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Abstract 

The article deals with generalizations of the inequalities for convex functions on 
the line segment. The Jensen and the Hermite-Hadamard inequalities are 
included in the study. Some improvements of the Hermite-Hadamard inequality 
are obtained and applied to mathematical means. 

1. Introduction 

Let X  be a real linear space. A linear combination ba β+α  of points 

X∈ba,  and coefficients R∈βα,  is affine if .1=β+α  A set X⊆S  is 

affine if it contains all binomial affine combinations of its points. A 
function R→S:h  is affine if the equality 

( ) ( ) ( ),bhahbah β+α=β+α   (1) 

holds for every binomial affine combination ba β+α  of the affine set .S  
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Convex combinations and sets are introduced by restricting to affine 
combinations with nonnegative coefficients. A function R→S:h  is 
convex if the inequality 

( ) ( ) ( ),bfafbaf β+α≤β+α   (2) 

holds for every binomial convex combination ba β+α  of the convex set 

.S  

Using mathematical induction, the above concept can be extended to 
n-membered affine or convex combinations. 

In this paper, we use the real line .RX =  Besides convex and affine 
combinations, we will use barycenters of the sets of real numbers. If µ  is 

a positive measure on ,R  and if R⊆S  is a measurable set such that 

( ) ,0>µ S  then the integral mean point 

( ) ,1 µ
µ

= ∫ dxc
SS

 (3) 

is called the barycenter of the set S  respecting the measure ,µ  or just 

the set barycenter. The barycenter c belongs to the convex hull of the set 
,S  as the smallest convex set containing .S  Given the measurable set S  

of positive measure, every affine function RR →:h  satisfies the 
equality 

( ) ( ) ( ) .11 µ
µ

=






 µ
µ ∫∫ dxhdxh

SS SS
 (4) 

For the purpose of the paper, the set S  will be used as an interval or a 
union of intervals. 

2. The Jensen and the Hermite-Hadamard Inequalities 

Through the paper, we will use a bounded interval of real numbers 
with endpoints .ba <  Each point [ ]bac ,∈  can be presented by the 

unique binomial convex combination 
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,bac β+α=   (5) 

where 

., ab
ac

ab
cb

−
−=β

−
−=α  (6) 

The next two lemmas present the properties of a convex function 
[ ] R→baf ,:  concerning its supporting and secant line. 

The discrete version refers to interval points and interval endpoints 
sharing the common center. 

Lemma A. Let [ ]ba,  be a closed interval of real numbers, and let 

ii
n
i xλ∑ =1  be a convex combination of points [ ]., baxi ∈  Let ba β+α  be 

the unique endpoints convex combination such that 

.
1

baxii

n

i
β+α=λ∑

=

 (7) 

Then every convex function [ ] R→baf ,:  satisfies the double inequality 

( ) ( ) ( ) ( ).
1

bfafxfbaf ii

n

i
β+α≤λ≤β+α ∑

=

 (8) 

Proof. Taking ,1 ii
n
i xc λ= ∑ =

 we have the following two cases. 

If { },, bac ∈  then Equation (8) is reduced to ( ) ( ) ( ).cfcfcf ≤≤  

If ( ),, bac ∈  then using a supporting line ( )xhy 1=  of the convex 

curve ( )xfy =  at the graph point ( )( ),, cfcC  and the secant line 

( )xhy 2=  passing through the graph points ( )( )afaA ,  and ( )( ),, bfbB  

we get the inequality 
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( ) ( ) ( )ii

n

i
xhbahbaf 1

1
1 λ=β+α=β+α ∑

=

 

( )ii

n

i
xfλ≤ ∑

=1
 

( ) ( ) ( ) ( ),22
1

bfafbahxh ii

n

i
β+α=β+α=λ≤ ∑

=

  (9) 

containing Equation (8).   

The discrete-integral version refers to the connection of the interval 
barycenter with interval endpoints. 

Lemma B. Let [ ]ba,  be a closed interval of real numbers, and let µ  
be a positive measure on R  such that [ ]( ) .0, >µ ba  Let ba β+α  be the 
unique endpoints convex combination such that 

[ ]( ) [ ]
.,

1
,

badxba ba
β+α=µ

µ ∫  (10) 

Then every convex function [ ] R→baf ,:  satisfies the double inequality 

( ) [ ]( ) [ ]
( ) ( ) ( ).,

1
,

bfafdxfbabaf
ba

β+α≤µ
µ

≤β+α ∫  (11) 

Proof. The proof can be done utilizing Equation (9) so that the 
integral means are used instead of the n-membered convex combinations. 
  

We emphasize the basic content of Lemma A. Using the left-hand 
side of the inequality in Equation (8) with the n-membered convex 
combination instead of the binomial endpoints convex combination, we 
obtain the discrete form of Jensen’s inequality 

( ).
11

ii

n

i
ii

n

i
xfxf λ≤













λ ∑∑

==

 (12) 

Using the Riemann integral in Lemma B, the condition in (10) gives the 
midpoint 
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,2
1

2
11 badxxab

b

a
+=

− ∫  (13) 

and its use in Equation (11) implies the classic Hermite-Hadamard 
inequality 

( ) ( ) ( ) .2
1

2
bfafdxxfab

baf
b

a

+≤
−

≤




 + ∫  (14) 

Moreover, the inequality in Equation (14) follows by integrating the 
supporting-secant line inequality 

( ) ( ) ( ),21 xhxfxh ≤≤   (15) 

over the interval [ ]., ba  

We finish the section with a historic note on these two important 
inequalities. In 1905, applying the inductive principle, Jensen (see [4]) 
extended the inequality in Equation (2) to n-membered convex 
combinations. In 1906, working on transition to integrals, Jensen (see [5]) 
stated the another form. In 1883, studying convex functions, Hermite    
(see [3]) attained the inequality in Equation (14). In 1893, not knowing 
Hermite’s result, Hadamard (see [2]) got the left-hand side of Equation 
(14). For information as regards the Jensen and the Hermite-Hadamard 
inequalities, one may refer to papers [1], [6], [9], [10], [11], and [12]. 

3. Main Results 

To refine the Hermite-Hadamard inequality in Equation (14), we will 
use convex combinations of points of the closed interval [ ]., ba  In the 

main Theorem 3.1, we improve Equation (14) by using convex 
combinations of the midpoint ( ) .2ba +  The concluding Theorem 3.4 

presents the integral refinement of Equation (14). 

We take points [ ]badc ,, ∈  such that 

.22
badc +=+  (16) 
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Applying the right-hand side of the inequality in Equation (8) to the 
above assumption, and multiplying by 2, we obtain the simple inequality 

( ) ( ) ( ) ( ),bfafdfcf +≤+   (17) 

that will be used in this section. The main theorem follows. 

Theorem 3.1. Let [ ]ba,  be a closed interval of real numbers, and let 

[ ] ( )badc ,, ⊂  be a closed subinterval satisfying the common barycenter 

condition in Equation (16). 

Then every convex function [ ] R→baf ,:  satisfies the series of 

inequalities 






 ++





 ++





 +≤





 +

24
1

22
1

24
1

2
bdfdcfcafbaf  

( ) ( ) ( )

db

dxxf

cd

dxxf

ac

dxxf
b

d

d

c

c

a
−

+
−

+
−

≤
∫∫∫

4
1

2
1

4
1  

( ) ( ) ( ) ( ) ( ) ( ) .28
33 bfafbfdfcfaf +

≤
+++

≤   (18) 

Proof. Applying the Hermite-Hadamard inequality to the convex 
combination of points c and d written as 

,2
1

2
1 dct +=  (19) 

we have 

( ) 




 += 2

dcftf  

( )

cd

dxxf
d

c
−

≤
∫

 

( ) ( ) .2
dfcf +≤   (20) 
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Applying the same procedure to the convex combination of midpoints 
( ) 2ca +  and ( ) 2bd +  given as 

,22
1

22
1 bdcat +++=  (21) 

we get 

( ) 




 ++





 +≤ 22

1
22

1 bdfcaftf  

( ) ( )

db

dxxf

ac

dxxf
b

d

c

a
−

+
−

≤
∫∫

2
1

2
1  

( ) ( ) ( ) ( ) .4
bfdfcfaf +++≤   (22) 

Taking the arithmetic means of the inequalities in Equations (20) 
and (22), using Equation (17) and rearranging, we obtain the inequality 
in Equation (18).   

The inequality in Equation (18) can be expressed using the point 
.cbad −+=  The observed Equation (18) can also be expressed with the 

point ,2δ+= ac  where ( ) .20 ab −<δ<  Using this choice, we have 

( ) δ+=+δ−= acabd 2,2  and ( ) .2 δ−=+ bbd  Finally, we can use 

the convex combinations 

( ) ( ) ,11, badbac β−+α−=β+α=   (23) 

provided that ( ) .2baba +<β+α  Regardless of all these cases, the 

midpoint ( ) 2ba +  is not covered on the right side of Equation (18). 

The inequality in Equation (18) does not include the case == dc  
( ) .2ba +  A method similar to that in Theorem 3.1 can be applied to 

intervals ( )[ ]2, baa +  and ( )[ ]bba ,2+  and so derive the inequality 





 





 ++





 +≤





 +

4
3

4
3

2
1

2
bafbafbaf  
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( )dxxfab
b

a∫−
≤ 1  

( ) ( ) ( ) ( ) .2222
1 bfafbfafbaf +≤



 ++





 +≤   (24) 

The above improvement of the Hermite-Hadamard inequality was noted 
in [8]. 

A convex function [ ] R→baf ,:  satisfies the inequality 

( ) ( ) ( ) ( ),cfbfafcbaf −+≤−+   (25) 

for every point [ ]bac ,∈  by Equation (17). The above simple inequality 

can be generalized by using the convex combination ii
n
i cγ∑ =1  instead of 

the point c. Applying Jensen's inequality to the convex combination 

( ),
11

ii

n

i
ii

n

i
cbacbat −+γ=γ−+= ∑∑

==

 (26) 

and using Equation (25), Mercer (see [7]) obtained the inequality 

( ) ( ) ( ).
11

ii

n

i
ii

n

i
cfbfafcbaf γ−+≤













γ−+ ∑∑

==

 (27) 

Corollary 3.2. Let [ ]ba,  be a closed interval of real numbers, let 

( )bac ,∈  be an open interval point, and let [ ] R→baf ,:  be a convex 

function. 

If ( ) ,2bac +≤  then 

( ) ( )
( ) ( )

( ) ( ).bfafac

dxxfdxxf
cfcbaf

c

cba

c

a +≤
−

+
≤+−+

∫∫ −+  (28) 

If ( ) ,2bac +≥  then 

( ) ( )
( ) ( )

( ) ( ).bfafac

dxxfdxxf
cfcbaf

b

c

cba

a +≤
−

+
≤+−+

∫∫
−+

 (29) 
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Proof. We prove the double inequality in Equation (28). Let ( )xhy =  

be the secant line of the convex curve ( )xfy =  passing through the 

graph points ( )( )cfcC ,  and ( )( )., cbafcbaD −+−+  Using the affinity 

of the secant function h specified in Equations (1) and (4), and the 
inequality ( ) ( )xfxh ≤  for [ ] [ ],,, bcbacax −+∈ ∪  we get 

( ) ( ) ( ) ( )cbahchcbafcf −++=−++ 2
1

2
1

2
1

2
1  

( )


















−

+
=





 +=

∫∫ −+

ac

dxxdxx
hbah

b

cba

c

a
22  

( ) ( )

( )

( ) ( )

( ) .22 ac

dxxfdxxf

ac

dxxhdxxh
b

cba

c

a

b

cba

c

a
−

+
≤

−

+
=

∫∫∫∫ −+−+   (30) 

Continuing with Equation (30) by applying the Hermite-Hadamard 
inequality and the inequality in Equation (25), it follows 

( ) ( ) ( ) ( ) ( ) ( ) .24
bfafbfcbafcfaf +≤+−+++≤  (31) 

It remains only to multiply by 2.   

Corollary 3.3. Let [ ]ba,  be a closed interval of real numbers, and let 

[ ] ( )badc ,, ⊂  be a closed subinterval satisfying the common barycenter 

condition in Equation (16). 

Then every convex function [ ] R→baf ,:  satisfies the double integral 

inequality 

( ) ( ) ( )

( )

( )

( ) .22 db

dxxf

ac

dxxf

ab

dxxf

cd

dxxf
b

d

c

a

b

a

d

c
−

+
−

≤
−

≤
−

∫∫∫∫
 (32) 
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Proof. Midpoint equality in Equation (16) can be expressed in the 
integral form by the barycenter equalities 

( ) ( ) .22 db

dxx

ac

dxx

ab

dxx

cd

dxx
b

d

c

a

b

a

d

c
−

+
−

=
−

=
−

∫∫∫∫
 (33) 

We firstly prove that the left term of Equation (32) is less than or 
equal to the right term. Let ( )xhy =  be the secant line of the convex curve 

( )xfy =  passing through the graph points ( )( )cfcC ,  and ( )( )., dfdD  

Using inequalities ( ) ( )xhxf ≤  for [ ],, dcx ∈  and ( ) ( )xfxh ≤  for 

[ ] [ ],,, dcbacax −+∈ ∪  and applying the affinity of function h to 
Equation (33), we get 

( ) ( ) ( )

( )

( )

( )db

dxxh

ac

dxxh

cd

dxxh

cd

dxxf
b

d

c

a

d

c

d

c
−

+
−

=
−

≤
−

∫∫∫∫
22  

( )

( )

( )

( ) .22 db

dxxf

ac

dxxf
b

d

c

a
−

+
−

≤
∫∫

 (34) 

Now, the inequality in Equation (32) can be confirmed by the 
combination 

( ) ( ) ( ) ( )

ab

dxxfdxxfdxxf

ab

dxxf
b

d

d

c

c

a

b

a
−

++
=

−

∫∫∫∫
 

( ) ( )

( )

( )

( ) ,22


















−
+

−
β+



















−
α=

∫∫∫
db

dxxf

ac

dxxf

cd

dxxf
b

d

c

a

d

c  (35) 

which is convex because the coefficients 

( ) ( )
ab
bd

ab
ac

ab
cd

−
−=

−
−=β

−
−=α 22,  (36) 

are nonnegative and their sum is equal to 1.   
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Combining the inequalities in Equations (14), (32), (28), and (29), we 
get the following integral refinement of the Hermite-Hadamard 
inequality. 

Theorem 3.4. Let [ ]ba,  be a closed interval of real numbers, and let 

[ ] ( )badc ,, ⊂  be a closed subinterval satisfying the common barycenter 

condition in Equation (16). Then every convex function [ ] R→baf ,:  

satisfies the series of inequalities 

( ) ( )

ab

dxxf

cd

dxxf
baf

b

a

d

c
−

≤
−

≤




 + ∫∫

2  

 
( )

( )

( )

( )
( ) ( ) .222

bfaf
db

dxxf

ac

dxxf
b

d

c

a +≤
−

+
−

≤
∫∫

 (37) 

4. Application to Means 

Thorough this section we use positive numbers a and b, and a strictly 
monotone continuous function [ ] .,: R→ϕ ba  

The discrete quasi-arithmetic mean of the numbers a and b 
respecting the function ϕ  can be defined by the number 

( ) ( ) ( ) .2
1

2
1, 1 





 ϕ+ϕϕ= −

ϕ babaM  (38) 

Using the identity function ( ) ,xx =ϕ  we get the generalized 

arithmetic mean 

( ) ,2
1

2
1, babaA +=  (39) 

using the hyperbolic function ( ) ,1 xx =ϕ  we have the generalized 

harmonic mean 

( ) ,2
1

2
1,

1
11

−
−− 




 += babaH  (40) 
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and using the logarithmic function ( ) ,ln xx =ϕ  we obtain the generalized 

geometric mean 

( ) ., 2
1

2
1
babaG =  (41) 

The above means satisfy the generalized harmonic-geometric-arithmetic 
mean inequality 

( ) ( ) ( ).,,, baAbaGbaH <<   (42) 

The integral quasi-arithmetic mean of the numbers a and b 
respecting the function ϕ  can be defined by the number 

( ) ( ) .1, 1








ϕ

−
ϕ= ∫−

ϕ dxxabbaM
b

a
 (43) 

Using the hyperbolic function, we have the logarithmic mean 

( ) ,lnln
11,

1

ab
abdxxabbaL

b

a −
−=








−

=
−

∫  (44) 

and using the logarithmic function, we obtain the identric mean 

( ) .1ln1exp,
1

ab

a

bb

a a
b

edxxabbaI
−









=








−

= ∫  (45) 

The well-known mean inequality asserts that 

( ) ( ) ( ) ( ) ( ).,,,,, baAbaIbaLbaGbaH <<<<   (46) 

Applying Equation (18) to the convex function ( ) xxf ln−=  using 

substitutions ,1,1,1 ccbbaa 666  and ,1 dd 6  and then 

acting on the rearranged inequality with the exponential function, we can 
derive the series of inequalities 
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 ( ) ( ) ( ) ( )
32

,,,, bdHdcHcaHbaH ≤  

( ) ( ) ( )
32

,,, 111111111 −−−−−−−−−
≤

bdIdcIcaI  

( ) ( ),,8133 baGbdac ≤≤   (47) 

refining the harmonic-geometric mean inequality. 

Applying Equation (37) to the exponential function ( ) xexf =  using 

substitutions ,ln,ln,ln ccbbaa 666  and ,ln dd 6  we obtain the 

series of inequalities 

( ) ( ) ( )baLdcLbaG ,,, ≤≤  

( ) ( ) ( ),,,2
1,2

1 baAbdLcaL ≤+≤  (48) 

refining the geometric-logarithmic-arithmetic mean inequality. 
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