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Abstract 

In this paper, we study some important models of projective iterative methods 
for linear complementarity problems (LCPs). These algorithms have simple and 
graceful structure and can be applied to other complementarity problems. 
Asymptotic convergence of the sequence generated by the method to the unique 
solution of this class of LCPs is established. Finally, numerical results are also 
given to illustrate the efficiency of these algorithms. 

1. Introduction 

For a given real vector nRq ∈  and a given matrix ,nnRA ×∈  the 
linear complementarity problem abbreviated as ( ),, qALCP  consists in 

finding vectors nRz ∈  such that 
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where Tz  denotes the transpose of the vector z. The linear 
complementarity problems (LCPs) is one of the fundamental problems in 
optimization and mathematical programming [1]. 

Many problems in various scientific computing, economics, and 
engineering areas can lead to the solution of LCP and its generalizations. 
For example, quadratic programming, Nash equilibrium point of a 
bimatrix game, nonlinear obstacle problems, invariant capital stock, 
optimal stopping, contact and structural mechanics, free boundary 
problem for journal bearings, traffic equilibriums, manufacturing 
systems, etc.. For more details, see [1-3] and the references therein. So, 
many direct and iterative methods have been developed for its solution; 
see [3]. 

One of the oldest iterative methods related to the linear 
complementarity problem is due to Hildereth [4], who designed the 
procedure to solve a strictly convex quadratic program. Hildereth stated 
its Kuhn-Tucker conditions and used the nonsingularity of the Hessian 
matrix of the objective function to eliminate the primal variables. What 
remains after this operation is a linear complementarity problem in 
which the variables are Lagrange multipliers and the matrix A is 
symmetric and positive semi-definite. A more general iterative method, 
attributed to Christopherson [5], has been analyzed and clarified by 
Cryer [6, 7], and it is often cited as Cryer’s method. It is a successive 
over-relaxation (SOR) method proposed for the solution of the free-
boundary problem for journal bearings; see also [8, 9]. Much attention 
has recently been paid on a class of iterative methods called the matrix-
splitting method [10-23]. Matrix splitting method for LCP exploits 
particular features of matrices such as the sparsity and the block 
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structure and in these methods, most convergence results have been 
established for the case that the system matrix A is symmetric positive 
definite, M-matrix, H-matrix or diagonally dominant. The case that A is 
non-Hermitian is much more difficult and, as we have known, only a few 
results were reported about this case of matrix for ( )., qALCP  

In this paper, we study all of these models of projective iterative 
methods for linear complementarity problems (LCPs). Finally, numerical 
results are also given to illustrate the efficiency of these algorithms. 

2. Prerequisite 

We begin with some basic notation and preliminary results which we 
refer to later. 

Definition 2.1 ([24, 25]). 

(a) A matrix [ ]ijaA =  is nonnegative (positive) if ( ).00 >≥ ijij aa  

In this case, we write ( ).00 >≥ AA  Similarly, for n-dimensional vectors 

x, by identifying them with 1×n  matrices, we can also define 
( ).00 >≥ xx  

(b) A matrix ( ) nnijaA ×=  is called a Z-matrix if for any ,ji ≠  

.0≤ija  

(c) Z-matrix is an M-matrix, if A is nonsingular, and .01 ≥−A  

(d) A matrix ( ) nnijaA ×=  is called M-matrix if 0; ≥−α= BBIA  

and ( );Bρ>α  (we denote the spectral radius of B by ( )Bρ ). 

(e) For any matrix ( ) ,nnijaA ×=  the comparison matrix =A  

( ) nn
ij Rm ×∈  is defined by 

.,1,, njijiamam ijijiiii ≤≤≠−==  

(f) ( ) nnijaA ×=  is an H-matrix if and only if A  is M-matrix. 
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Definition 2.2 ([10]). For ,nRx ∈  vector +x  is defined such that 

( ) jx+ { } .,,2,1,,0max njx j …==  Then, for any ,, nRyx ∈  the 

following facts hold: 

(1) ( ) ;+++ +≤+ yxyx  

(2) ( ) ;+++ −≤− yxyx  

(3) ( ) ;++ −+= xxx  

(4) yx ≤  implies .++ ≤ yx  

Definition 2.3 ([24, 25]). Let A be a real matrix. The splitting 
NMA −=  is 

(a) convergent if ( ) ;11 <ρ − NM  

(b) regular if 01 ≥−M  and ;0≥N  

(c) weak regular if 01 ≥−M  and ;01 ≥− NM  

(d) M-splitting if M is M-matrix and .0≥N  

Clearly, an M-splitting is regular and a regular splitting is weak 
regular. 

Lemma 2.1 ([10]). Let nnRA ×∈  be an H-matrix with positive 

diagonal elements. Then the ( )qALCP ,  has a unique solution .nRz ∈∗  

Lemma 2.2 ([10]). ( )qALCP ,  can be equivalently transformed to a 

fixed-point system of equations 

( )( ) ,++α−= qAzEzz  

where α  is some positive constant and E is a diagonal matrix with 
positive diagonal elements. 
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3. Projective Iterative Methods 

Let us to consider LCP (1.1). We knows that since ( )qALCP ,  is 
equivalent to the following zero-finding formulation: 

( )( ) .0,min =+ qAzz  

And the zero-finding formulation is equivalent to the following fixed-
point formulation: 

( )( ) .,0max zqAzz =+−  

Then for any iteration, we have 

,NMA −=  

( ( )) .,0max 111 +++ =+−− kkkk zqNzMzz  

We know that, if ( ( )) ,011 <+−− ++
iqNzMzz kkk  then ,01 =+k

iz  

otherwise 

( ( )) ,111 +++ =+−− kkkk
ii zqNzMzz  

( ) ,111 +++ =+−−⇒ kkkk
iii zqNzMzz  

( ) (( ) ( ) ),1 kkk
iiiii zMAqqNzMz −+−=−=⇒ +  

( ( )) .1
ii AzqMzMz kkk +−=⇒ +  

Now, for example, if 

,LDM −=  

where D, L are diagonal, strictly lower triangular parts of A, in order to 
solve ( ),, qALCP  we have 

( ) (( ) ( )) ,1
ii AzqzLDzLD kkk +−−=− +  

( ) ( ) ,11 ++ ++−−=⇒ kkkk
iiii LzAzqzLDDz  

( ) ( ) ( ) ( ) .11111 +−−−+ ++−−=⇒ kkkkk
iiiii LzDAzqDLzDzz  
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Therefore, we get following formula of projective iterative method: 

( ( ) ( ( ) )).,0max 111 +−+ −++−= kkkk LzzLAqDzz  

Now, we study some important models of projective iterative methods. 

3.1. GAOR projective methods for ( )qA,LCP  

Let the matrix A be as 

,ULDA ++=   (3.1) 

where D diagonal, L and U are strictly lower and upper triangular 

matrices of A, respectively. Then by choice of 1−=α DE  and Lemma 2.2 
and above demonstration, we have 

( ( )) .1
+

− +−= qAzDzz   (3.2) 

So, in order to solve ( ),, qALCP  generalized accelerated over-relaxation 

(GAOR) iterative methods defined in [13] is 

( [ ( ) ]) ,111
+

+−+ Ω+Ωα−Ω+Ωα−= qzLALzDzz kkkk   (3.3) 

where α  is a real parameter and ( )nwww ,,, 21 …=Ω  is a real diagonal 

relaxation matrix. The operator ,: nn RRf  →  is defined such that 

( ) ,ξ=zf  where ξ  is the fixed point of the system 

( ( )[ ]) .1
+

− Ω+Ωα−Ω+ξΩα−=ξ qzLALDz   (3.4) 

In next theorem, we have the convergence theorem, proposed in [13] for 
the GAOR methods. 

Theorem 1. Let nnRA ×∈  be an H-matrix with positive diagonal 
elements. Moreover, let 

( ) ,, 11 LMDIFLDIG Ωα−Ω−=Ωα−= −−  
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then, for any initial vector ,0 nRz ∈  the iterative sequence { }kz  generated 

by the GAOR method converges to the unique solution ∗z  of the 
( )qALCP ,  and 

( ) { ( )} ,11Max
1

1 <ρ+−≤ρ
≤≤

− JwwFG iini
 

if 

( ) ,10,1
20 ≤α≤
ρ+

<< Jwi  

where ( )Jρ  is the spectral radius Jacobi iteration matrix ( ( )).1 ULDJ += −   

Corollary 1. By choosing special parameters in GAOR methods, it 
can be obtained the similar results for other well-known iterative methods. 
For example, 

(1) GSOR (generalized SOR) methods [13] for .1=α  

(2) AOR (accelerated overrelaxation) methods [29] for wr=α  and 
.wI=Ω  

(3) EAOR (extrapolated AOR) methods [30] for 22 wr=α  and 

( ) .2 Irw=Ω  

(4) SOR methods [24, 25] for .1 wIand =Ω=α  

(5) JOR (Jacobi overrelaxation) methods [31] for 0=α  and .wI=Ω  

(6) Gauss-Seidel method [24, 25] for .1 Iand =Ω=α  

(7) Jacobi method for [24, 25] for .0 Iand =Ω=α  

3.2. MAOR projective methods for ( )qA,LCP  

Consider Equation (3.1). So, in order to solve ( ),, qALCP  where A is 
the following form: 

,
2

1
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where 21 and DD  are nonsingular diagonal matrices of orders 1n  and 

,2n  respectively, and 1221 , nnnn RKRH ×× ∈∈  and 
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The modified accelerated over-relaxation (MAOR) iterative methods is 
defined in [11] as follows: 

( ) ( ( ) [ ( ) ( ) ( ) ]) ,111
+

+−+ Ω+γ−Ω+γ−= qzLALzDzz kkkk   (3.5) 

where ( ) ( )22112211 ,diag,,diag IIIwIw γγ=Γ=Ω  with 0, 21 ≠ww  and 

.211
nnRI ×∈  

Let 

( ) .and 11 LMDIRLDIQ γ−Ω−=γ−= −−  

Then in next theorem, we have the convergence theorem, proposed in [11] 
for the MAOR method. 

Theorem 2. Let nnRA ×∈  be an H-matrix with positive diagonal 

elements. Then, for any initial vector ,0 nRz ∈  the iterative sequence 

{ }kz  generated by the MAOR method converges to the unique solution ∗z  

of the ( )qALCP ,  and 

( ) { ( )} ,11Max
2,1

1 <ρ+−≤ρ
=

− JwwRQ iiI
 

whenever 

( ) ,0,1
20 2wJwi ≤γ≤
ρ+

<<  

where 

( ).1 ULDJ += −  
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3.3. Symmetric projective methods for ( )qA,LCP  

In order to solve ( ),, qALCP  symmetric successive over-relaxation 

(SSOR) iterative methods is defined in [15] as follows: 

( [ ( )( ) ( ) ]) .22111
+

+−+ −+−−+−−= qwwzwLAwwwLzDzz kkkk   (3.6) 

Also they proposed the following model: 

( [ ( )( ) ( ) ]) ,22111
+

+−+ −+−−+−−= qwwzwUAwwwUzDzz kkkk   (3.7) 

where .20 << w  

Let 

( )( ) .2and 11 wLMwwDIRLwDIQ −−−=−= −−  

In next theorem, we have the convergence theorem, proposed in [15] for 
the SSOR method. 

Theorem 3. Let nnRA ×∈  be an H-matrix with positive diagonal 

elements and .20 << w  Then, for any initial vector ,0 nRz ∈  the 

iterative sequence { }kz  generated by the SSOR method converges to the 

unique solution ∗z  of the ( )qALCP ,  and ( ) .11 <ρ − RQ  

3.4. SOR-Like method for non-Hermitian positive definite ( )qA,LCP  

Let the matrix A is split as Equation (3.1).Then the iterative method 
successive over-relaxation like method (SOR-like method) for ( )qALCP ,  

by the following [22]: 

Algorithm 1: SOR-Like method for LCP 

Step 1. Choose an initial vector nRz ∈0  parameter w and set 
.0=k  
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Step 2. For …,2,1,0=k do 

( [( ) ( ) ]) .111
+

∗+∗−+ ++++−−= qzUUDzULwDzz kkkk  

Step 3. If ,1 kk zz =+  then stop; otherwise, set 1+= kk  and go to 

Step 2. 

Note. ∗U  denotes the conjugate transpose of the matrix U. 

In next theorem, we have the existence and uniqueness of the 
solution of SOR-like method proposed in [22], when the coefficient matrix 
is non-Hermitian positive definite. 

Theorem 4. Let nnCA ×∈  be non-Hermitian positive definite with 

( ) 2∗+= AAH  its Hermitian part, ( )Bminλ=η  be the smallest 

eigenvalue of ( )∗− +−= UUDHB 12  and 

( ]

( )

( )









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<η
η−

∈

=η∈

≥η∈

.0,2
2,0

,0,1,0

,0,1,0

ifw

ifw

ifw

 

Then for any initial vector ,0z  Algorithm 1 convergence to the unique 

solution of ( )., qALCP  

3.5. Krylov subspace methods for ( )qA,LCP  

Here, we survey the Krylov subspace methods for LCP [23]. We know 
these methods are based on refinement residuals algorithms. Then if we 
consider the MAOR for LCP based on refinement methods, we have the 
following algorithm: 

Algorithm 2: MAOR ( )qA,  

Step 1. Choose an initial vector ( ) ,0 nRz ∈  parameter w. 
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Step 2. For …,2,1,0=k do 

( ) [ ( ) ( ) ( ) ],1111 kkk zLALzqr −+−+ Ωγ−+Ωγ−−=  

( ) ( ) ( ),1111 +−++ Ω+= kkk
iii rDzz  

( ) { ( )}.,0max 11 ++ = kk
ii zz  

Step 3. If ( ) ( ),1 kk zz =+  then stop; otherwise, set 1+= kk  and go to 
Step 2. 

Therefore, based on the concept of refinement methods and 
Algorithm 2, we can explain the Krylov subspace methods for LCP. Now, 
we shortly describe a Krylov subspace method called conjugate gradient 
squared method (CGS) for ( )., qALCP  

The conjugate gradient squared method is a related algorithm that 
attempts to improvement the some problems of bi-conjugate gradient 
method (BiCG). Additionally, often one observes a speed of convergence 
for CGS that is about twice as fast as for the biconjugate gradient 
method; see [32]. 

Algorithm 3: CGS for ( )qA,LCP  

1. Compute ( ) ( ).00 Azqr −−=  

2. Set ( ).~ 0rr =  

3. For ,,1 …=k  until convergence do 

( )
( ),~ 1

1
−

− =ρ k
k rr T  

if ,01 =ρ −k  then method fails, 

if 1=k  

( ) ( ),11 ru =  

( ) ( ),11 ul =  
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else 

2
11

−
−

− ρ
ρ=β

k
kk  

( ) ( ) ,11
1

−−
− β+= kk
kk yru  

( ) ( ) ( ( ) ),1
111

−
−−− β+β+= k
kkk

kk lyul  

end if 

Solve ( ),ˆ kll =  

,ˆˆ lA=ν  

,
ˆ~

1
ν

ρ=α −
Tr

kk  

,ν̂α−= kkk uy  

Solve ( ) ,ˆ k
k yuu +=  

,ˆˆ uAl =  

( ) ( ) ,ˆ1 uzz k
kk α+= −  

( ) { ( )},,0max kk zz =  

( ) ( ),kk Azqr −−=  

4. end. 

Remark 1. All of these techniques and their results are also 
applicable for parallel computing such as multisplitting methods [10, 28, 
34-36], SIMD and MIMD systems [26, 27]. 

4. Numerical Examples 

Here we give some examples, to illustrate the results obtained in 

previous section. The initial approximation of 0z  is ( )Tz 1,,1,10 …=  

and as a stopping criterion we choose 
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Furthermore, we report the CPU time and number of iterations for the 
corresponding iterative methods by CPU and Iter, respectively. All the 
numerical experiments presented in this section were computed with 
MATLAB 7 on a PC with a 1.86GHz 32-bit processor and 1GB memory. 

Example 4.1. Consider ( )qALCP ,  as 

( ( ) )





∈−−=

∈⊗+⊗= ×

,1,,1,1

,
2 NTn

NN

Rq

RIRBIA

…
 

where NNRI ×∈  and ⊗  denotes the Kronecker product. Furthermore,   
B and R are nn ×  tridiagonal matrices given by 

[ ( ) ( )]

[ ( ) ( )]














==

−−+−=

−−+−=

.;/1&

,4
1,0,4

1ltridiagona

,8
2,1,8

2ltridiagona

2nNnh

hhR

hhB

 

Evidently, A is an H-matrix with positive diagonal elements so, 

( )qALCP ,  has a unique solution. Then, we solved the 22 nn ×  H-matrix 

yielded by the iterative methods. 

In Table 1, we report the CPU time and the number of iterations for 
the corresponding GAOR methods. Also, the N parameters iw  are taken 

from the N equal-partitioned points of the interval [0.9, 1.1] and alpha is 
one. 
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Table 1. It shows the results of Example 4.1 for GAOR 

Method GAOR 

n Iter CPU 

7 53 0.070 

25 315 19.520 

In Table 2, we report the CPU time and the number of iterations by 
different n for the corresponding AOR methods with ( ).8.0,1 == rw  

Table 2. It shows the results of Example 4.1 for AOR 

Method GAOR 

n Iter CPU 

9 94 0.130 

18 248 3.800 

25 375 27.689 

In Table 3, we report the CPU time and the number of iterations by 
different n for the corresponding SOR methods with ( ).9.0=w  

Table 3. It shows the results of Example 4.1 for SOR 

Method GAOR 

n Iter CPU 

10 111 0.270 

20 288 5.538 

30 460 72.554 

Example 4.2 (Application to the obstacle problems). 

The test problem comes from the finite difference discretization of the 
one side obstacle problem [33], 

,,0, Kubu ∈ν∀≥−ν−∆−  

where { ( ) } ( ) ( ) ( ).1,01,0,4sin4,0:1
0 ×=Ω=≥νΩ∈ν= xybHK  By 

discretization, we obtain the problem as ( ),, qMLCP  where 
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( ( )) ,,,1,,/4sin4,,/1 222 mjimijhqmnmh ij …====  

,nnR

AI

I

AI

IA

M ×∈































−

−

−

−

=

%%

%%%  

where I is the identity matrix of m-dimension, and 

.

41

1

41

14

mmRA ×∈































−

−

−

−

=

%%

%%%  

In Table 4, we report the CPU time and the number of iterations for 
the corresponding GAOR methods. Furthermore, the N parameters ,iw  

are taken from the N equal-partitioned points of the interval [1, 1.02] and 
alpha is one. 
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Table 4. It shows the results of Example 4.2 

Method GAOR 

n Iter CPU 

100 102 0.004054 

225 198 0.064214 

400 345 0.289446 

625 472 0.839852 

900 608 1.960319 

1225 744 3.688457 

1600 907 8.138793 

2025 1063 25.073047 

2500 1249 27.860959 

Example 4.3. Consider ( )qALCP ,  with following system: 

,NNRFIIIFIIIGA ×∈⊗⊗+⊗⊗+⊗⊗=  

( ( ) ) ,1,,1,1
3 NTn Rq ∈−−= …  

where .NNRI ×∈  Also G and F are nn ×  tridiagonal matrices given by; 

[ ( ) ( )],12
22,1,12

22ltridiagona hhG −−+−=  

[ ( ) ( )],12
2,0,12

2ltridiagona hhF −−+−=  

.;/1and 3nNnh ==  

Then, we solved the 33 nn ×  H-matrix yielded by the iterative methods. 
In Table 5, with several values, we report the CPU time (CPU) and the 
number of iterations (Iter) for the corresponding SSOR methods        
(when N = 1000). 

 

 

 



PROJECTIVE ITERATIVE METHODS FOR SOLVING … 85

Table 5. The results of Example 4.3 for SSOR 

Method SSOR 

w Iter CPU 

0.02 615 110.788 

0.1 142 24.391 

0.2 74 12.523 

0.4 37 6.112 

0.7 20 3.390 

0.9 15 2.607 

1.2 13 1.863 

Example 4.4. Consider some randomly generated LCP with non-
Hermitian positive definite A, where the data ( )qA,  are generated by 

the Matlab scripts: 

                  function random for LCP(n) 

rand (‘state’, 0); 

R = rand (n, n); 

     A = R + n eye (n); 

q = rand (n, 1). 

In Table 6, we report the CPU time (CPU) and the number of 
iterations (Iter) for the corresponding SOR-like method for different 
values of n and w. 
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Table 6. It shows the results of Example 4.4 for SOR-like 

Method   SOR-Like  

n the sign of η  w Iter CPU 

100 + 0.1 135 0.005278 

  0.5 24 0.001008 

  1.0 19 0.000720 

1000 + 0.1 145 0.399574 

  0.5 26 0.070849 

  1.0 19 0.051053 

1500 + 0.1 147 0.901282 

  0.5 26 0.158273 

  1.0 19 0.116798 

Example 4.5. Consider ( )qALCP ,  with ( ) ( )2121 nnnnRA +×+∈  and 
( )21 nnRq +∈   

;
2

1














=

DK

HD
A  

;; 2211 2211 nnnn IDID ×× ×α=×α=  

.and

06
1

6
100

4
1

06
10

4
1

4
106

1
6
1

4
106

1

04
104

10

04
104

1

21

T

nn

HKH =



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






































−−

−

−

−−−−

−−

−−

−−

=

×
"

%%%%#

%%%

%

#%%

"

""

 

And 

( ( )( ) ) ( ).1,,1,1 2121 nnTnn Rq ++ ∈−−= …  
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Then, we solved the ( ) ( )2121 nnnn +×+  H-matrix yielded by the MAOR 

iterative methods. 

In Table 7, we report the CPU time (CPU) and the number of 
iterations (Iter) for the corresponding MAOR methods for different values 
of 2121 ,,, nnαα  and ( ).88.0and,92.0,89.0 221 =γ== ww  

Table 7. It shows the results of Example 4.5 for MAOR 

 Method  MAOR 

1α  2α  1n  2n  Iter CPU 

0.5 1.5 5 9 21 0.000314 

0.5 1.5 9 9 40 0.000471 

0.6 1.6 10 15 18 0.000292 

0.6 1.6 15 10 32 0.000465 

0.6 1.6 15 15 50 0.000935 

0.6 1.7 900 600 99 0.619097 

0.6 1.7 600 900 99 0.621756 

0.6 1.7 900 900 99 0.887001 

In Table 8, we report the CPU time (CPU) and the number of 
iterations (Iter) for the corresponding CGS method for different values of 

,, 21 αα  ., 21 nn  
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Table 8. It shows the results of Example 4.5 for CGS 

 Method  CGS  

1α  2α  1n  2n  Iter CPU 

0.5 1.5 5 9 10 0.003633 

0.5 1.5 9 5 11 0.003954 

0.5 1.5 9 9 14 0.005302 

0.6 1.6 10 15 13 0.003690 

0.6 1.6 15 10 13 0.004340 

0.6 1.6 15 15 15 0.006117 

0.6 1.7 900 600 71 3.530221 

0.6 1.7 600 900 71 3.966532 

0.6 1.7 900 900 71 6.127211 

5. Conclusion 

In this paper, we have studied the projection iterative methods for 
linear complementarity problem and established the convergence for 
these methods under certain conditions. Furthermore, we have used the 
Krylov subspace methods such as conjugate gradient squared method for 
LCP. The results show that these methods are efficient. 
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