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Abstract 

We investigate the regularity properties of the displacement sequence        

( ) ( ) ( ) ( ) ,2exp,1mod1 ixzxxz nn
n π=Φ−Φ=η −  where RR →Φ :  is a lift of an 

orientation preserving circle homeomorphism. If the rotation number ( ) q
p=ϕ�  

is rational, then ( )znη  is asymptotically periodic with semi-period q. This 
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convergence to a periodic sequence is uniform in z if we admit that some points 
are iterated backward instead of taking only forward iterations for all z. This 
leads to the notion of an basins'-ε  edge, which we illustrate by the numerical 

example. If ( ) ,Q∈/ϕ�  then some classical results in topological dynamics yield 
that the displacement sequence also exhibits some regularity properties, which 
we define and prove in the second part of the paper. 

1. Introduction, 

A particular example when the displacement sequence of a circle map 
is considered, are the so-called interspike-intervals for periodically driven 
integrate-and-fire models of neuron’s activity (see, for example, [3, 10, 12]).  
In these usually one-dimensional models, a continuous dynamics induced 
by the differential equation is interrupted by the threshold and reset 
behaviour 

( ) ,:,, 2 RR →= fxtfx�  

( ) ( ) ,iflim Θ
→

==
+

xsxxtx r
st

 

meaning that once a dynamical variable ( )tx  starting at time 0t  from a 

resting value rxx =  reaches a certain threshold Θx  at some time ,1t  it 

is immediately reset to a resting value and the system evolves again from 
a new initial condition ( )1, txr  until some time 2t  when the threshold is 

reached again, etc. The question is to describe the sequence of 

consecutive resets nt  as iterations of some map ( ),0tnΦ  called the firing 

map, and the sequence of interspike-intervals 1−− nn tt  (time intervals 

between the resets) as a sequence of displacements ( ) −Φ 0tn  ( )0
1 tn−Φ  

along a trajectory of this map. The problem appears in various 
applications, such as modelling of an action potential (spiking) by a 
neuron, cardiac rhythms and arrhythmias ([1]) or electric discharges in 
electrical circuits (see [4] and references therein). Analysis of the 
behaviour of the displacement sequence of trajectories of an orientation 
preserving homeomorphism of the circle covers an answer to this 
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question for the firing map induced by a function f regular enough and 
periodic in t-variable. This special type systems were, partially, our 
motivation for the study of the displacement sequence. In particular, the 
(asymptotic) periodicity of interspike-intervals is associated with the 
phase-locking phenomenon (see, e.g., [5, 8]) in integrate-and-fire models 
under periodic drive. 

We start with homeomorphisms with rational rotation number, 
where, in particular, we show the connection between semi-periodic circle 
homeomorphism and the notion of a semi-periodic sequence and 
introduce the concept of an basins'-ε  edge, separating the points, for 

which the displacement sequence becomes periodic with given accuracy-ε  

faster (in terms of number of iterates) when iterated forward than when 
iterated backward, and the points with the opposite property. In next, we 
consider homeomorphisms with irrational rotation number, where with 
the use of topological dynamics we show how the recurrent properties of 
points iterated under ϕ  are reflected in the displacement sequence. 

For the homeomorphism with irrational rotation number, the other 
interesting issue is the distribution of displacements Ψµ  with respect to 

the unique ergodic probability measure µ  and its behaviour under 

perturbation of the given homeomorphism. This question is treated in 
detail in the recent paper [13], which together with this work completes 
the description of the properties of the displacement sequence for an 
orientation preserving circle homeomorphism. 

Let 11: SS →ϕ  be a map and RR →Φ :  be its lift, where R  

covers 1S  by the covering projection ( ).2exp: ixx π6p  If 11: SS →ϕ  

is an orientation preserving homeomorphism, then ( ) ( ) 11 +Φ=+Φ xx  

for all .R∈x  
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Definition 1.1. For ,R∈x  the limit 

( ) ( ) ( ) ,lim: n
xx

n

n
Φ=Φ

∞→
�  (1) 

is called the rotation number of Φ  at x provided the limit exists. 

Remark 1.2. Let ( ) ( ) xxx −Φ=Ψ :  be the displacement function 

associated with .Φ  Then 

( ) ( ) ( ( )).1lim 1

1
xNx n

N

n
N

−

=
∞→

ΦΨ=Φ ∑�  (2) 

If Φ  is a lift of an orientation preserving homeomorphism ,: 11 SS →ϕ  

then ( ) ( )xΦ�  exists and does not depend on x, following the classical 

Poincaré theory. In this case, we define ( ) ( )Φ=ϕ �� :  mod 1, where Φ  is 

any lift of .ϕ  Since throughout the rest of the paper, we will consider only 

orientation preserving circle homeomorphisms, we skip the assumption 
that ϕ  preserves orientation in formulation of the forthcoming theorems 

and definitions. 

Definition 1.3. The sequence 

( ) ( ( )) ( ) ( ) ,,2,1,1mod1mod: 11 …=Φ−Φ=ΦΨ=η −− nxxxz nnn
n  (3) 

will be called the displacement sequence of a point ( ) .2exp 1Sixz ∈π=  

Note that ( )znη  can be seen as an arc length from the point ( )zn 1−ϕ  

to ( )znϕ  with respect to the positive orientation of .1S  In particular, it 

does not depend on a choice of the lift .Φ  

At first we make two simple observations. 

Remark 1.4. If ϕ  is a rotation by ,2 �π  where �  can be either 

rational or irrational, then the sequence ( )znη  is constant (as the 

rotation is an isometry). Precisely, ( ) �=η zn  for all 1Sz ∈  and .N∈n  
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Remark 1.5. If ϕ  is conjugated to the rational rotation by ,2 �π  

where ,q
p=�  then ϕ  is q-periodic, i.e., ( ) .pxxq +=Φ  Consequently, 

the sequence ( )znη  is q-periodic. 

Notice that, by Remark 1.4, the displacement sequence even for the 
irrational rotation consists of precisely one element (thus it is very 

“regular”), although its phase sequence, i.e., the sequence ( )xnΦ  mod 1, 

is dense in the whole interval [ ].1,0  

2. Semi-Periodic Circle Homeomorphism 

2.1. General properties 

We recall definitions of a semi-periodic circle homeomorphism (after 
[6]) and a semi-periodic sequence (after [2]): 

Definition 2.1. A circle homeomorphism with rational rotation 
number, which is not conjugated to a rotation is called semi-periodic. 

Definition 2.2. A sequence { }nx  is semi-periodic, if 

.0 ε<−∀∀∃∀ +∈∈∈>ε nrnnr xx kk NNN   (4) 

Since we want to investigate asymptotic behaviour of orbits, we introduce 
additionally the concept of asymptotic semi-periodicity: 

Definition 2.3. A sequence { }nx  is asymptotically semi-periodic, if 

.0 ε<−∀∀∃∃∀ +∈>∈∈>ε nrnNnrN xx kk NNN   (5) 

There is also a simpler notion of asymptotic periodicity: 

Definition 2.4. We say that a sequence { }nx  is asymptotically 

periodic, if there exists a periodic sequence { }na  such that −∞→ nn xlim  

.0→na  
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Note that the definition of asymptotic semi-periodicity is more 
general since for an asymptotically semi-periodic sequence this “semi-
period” r might depend on ,ε  whereas it does not for asymptotically 

periodic one. 

In this section, we will see that the displacement sequence of a semi-
periodic circle homeomorphism is asymptotically periodic, which is a 
natural consequence of the fact that each non-periodic orbit is attracted 
to some periodic orbit. Moreover, as we show in Theorem 2.10, for a semi-

periodic homeomorphism ϕ  with ( ) q
p=ϕ�  and given ,0>ε  there exists 

a natural number N such that every point 1Sz ∈  starting from 
iteration-Nq  forward or from iteration-Nq  backward is placed within 

oodneighbourh-ε  of a periodic orbit. An analogous property obviously 

holds for displacement sequences of points under ,ϕ  which is formulated 

in Proposition 2.11. 

Proposition 2.5. For a semi-periodic circle homeomorphism ,ϕ  the 

sequence ( )znη  is asymptotically periodic (and thus in particular 

asymptotically semi-periodic) for any .1Sz ∈  Precisely, if ( ) ,qp=ϕ�  

then for every :1Sz ∈  

( ) ( ) .0 ε<η−η∀∀∃∀ +∈>∈>ε zz nqnNnN kk NN   (6) 

Proof. For all periodic points the statement reduces to Remark 1.5. 

Given a non-periodic point ( ) 12exp Sixz ∈π=  there exists a periodic 

point ( ) 1
00 2exp Sixz ∈π=  and some N~  such that for all Nn ~≥  and 

1,,1,0 −= qi …  we have ( ) ( ) ,40 ε<Φ−Φ ++ xx inqinq  i.e., the non-

periodic orbit of z is asymptotic to the periodic orbit of .0z  Then the 

property (6) of the displacement sequence ( )znη  holds for .~: qNN =  If p 

and q are relatively prime, then the “semi-period” qr =  is minimal.   
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Remark 2.6. We quoted the definitions of semi-periodic and 
asymptotically semi-periodic sequence in order to point out the 
differences between the notions of semi-periodicity in dynamical systems 
and in the numerical theory of sequences: Namely, the fact that the 

orbits { ( ) }∞=Φ 11mod n
n x  of semi-periodic circle homeomorphisms are in 

general not semi-periodic as sequences (unless the orbits are purely 
periodic) and consequently the displacement sequence is not semi-
periodic as well. 

2.2. A uniform choice of ( )zN  

Given a homeomorphism ϕ  with ( ) q
p=ϕ�  and ,0>ε  it does not 

exist N such that for Nn >  and N∈k  we have ( ) ε<η−η + nqn zk  for 

all .1Sz ∈  Nevertheless, it is possible to find one N that would fit all the 
points if we allow that for some points we consider positive iterates and 
for some negative. 

Suppose that ( ) q
p=ϕ�  (we admit also ,1=q  where periodic points of 

ϕ  are precisely fixed points). If −
∗z  and +

∗z  are consecutive periodic 

points, then every point ( )+
∗

−
∗∈ zzz ,  is forward asymptotic under qϕ  to 

+
∗z  and backward, i.e., under ,q−ϕ  asymptotic to −

∗z  or the other way 

around. 

Suppose now that the set of periodic points ( )ϕPer  is finite and 

ordered as ( ) { } .,,,, 21 N∈=ϕ rzzzPer r…  Let us fix 0>ε  and 

{ }.,,2,1 r…∈k  Assume without the loss of generality that the two 

consecutive periodic points kz  and 1+kz  (which belong to different 
periodic orbits if there is more than one periodic orbit) are, respectively, 

backward and forward attracting under qϕ  for ( )., 1+∈ kk zzz  To clarify 
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the notation we denote kz  by ,0
−z  and 1+kz  by .0

+z  It follows that all the 

points within the interval ( ),, +−
ii zz  where ( ) ( )++−− ϕ=ϕ= 00 , zzzz i

i
i

i  for 

1,,1,0 −= qi …  and ,, 00
++−− == zzzz qq  go forward under qϕ  to +

iz  and 

backward to .−iz  

For a given ,N∈m  we define the functions [ ] [ ,0,:, 00 →+−−+ zzmm ττ  

]:max
10

−+
≤≤

−
−

iii
zz

q
 

( ) ( ) ( ) ( ) ,max:,max:
11 00

−
−

−−
≤≤

−++
≤≤

+ −ϕ=−ϕ=
−−

iq
imq

imi
imq

im zzzzzz
qq

ττ  

with the following properties: 

(i) ( )zm
+τ  is strictly decreasing, ( ) ( ) .0,max 000

1
=−= ++−+

≤≤
−+

−
zzzz miiim

q
ττ  

(ii) ( )zm
−τ  is strictly increasing, ( ) ( ) .max,0

1000
−+

≤≤
+−−− −==

−
iiimm zzzz

q
ττ   

(iii) If ,mm >′  then ( ) ( )zz mm
++

′ < ττ  and ( ) ( )zz mm
+−

′ < ττ  for every  

( )., 00
+−∈ zzz  

For 0>ε  and N∈m  denote the subsets of [ ]:, 00
+− zz  

( ) { ( ) } ( ) { ( ) }.::,:: ε<=εε<=ε −−++ zzUzzU mmmm ττ  

Then zz ′<  and ( )ε∈ +
mUz  implies ( )ε∈′ +

mUz  and, analogously, if 

zz <′  and ( ),ε∈ −
mUz  then ( ).ε∈′ +

mUz  Put ( ) { ( ) :,inf: 00
+−∈=ε zzzam  

( )}ε∈ +
mUz  and ( ) { ( ) ( )}.:,sup: 00 ε∈∈=ε −+−

mm Uzzzzb  It is clear       

that ( ) ( ( ) ] ( ) [ ( )) ( ) [ ]+−+∞
=

−−++ =εε=εε=ε 00100 ,,,,, zzUbzUzaU mmmmmm ∪  and 

( ) [ ]., 001
+−

ε
∞
=

= zzUmm∪  
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For fixed ,0>ε  there exists m such that ( ) ( ) ( ) .0: /≠εε=ε +−
mmm UUU ∩   

Let ( ) { ( ) ( ) }.0:min:~~ /≠εε∈=ε= +−
mm UUmmm ∩N  Then 

( ) ( ) [ ( ) ( ) ],, ~~~~ εε
−
ε

+
ε = mmmm baUU ∩  

is a closed interval with nonempty interior. We easily justify 

(iv) For every ( ( ) ( ) )εε∈ mm baz ~~ ,  and ( ),~ ε≥ mm  we have ( ) −ϕ + zimq  

( ) ε<ϕ +
0zi  and ( ) ( ) .1,,1,0,0 −=ε<ϕ−ϕ −−−− qizz iqimq …  

(v) For every [ ( ) )ε
−∈ mazz ~0 ,  and ( ),~ ε≥ mm  we have ( ) −ϕ −− zimq  

( ) .1,,1,0,0 −=ε<ϕ −− qiziq …  

(vi) For every ( ( ) ]+ε∈ 0~ , zbz m  and ( ),~ ε≥ mm  we have ( ) iimq z ϕ−ϕ +  

( ) .1,,1,0,0 −=ε<+ qiz …  

Proposition 2.7. Let 11: SS →ϕ  be a circle homeomorphism which 

has finitely many periodic points { }.,,, 21 rzzz …  Fix 0>ε  and consider 

the interval ( )1, +kk zz  between the two consecutive different periodic 

points kz  and 1+kz  of .ϕ  

Suppose that 1+kz  is attracting (under qϕ ) and kz  is repelling within 

the interval ( )., 1+kk zz  Then there exists a point ( )1,~ +∈ kk
k zzz  with the 

following properties: 

(1) If [ )1,~: ++ =∈ k
kk zzBz  and for some ( ) ( )kzzn iqinq −−− ϕ−ϕ∈ N  

ε<  for all ,1,,1,0 −= qi …  then also ( ) ( ) ,1,0,1 =ε<ϕ−ϕ ++ izz iinq k  
.1, −q…  

(2) If ( ]kk
k zzBz ~,:=∈ −  and for some ( ) ( ) ε<ϕ−ϕ∈ ++ 1kzzn iinqN  

for all ,1,,1,0 −= qi …  then also ( ) ( ) ,,1,0, …=ε<ϕ−ϕ −−− izz iqinq k  
.1−q  
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If the point kz  is attracting and 1+kz  is repelling, then ( ],~,: k
k

k zzB =+  

[ )1,~: +− = k
kk zzB  and the analogues of (1) and (2) hold. 

The same occurs if there is only one periodic, i.e., fixed, point 0z  but 

then 

{ } { }.~\ 000000
1 zBBandBBzS == −+−+ ∩∪  

The above proposition says that for every point +∈ kBz  its positive semi-

orbit { ( )} N∈ϕ n
n z  in shorter time (in terms of number of iterates) is placed 

in the oodneighbourh-ε  of the periodic orbit { ( ) ,,, 11 …++ ϕ kk zz  

( )}11 +−ϕ kzq  (i.e., for sufficiently large ( ) ( ) ε<ϕ−ϕ + zzn iinq  for every 

1,,1,0 −= qi … ) than its negative semi-orbit { ( )} N∈
−ϕ n

n z  is placed in 

the oodneighbourh-ε  of the repelling orbit { ( ) ( )( )}.,,, 11 kkk zzz q−−− ϕϕ …   

Similarly, the orbits of points of −
kB  are faster, but in negative time, 

attracted to the oodneighbourh-ε  of the orbit of kz  than to the 

oodneighbourh-ε  of the orbit of .1+kz  

Definition 2.8. We call a one-point set { }kz~  the sbasin- ′ε  edge, since 

it divides the whole basin kB  into the positive and negative sub-basins 

+
kB  and ,−kB  respectively, and is a common border of them. 

Proof of Proposition 2.7. Let us consider the interval [ ] ⊂mm ba ~~ ,  

( )., 1+kk zz  By definition [ ] [ ]ε→+ ,0,: ~~~ mmm baτ  with ( ) .~~ ε=+
mm aτ  

Correspondingly, [ ] [ ]ε→− ,0,: ~~~ mmm baτ  with ( ) .~~ ε=−
mm bτ  Moreover, 

( ) ( ) ( )mmmmmm aba ~~~~~~ +−− =< τττ  and ( ) ( ) ( ).~~~~~~ mmmmmm bab −++ =< τττ  There 

exists a unique point ( )mm baz ~~ ,~ ∈k  such that ( ) ( ).~~ ~~ kk zz mm
−+ = ττ  Now 

the statement of Proposition 2.7 follows from the properties ( ) ( ).viiv −    
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Remark 2.9. Note that for a given accuracy-ε  the basins’ edge ∈kz~  

( )1, +kk zz  is defined by +
km~τ  and −

km~τ  and thus it depends on .~
km  Since 

km~  depends on ,ε  the basins' edge kz~  changes if we change the 

accuracy-ε  of approximation. 

The interesting thing is the location of sbasin- ′ε  edge in the given 

interval ( )., 1+kk zz  We carried out the numerical simulations for the two 

functions, ( ) 2xxf =  and ( )
π

= 2xf  arcsin [ ],1,0, ∈xx  and ,1.0,5.0 21 =ε=ε  

,01.03 =ε  and .001.04 =ε  These functions properly extended            

onto ,R  i.e., such that in every interval [ ]1, +ll  we have a copy of ( )xf  

on [ ]1,0  shifted l-units upward, induce orientation preserving circle 

homeomorphisms with a fixed point. In both cases, the fixed point 0=+x  

was attracting and the fixed point 1=−x  was repelling for ( ).1,0∈x  

The results of this numerical experiment are presented in Figure 1, 

together with the graphs of +
mτ  and ,−

mτ  for ( ) ( ) ( ),,, 321 εεε= mmmm  

( ).4εm  It seems that sbasin- ′ε  edge ( )εx~  tends to −x  as 0→ε  for 

( ) =xf 2x  and ( ) +→ε xx~  for ( )
π

= 2xf  arcsin x. Such a behaviour of the 

sbasin- ′ε  edge in these examples is not surprising, when we realize that 

0=+x  is a super attracting fixed point for ( ) 2xxf =  ( )( )00i.e., =′f  and, 

similarly, 1=−x  is super repelling for ( )
π

= 2xf  arcsin x (i.e., ( ) ∞→′ xf  

with 1→x ). Thus for the first case attracting to 0 is “stronger” than 
repelling from 1 and consequently sbasin- ′ε  edge tends 1. For the second 

example the opposite holds. It seems that in general the location of 

sbasin- ′ε  edge with 0→ε  depends on the behaviour of derivatives ( )−′ xf  

and ( ).+′ xf  Here we do not provide a rigorous proof but just the theoretical 
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predicates: Suppose that [ ]( ).1,01Cf ∈  Then the value of ( )+′ xf  gives 

the “speed” of attraction to +x  since ( ) fxxf m ′+≈ +
0  ( ) ( )++ − xxx m

0  

for large m (when ( )0
1 xf m−  is sufficiently close to +x ) as follows from 

the Taylor expansion and the continuity of the derivative. Similarly, as 

( ) ( ) ( ) ( ) ( ( )) ( )−−−−−−− −′+≈′=′ xxxfxxfxfxf mm
00

1 1,1  and the 

rate of repelling from −x  depends on ( ).−′ xf  

Suppose now without the loss of generality that 0=−x  and 1=+x  

for a given function-1C  [ ] [ ].1,01,0: →f  Using the above and the 

formulas for ( )0xm
+τ  and ( ),0xm

−τ  we have that 

( ) ( )011 xf m
m −′=+τ  and ( ) .0

1
0xf

m
m ′

=−τ  If 0x  was to be 

sbasin- ′ε  edge, then ( ) ( )00 xx mm
−+ = ττ  yields that 

( ( ) ( ) ) .110
110 =
′′

+ m
ffx  
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Figure 1. The ( ) function-εmτ  and sbasin- ′ε  edge for ( ) 2xxf =  (the y-axis 

cut to [0, 0.35] for better clarity of the picture) and ( ) ( )π= 2xf  arcsin x 

(the x-axis cut to [0, 0.5]). 
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As ( ) ∞→ε=→ε mm,0  and the location of the basins’ edge 0x  depends 

on the behaviour of ( ) ( ) mm ffw 10: ′′=  with .∞→m  We conclude that: 

● When ,∞→mw  then sbasin- ′ε  edge goes to the attracting point 

(since repelling from −x  is stronger that the attraction to +x ). 

● When ,0→mw  then sbasin- ′ε  edge goes to the repelling point 

(since here the attraction is stronger). 

This is consisted with the examples above and with another example 

( )
π

= 4xf  arctan [ ],1,0, ∈xx  which we have also investigated 

numerically and obtained that ,409.0,497.0 21 =−ε==ε edgeedge  

269.03 =−ε edge  and 155.01 =−ε edge  with ,01.0,1.0,5.0 321 =ε=ε=ε  

.001.04 =ε  Notice that here 1<w  and sbasin- ′ε  edge goes to the 

repelling point. 

However, the sbasin- ′ε  edge for 0→ε  could be as well any interior 

point of ( )., 1+kk zz  probably when 1=w  (i.e., then ( ) ( )11 +′=′ kk xfxf  

up to an absolute value) or when one fixed point is super repelling and 
the other one is strongly attracting. As for the latter, we computed 

sbasin- ′ε  edge for ( ) ( ),11 2xxf −−=  where 0 is super attracting and 1 

is super repelling, to find that edge-ε  equals 0.5 for all the investigated 

values of ε  (but in general in such a case the asymptotic basins’ edge 
does not to be exactly a geometrical middle of the interval; here it is so be 
cause the function is very “symmetrical”). 

Going back to the displacement sequence, we prove the following: 

Theorem 2.10. Let 11: SS →ϕ  be a homeomorphism with a 

rotation number ( ) .q
p=ϕ�  

For ,0>ε  there exists ( )ε= NN  such that for every point 1Sz ∈  at 

least one of the following two conditions is satisfied: 
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(1) there exists a periodic point ( )ϕ∈+ Perz0  such that 

( ) ( ) ε<ϕ−ϕ ++
0zz iinq  for all Nn ≥  and ;1,,1,0 −= qi …  

or 

(2) there exists a periodic point ( )ϕ∈− Perz0  such that 

( ) ( ) ε<ϕ−ϕ −−−−
0zz iinq  for all Nn ≥  and ,1,,1,0 −= qi …  

i.e., after Nq  iterations forward or Nq  iterations backward we are 
always close-ε  to one of the periodic orbits. 

Proof. Assume firstly that ϕ  has r different periodic points 

.,,, 21 rzzz …  For each ,1 r≤≤ k  we apply the properties ( ) ( )viiv −  

with kzz =−
0  and 1

0
++ = kzz  (or 1

0
+− = kzz  and kzz =+

0  if kz  is attracting 

and 1+kz  repelling for ( )., 1+∈ kk zzz  Set .~~
kmmN ==  Then +∈ kBz  

satisfies (1) and −∈ kBz  satisfies (2). Every point ( ( ) ( ))εε∈ mm baz ~~ ,  fulfills 

both (1) and (2). Now, since [ ] [ ] [ ],,,, 11211 zzzzzzS r∪…∪ kk +=  it is 

enough to take kk mN r
~max 11 +≤≤=  (where 1

~
+rm  corresponds to the 

interval [ ]1, zzr ) to get the statement. 

Suppose now that ( ) ( )ϕ∞=ϕ PerPer .#  is closed thus compact subset 

of .1S  Fix .0>ε  The proof will be carried out in the following steps: 

(1) Let 0z  be a periodic point with the orbit { }110 ,,, −= qzzz …O  for 

which there exists another periodic point 0z′  with the orbit { ,0z′=O  

}11 ,, −′′ qzz …  such that for every izqi ,1,,1,0 −= …  and iz′  are 

consecutive periodic points, ii zz >′  and for at least one 

{ }1,,1,0 −∈∗ qi …  we have .ε≥−′ ii zz  If it is not possible to find such 

a point ,0z  then the distance between any two consecutive periodic 

points is smaller than ε  and the hypothesis of Theorem 2.10 is satisfied 
in a trivial way. 
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(2) Notice that the number of intervals ( )zz ′,  between consecutive 

periodic points z and z′  such that ε≥−′ zz  is finite. Consequently, the 

number of pairs { }OO ′,  of periodic orbits O  and O′  such as in (1) is 

finite. Denote as εD  the collection of all such ordered pairs { }., OO ′  

(3) Let now z be an arbitrary point on .1S  If ( ),ϕ∈ Perz  there is 

nothing to prove. If ( )ϕ∈/ Perz  and z does not lie in any interval ( ),∗∗ ′zz  

where O∈∗z  and O′∈′∗z  with the pair of periodic orbits { } ,, ε
∗∗ ∈′ DOO  

then every point of the full orbit { ( )} Z∈ϕ i
i z  belongs to some interval 

between the two periodic points with length smaller than .ε  As a result, 
conditions (1) and (2) of Theorem 2.10 are satisfied in a trivial way with 
arbitrary { }.0∪N∈N  If ( )ϕ∈/ Perz  but there exist periodic points ∗z  

and ∗′z  such that ( )∗∗ ′∈ zzz ,  and ∗∗∗∗ ′∈′∈ OO zz ,  with a pair of orbits 

{ } ,, ε
∗∗ ∈′ DOO  then at least one of the conditions (1) or (2) holds for z 

with ,maxNN =  where maxN  is the “universal” N derived, as in the first 

part of the proof, for the finite collection of all the intervals {( )}ii zz ′,  

between the two consecutive periodic points whose orbits iO  and iO′  

form pairs { } ., ε∈′ Dii OO  

Consequently, it is enough to take maxNN =  for an arbitrary 

.1Sz ∈   

Note that in general a number N satisfying the statement of Theorem 
2.10 could be found by considering, instead of sbasin- ′ε  edge, just the 

geometrical middles kẑ  of the intervals kÎ  between periodic points (with 

union kk Î∪  giving the whole of 1S ), computing the corresponding 

numbers kN̂  such that the iterates ( )kzinq ˆ−−ϕ  and ( )kzinq ˆ+ϕ  are placed 

in the oodneighbourh-ε  of periodic orbits for kNn ˆ>  and ,1,,1,0 −= qi …  
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and then taking .ˆmax kk NN =  However, given 0>ε  the notion of the 

sbasin- ′ε  edge says how to find the smallest N∈N  with these 

properties. 

Proposition 2.11. Let ( ) .q
p=ϕ�  Then for every 0>ε  there exists N 

such that for every 1Sz ∈  the sequence { ( )}∞ −∞=η nn z  satisfies at least one 

of the following statements: 

(1)                 ( ) ( ) ,ε<η−η∀∀ +∈> zz nlqnlNn N  

 or 

(2)                 ( )( ) ( ) .ε<η−η∀∀ +−∈> zz nlqnlNn N  

Proof. The proposition is a direct consequence of Theorem 2.10.   

3. Homeomorphisms with Irrational Rotation Number 

Let now ( )ϕ�  be irrational. If ϕ  is not transitive by 1S⊂∆  denote 

the unique minimal set of ϕ  (a Cantor type set). 

We have to introduce the following definition: 

Definition 3.1. We say that a sequence { } ,, N∈nan  is almost 

strongly recurrent if it satisfies 

{ } .,,1,00 ε<−∃∀∀∃∀ ++∈∈∈∈>ε ninNinN aa kk …NNN  

For an almost strongly recurrent sequence we require that for each n the 
set of returns { }irr +== k::R  of na  to its oodneighbourh-ε  may 

depend on n, although for all n its gaps are bounded by the same N. Note 
that in literature there is also a notion of an almost periodic sequence 
([2]), for which with given ,N∈k  the index { }Ni ,,1,0 …∈  can be 

chosen uniformly for all N∈n  and thus almost periodicity of a sequence 
is a stronger property. 
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Let then ( )ϕ,X  be a discrete dynamical system, where ( )dX ,  is a 

metric space and ( ).0 XC∈ϕ  

Definition 3.2 ([9]). A point Xx ∈  is almost periodic if 

{ } ( ( ) ) ,,,,1,00 ε<ϕ∃∀∃∀ +
∈∈∈>ε xxd i

NiN
k

k …NN  

i.e., when for any neighbourhood U of x the set of numbers n such that 

( ) Uxn ∈ϕ  is relatively dense in .N  

Sometimes an almost periodic point is called also strongly recurrent. 
Recall the following theorem of Gottschalk: 

Theorem G ([9]). Let X be a compact metric space. 

Then the closure of the orbit of any almost periodic point is a minimal 
set. Conversely, all points of any minimal set are almost periodic. 

Proposition 3.3. Let 11: SS →ϕ  be a homeomorphisms with an 

irrational rotation number. 

(1) If ϕ  is transitive, then for all 1Sz ∈  the displacement sequenc e 
{ ( )}znη  is almost strongly recurrent, i.e., 

{ } { } ( ) ( ) .,,1,000 ε<η−η∃∀∀∃∀ ++∈∈∈∈>ε zz ninNinN kk …∪NNN  

(2) If ϕ  is not-transitive, then the sequence { ( )}znη  is almost strongly 
recurrent for all ,∆∈z  where ∆  is the minimal invariant set of .ϕ  

The theorem will follow easily from the lemma. 

Lemma 3.4. Let ( )dX ,  be a compact metric space and ( ),, ϕX  where 

( ),0 XC∈ϕ  a discrete dynamical system with X being a minimal 

invariant set. 

Given Xx ∈  and ,0>ε  the set of return-times of the orbit { ( )}∞=ϕ 1j
j x  

to the oodneighbourh-ε  of any point ( )xnϕ  of the orbit of x is relatively 

dense with gaps bounded uniformly for all n: 
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{ } { } { } ( ( ) ( )) .,,,2,1000 ε<ϕϕ∃∀∀∃∀ ++
∈∈∈∈>ε xxd nin

NiN
k

kk …∪∪ NNN  

Proof. By compactness of X, there exists m such that the open balls 

( ( ) )2, εϕ= xBB l
l  for ml ,,1,0 …=  cover X. There exist numbers 

mNNNN ,,,, 210 …  such that for any { },0∪N∈k  if ( ( )) ,l
l Bx ∈ϕϕk  

then also ( ( )) l
li Bxl ∈ϕϕ +k  for some { }.,,2,1 ll Ni …∈  In this case, 

( ( ) ( )) ., ε<ϕϕ ++ xxd lil lk  Setting { } ,max ,,1,0 lml NN …∈=  we obtain that 

{ } { } { } ( ( ) ( )) .,,,2,10,,1,0 ε<ϕϕ∃∀∀ ++
∈∈∈ xxd lil

Niml
k

k …∪… N  

Consider now an arbitrary point ( ) ,, mnxn >ϕ  of the orbit { ( )} .1
∞
=ϕ j

j x  

There exists { }ml ,,1,0 …∈  such that ( ) l
n Bx ∈ϕ  and ( ) jn x ϕ=ϕ  

( ( ))xlϕ  for some ,N∈j  which is then a returning time of a point ( )xlϕ  to 

.lB  Consequently, there exists { }N,,2,1~
1 …∈k  such that 

( ( )) ( ( )) .11
~

l
nlj Bxx ∈ϕϕ=ϕϕ + kk  Similarly, there exists { }N,,2,1~

2 …∈k  

such that ( ( )) ( ( )) ,2121
~~~~

l
nlj Bxx ∈ϕϕ=ϕϕ +++ kkkk  etc. The sequence of 

numbers ,,~~~: 21 N∈+++= rrr kkkk …  is relatively dense in N  and for 

every ( ( ( )) ( )) ., ε<ϕϕϕ xxdr nnrk    

Proof of Proposition 3.3. Let ∆∈z  (where 1S=∆  if ϕ  is 

transitive) and 0>ε  be arbitrary. There exists 2ε<δ  such that for 

every 1
21, Szz ∈  we have ( ) ( ) ε<ϕ−ϕ 21 zz  whenever .21 δ<− zz  On 

the account of Lemma 3.4, there exists N such that for all integers 0>n  

and 0≥k  and some { }Ni ,,2,1 …∈  we have ( ) ( ) ( ) .11 δ<ϕ−ϕ −++− zz nin k  

Then 

( ) ( ) ( ) ( ) ,211 ε<δ+ε<ϕ+ϕ−ϕ−ϕ −−++++ zzzz nninin kk  

which implies, with a little effort, that ( ) ( ) .ε<η−η ++ zz nin k    
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4. Discussion 

In the end let us make a few comments. 

Remark 4.1. Note that Proposition 3.3 applies in more general 
setting where ( )ϕ,X  is a minimal dynamical system on a compact metric 

space ( )dX ,  and the displacement sequence is defined simply as 

( ) ( ( )) ( )).,: 1 xxdx nn
n

−ϕϕ=η  

Remark 4.2. Obviously, the corresponding results for the “phase”-

sequence, i.e., the sequence ( )xnΦ  mod ,1 1S∈  are also true, and, as it is 

visible in the proofs, in fact the presented properties of the displacement 
sequence follow from the properties of the sequence of iterates of Φ=ϕ  

mod 1. Nevertheless, not all of the properties of the displacement 
sequence are such natural. For instantce, in [13], we investigated the 
distribution Ψµ  of the displacement sequence with respect to the unique 

ergodic probability measure µ  (in case of irrational rotation number) and 

for the existence of the density (with respect to the Lebesque measure) of 

Ψµ  it is not sufficient that ϕ  is conjugated to the rotation via a 

hismdiffeomorp-1C  (which actually gives that the invariant measure µ  

has density): we have to assume additionally that the set of critical points 
of the displacement function Id−Φ=Ψ :  is of Lebesque measure zero. In 
[13], we also provided the effective formula for the density of Ψµ  and 

proved the rigorous result concerning the approximation of Ψµ  by sample 

displacement distributions along the orbits of another circle 
homeomorphism, not necessary with irrational rotation number, close 

enough ( )topology-in 0C  to .ϕ  

In the forthcoming paper “On the interspike-intervals of periodically-
driven integrate-and-fire models”, we present the implications of the 
results on the displacement sequence obtained here and in [13] to 
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integrate-and-fire models. In particular, we show that the sequence of 
interspike-intervals for the models of leaky integrate-and-fire type, i.e., 
models of the form ( )tfxx +σ−=�  (together with the resetting               

mechanism), exhibits exactly the same properties as the displacement 
sequence of an orientation preserving circle homeomorphism ϕ  whenever 

the input function f is locally integrable, periodic and satisfies 
( ) ζ>σ−tf  a.e. for some 0>ζ  (in this case ϕ  is the projection of the 

induced firing map Φ  onto 1S ). 
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