).
$$

By the transitivity of S_n on $[n]$ and the definition of $\Theta(m_1, m_2, ..., m_s)$, the number of the orbits of $[n]_s^t$ under S_n is

$$
\sum_{\substack{m_1+m_2+\cdots+m_s=t\\m_1\geq m_2\geq \cdots \geq m_s\geq 1}} \frac{t!}{m_1!m_2!\cdots m_s! \Theta(m_1, m_2, \ldots, m_s)}.
$$

It is easy to see that the length of each orbit is $n(n-1)\cdots(n-s)$.

Corollary 2.4. Let $n \geq t$. Then the number of the orbits of $[n]^t$ under *Sn is*

$$
\sum_{s=1}^{t} \sum_{\substack{m_1+m_2+\cdots+m_s=t\\m_1\geq m_2\geq \cdots \geq m_s\geq 1}} \frac{t!}{m_1! m_2! \cdots m_s! \Theta(m_1, m_2, \ldots, m_s)}.
$$

Corollary 2.5. Let $n < t$. Then the number of the orbits of $[n]^t$ under *Sn is*

$$
\sum_{s=1}^{n} \sum_{\substack{m_1+m_2+\cdots+m_s=t\\m_1\geq m_2\geq \cdots \geq m_s\geq 1}} \frac{t!}{m_1! m_2! \cdots m_s! \Theta(m_1, m_2, \ldots, m_s)}.
$$

3. Examples

In this section, we give the orbits of $[n]$ ^t under S_n for $t = 2, 3, 4$ in detail.

Example 3.1. If $n \geq 2$, the orbits of $[n]^2$ under S_n are

$$
R_0 = \{ (\sigma(1), \sigma(1)) | \text{ for all } \sigma \in S_n \}, R_1 = \{ (\sigma(1), \sigma(2)) | \text{ for all } \sigma \in S_n \},
$$

and the lengths of the orbits are

$$
|R_0| = n, |R_1| = n^2 - n.
$$

Example 3.2. If $n \geq 3$, the orbits of $[n]^3$ under S_n are

$$
R_0 = \{ (\sigma(1), \sigma(1), \sigma(1)) | \text{ for all } \sigma \in S_n \},
$$

\n
$$
R_1 = \{ (\sigma(1), \sigma(1), \sigma(2)) | \text{ for all } \sigma \in S_n \},
$$

\n
$$
R_2 = \{ (\sigma(1), \sigma(2), \sigma(1)) | \text{ for all } \sigma \in S_n \},
$$

\n
$$
R_3 = \{ (\sigma(2), \sigma(1), \sigma(1)) | \text{ for all } \sigma \in S_n \},
$$

\n
$$
R_4 = \{ (\sigma(1), \sigma(2), \sigma(3)) | \text{ for all } \sigma \in S_n \},
$$

and the lengths of the orbits are

$$
|R_0| = n, |R_1| = |R_2| = |R_3| = n(n-1), |R_4| = n(n-1)(n-2).
$$

If $n = 2$, the orbits of $[2]^3$ under S_2 are

 ${R_0} = {\{\sigma(1), \sigma(1), \sigma(1)\}\$ for all $\sigma \in S_2$, $R_1 = \{ (\sigma(1), \sigma(1), \sigma(2)) | \text{ for all } \sigma \in S_2 \},\$ ${R_2} = \{(\sigma(1), \sigma(2), \sigma(1)) | \text{ for all } \sigma \in S_n\},\$ $R_3 = \{ (\sigma(2), \sigma(1), \sigma(1)) | \text{ for all } \sigma \in S_2 \}.$

Example 3.3. If $n \geq 4$, the orbits of $[n]^4$ under S_n are

 ${R_0} = \{(\sigma(1), \sigma(1), \sigma(1), \sigma(1)) | \text{ for all } \sigma \in S_n\},\$ $R_1 = \{(\sigma(1), \sigma(1), \sigma(2), \sigma(2)) | \text{ for all } \sigma \in S_n\},\$ $R_2 = \{(\sigma(1), \sigma(2), \sigma(1), \sigma(2)) | \text{ for all } \sigma \in S_n\},\$ $R_3 = \{(\sigma(1), \sigma(2), \sigma(2), \sigma(1)) | \text{ for all } \sigma \in S_n\},\$

66 FENYAN LIU and JUNLI LIU

$$
R_4 = \{ (\sigma(1), \sigma(1), \sigma(2), \sigma(3)) | \text{ for all } \sigma \in S_n \},
$$

\n
$$
R_5 = \{ (\sigma(1), \sigma(2), \sigma(1), \sigma(3)) | \text{ for all } \sigma \in S_n \},
$$

\n
$$
R_6 = \{ (\sigma(1), \sigma(2), \sigma(3), \sigma(1)) | \text{ for all } \sigma \in S_n \},
$$

\n
$$
R_7 = \{ (\sigma(2), \sigma(1), \sigma(3), \sigma(1)) | \text{ for all } \sigma \in S_n \},
$$

\n
$$
R_8 = \{ (\sigma(2), \sigma(3), \sigma(1), \sigma(1)) | \text{ for all } \sigma \in S_n \},
$$

\n
$$
R_9 = \{ (\sigma(2), \sigma(1), \sigma(1), \sigma(3)) | \text{ for all } \sigma \in S_n \},
$$

\n
$$
R_{10} = \{ (\sigma(1), \sigma(1), \sigma(1), \sigma(2)) | \text{ for all } \sigma \in S_n \},
$$

\n
$$
R_{11} = \{ (\sigma(1), \sigma(1), \sigma(2), \sigma(1)) | \text{ for all } \sigma \in S_n \},
$$

\n
$$
R_{12} = \{ (\sigma(1), \sigma(2), \sigma(1), \sigma(1)) | \text{ for all } \sigma \in S_n \},
$$

\n
$$
R_{13} = \{ (\sigma(2), \sigma(1), \sigma(1), \sigma(1)) | \text{ for all } \sigma \in S_n \},
$$

\n
$$
R_{14} = \{ (\sigma(1), \sigma(2), \sigma(3), \sigma(4)) | \text{ for all } \sigma \in S_n \},
$$

and the lengths of the orbits are

$$
|R_0| = n, |R_1| = |R_2| = |R_3| = |R_{10}| = |R_{11}| = |R_{12}| = |R_{13}| = n(n-1),
$$

$$
|R_4| = |R_5| = |R_6| = |R_7| = |R_8| = |R_9| = n(n-1)(n-2),
$$

$$
|R_{14}| = n(n-1)(n-2)(n-3).
$$

If $n = 3$, the orbits of $[3]^4$ under S_3 are $R_0, R_1, R_2, ..., R_{13}$.

If $n = 2$, the orbits of $[2]^4$ under S_2 are R_0 , R_1 , R_2 , R_3 , R_{10} , R_{11} , R_{12} , R_{13} .

Acknowledgement

This research is supported by the Foundation of Langfang Teachers University (LSZQ201003) and Natural Science Foundation of Hebei Education Department (YQ2014018).

References

- [1] K. Wang, J. Guo and F. Li, Suborbits of subspaces of type (m, k) under finite singular general linear groups, Linear Algebra and its Applications 431 (2009), 1360-1366.
- [2] J. Guo and K. Wang, Suborbits of *m*-dimensional totally isotropic subspaces under finite singular classical groups, Linear Algebra and its Applications 430 (2009), 2063-2069.
- [3] J. Guo, Suborbits of (m, k) -isotropic subspaces under finite singular classical groups, Finite Fields and their Applications 16 (2010), 126-136.
- [4] K. Wang, F. Li, J. Gu and J. Ma, Association schemes coming from minimal flats in classical polar spaces, Linear Algebra and its Applications 435 (2011), 163-174.
- [5] F. Li, K. Wang, J. Guo and J. Ma, Suborbits of a point stabilizer in the orthogonal group on the last subconstituent of orthogonal dual polar graphs, Linear Algebra and its Applications 436 (2012), 1297-1311.
- [6] J. Guo, K. Wang and F. Li, Association schemes based on maximal isotropic subspaces in singular pseudo-symplectic spaces, Linear Algebra and its Applications 431 (2009), 1898-1909.
- [7] J. Guo, K. Wang and F. Li, Association schemes based on maximal isotropic subspaces in singular classical spaces, Linear Algebra and its Applications 430 (2009), 747-755.
- [8] W. H. Thomas, Algebra, Springer-Verlag, New York, (1974), 46-51; 88-91.
- [9] A. B. Richard, Introductory Combinatorics, China Machine Press, Beijing, (2009), 32-43.

g