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Abstract

Abstract maximin problem is considered. The statement variant with
constraints of asymptotic character is considered. In main part, the case of
«moment» constraints is investigated. In this case, the comparison of different
variants of constraint weakening are realized. The conditions of asymptotic
nonsensitive under weakening of constraints part are obtained.

Introduction

In the following, some abstract variant of the next informative control
problem 1s considered. Now, we discuss this informative problem in the
simplest form. In addition, we fix two linear control systems on the same

time interval [0, 1]:

7= Oy () +5y(0), £ = v(E)ba(t) + by(t). (0.1)
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We suppose that the phase space of the above-mentioned control system

is n-dimensional. So, in (0.1), y and z are n-dimensional vectors. We

suppose that u = u(-) and v = v(-) are programmed controls defined on
the «pointer» [0, 1. Moreover, in (0.1), b = b,(-), b, = by (), by = by("),

and 52 = 52() are n-vector-functions (the functions with n-dimensional
values). We have a continuous real-valued function fy = fy(, ) of two

variables of n-dimensional space. Suppose that the cost is defined as

fo(y(1), 2(1)). In addition, we suppose that the first player I strives to

minimize this cost and the second player II strives to maximize this cost.

We consider the maximin problem for criterion fy(y(1), 2(1)). In addition,
the concrete choice of controls v = u(-) and v = v() must realize with

validity of constraint. We consider the case when these constraints
include impulse and «moment» components. We admit a weakening of
«moment» constraints both for player I and for player II. As a result, the
cost maximin can be changed. We consider the corresponding asymptotic

of the cost maximin under employment of more precise constraints.

In addition, we consider different types of the weakening of the
«moment» constraints. We will establish some variant of asymptotic non-
sensitivity under weakening of constraints part. In the following
investigation, approach connected with extension of the initial problem is
used. We note constructions of [1]-[4]. For constructing «asymptotic»
solutions, the corresponding generalized controls are used (see [1]-[4]). In
class of generalized controls, we can consider the game problem with
precise constraints (standard constraints). In addition, in many cases, the
corresponding generalized maximin defines asymptotics of realizable
values of maximin under weakened constraints.

We note that, in [1]-[3], for constructing of generalized control
problems measure-valued mappings (controls-measures) are used; in
addition, this approach is applied for control problems with geometric
constraints. In impulse control, we note original approach of Krasovskii
connected with employment of distributions. This approach was basis of
many following investigations of control problems with impulse

constraints.
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In our investigation, for generalized elements in maximin problem,
vector finitely additive measures (FAM) are used. The corresponding
applications can be connected with game control in linear systems under
constraints of impulse character; in addition, linear systems with

discontinuity in coefficients under controls can be considered.
1. General Definitions and Designations

As usual, we apply quantors and propositional connectives; = 1is
equality by definition. We use the term a family for a set all elements of
which are sets too. By P(H) (by P'(H)), we denote the family of all (of all

non-empty) subsets of a set H. By BA, we denote the set of all mappings
from a set A into a set B; if f € B4 and C e P(A), then f1(C)2{f(x):
x € C} € P(B) is the image of the set C under operation of the mapping
f (if C e P'(A), then f}(C) e P'(B)).

By R, we denote real line and suppose that N2{1; 2; ...}; if m e N,

then 1, m2{i e N|i < m} e P'(N). Let Tp be the usual topology of R
generated by the metric-modulus. As usual, we suppose that elements of

N not are sets. Using this stipulation, for any set 7'and number m € N,

we apply 7™ instead of T%™; so, T™ is the set of all processions

&), 77 :1,m—>T.

iel,m

Then, under m € N, R™ is m-dimensional arithmetic space; in addition,

strongly speaking, we consider elements of R as mapping from 1, m

into R. In general, in space of real-valued functions, we consider linear

operations, product, and order as pointwise. Of course, this stipulation
extend on spaces R”, where m € N. Here, we consider m-dimensional
vector as a function from 1,_m into R. For the definiteness, always, we
equip finite-dimensional arithmetic space with the norm of the following

type:If m e N and x = (x;). 7 € R™, then

iel,m
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[+ £ max|x;| e [0, ool
iel,m

Of course, under m e N, we use |- ||(m) for the mapping
x 0 [ ™) R > [0, . (L.1)

By T(Hg1), we denote the usual topology of coordinate-wise convergence in
R™. Of course, T(ﬂé") is generated by |- ||(m). Moreover, we introduce the

set R of all vectors (x;) e R™ with the property 0 < x; Vj € 1, m.

iel,im
In the following, the employment of the norm (1.1) is more suitable. We

introduce two types of neighbourhoods in (R™, T(ﬂé")), where m e N.

Namely, forany m € N, S € P(R™), and ¢ € ]0, «[, we suppose that
Of[S]2{x e R™[3s e St - o™ < ¢} e 7Y, 1.2)
and under any M e P(1, m),

a(gm)[sﬂw]é{(xi) 7eRm|E|(si) 7€S:(xj:s- VjeM)&

iel,m iel,m ]
(Joj —s;|<C Vel m\M)} (1.3)
of course, from (1.2) and (1.3), we obtain that
~(m)
O, [S| M=o 8], (1.4)

(m

: ~(m) m
(f M =2, then O, [S|@]=0{"[3]).

Some elements of topology

For any topological space (TS) (X, ) and a set A e P(X), we
suppose that cl(A4, 7) is closure of A in (X, 7) and 1| , is the topology of
A considered as subspace of (X, ) (of course, T4 2{ANG : G e 7}). We
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use the neighbourhoods definition of [5, Chapter I]: If (X, 7) is a TS and
x € X, then by filter base [5, Chapter I]

N2(x)2{G e 7|x e G} € P'(7),
1s defined filter of neighbourhoods
N.(x)2{Y ¢ P(X)|3G e N%(x): G c Y.

We consider nets as the triplets of the following type: (D, <, k) is a net in
a set Y in the case when (D, <) is a nonempty directed set [6, Chapter 1]

and f e YP. We apply the usual Moore-Smith convergence: If (X, 1) is a
TS, (D, %, f) is anet, and x € X, then

((D, s, f);xJ g (VH e N.(x)3d; € D Vdg € D (d} <dy) = (f(dy) € H)).

(1.5)

For any net, the corresponding associated filter is defined. Namely, for
any net (D, <, f) in a set Z,

(Z -ass)[D; <; f12{A e P(Z)|3d e D YoeD (d=38) = (f(5) A}

(1.6)

Of course, in (1.5) and (1.6), we have the standard definitions of general

topology; see [5]-[7].

For any TS (T, t), T = @, and k € N, we suppose that ®" [t] is a

natural topology of the set T* corresponding to standard product of %
samples of TS (T, t); see [7].

Attraction sets

In the following, we use the notion of attraction set (AS)
corresponding to [8]-[12]. Namely, for any nonempty set X, a TS (Y, 7),

Y # &, a mapping g YX, and a family X e P'(P(X)), we denote by
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(as) [X;Y;T; g; X] the set of all y € Y for which there exists a net
(D, <, h) in X with the properties

(X« (X -ass)[D; x5 f]) & (D, 2,8°h)Dy). (1.7)

In connection with given general definition, we recall the known
statement of [9, Proposition 3.3.1] concerning to a sequential realization
of AS. Now, we note only one particular case sufficient for almost all
following constructions: If (in (1.7)) X 1s a directed family with a

countable base (see [9, (3.3.17)]) and (Y, 7) is TS with the first axiom of
countability, then, for exhausting realization of AS (as) [X; Y; T; g; X],
it is sufficient to use sequences in X, see (1.7).

For any set X, we define the family

B[X]é{ﬁeP'(P(X)NVBI EB VB2 EB E|B3 GBIB3 CBlmB2},

of all directed subfamilies of P(X); then Bo[X]2{®B e B[X]| D ¢ B} is
the family of all filter bases of the set X.

We note the following useful representation of AS in the case of
directed family defining constraints of asymptotic character: If X is a
nonempty set, (Y, 1) isa TS, g € Y¥, and B e B[X], then

(as)[X: Y: = & B] = () cl(g'(B). 7). (1.8)
BeB

In the following constructions, (1.8) is sufficient for all our goals. If
(U, 1), U=, and (V,79),V =&, are TS, then by definition
C(U, 1, V, 19) is the set of all (71, T9)-continuous mappings from U

into V. For any TS (T, 7), T # &, we suppose C(T, 1)2C(T, T, R, ).
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2. Finitely Additive Measures as Generalized Elements

We follows to approach of [8]-[12] connected with employment of
finitely additive measures (FAM) in extension constructions for abstract
control problems. In given section, we recall some required notions of
FAM theory. And what is more, vector FAM will be required.

For simplicity, in designation, now we fix a nonempty set £ and a
semialgebra £ of subsets of E (in following sections, we will use the
corresponding symbols instead of £ and L£). So, now we have the

measurable space (E, £) with a semialgebra of sets. In the following, we
use designations of [9], [11], and [13].

The cone (add),[£] of (all) real-valued nonnegative FAM on [
generates the space A(L) of real-valued FAM on £ with the bounded
variation; see [9, p. 39].

In addition, the linear space A(L) is equipped with the strong norm
defined (for any FAM of A(L)) as total variation. Of course, (add), [£]
c A(L).

In the following, we use step function and stratum functions. These
functions are elements of the Banach space B(E) of bounded real-valued
functions on E with the sup-norm |- | (see [14, Chapter IV]). The linear
manifold By(E, £) is defined as linear span of the set {y7 : L € L} of all

indicators of sets of £ (in addition, for A € £ 3, € R¥ is defined by the

rule
(xa(®)21Vx e A) & (xa(¥)20Vy e ENA);

subsets of E and its indicators are identified). The closure of By(E, L) e
P'(B(E)) in the topology generated by sup-norm | -| is denoted by
B(E, L); of course, By(E, £) c B(E, £). Then, B(E, L) considered as a
subspace of (B(E),|-|) is a Banach space for with the topological
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conjugate space B"(E, £) with the traditional (for the Banach space
theory) norm is isometrically isomorphic to A(L) with strong norm-

variation (this property is analogous to similar supposition of
[14, Chapter IV] for measurable spaces with algebra of sets). In terms of
the simplest integration construction in [8, Subsection 3.4], the

corresponding isometric isomorphism is defined by natural rule
R (J' fduj . A(L) > B'(E, L).
E feB(E, L)

Of course, for duality (B(E, £), A(L)), the «usual» *-weak topology
T+(£L) of A(L) is defined (see [8, Subsection 3.4]). Then (A(L), 7.(£)) is a
locally convex c-compactum. Along with T.(£), we use topology T((L)

[8, (4.2.9)] of subspace of Tichonoff power of real line R with discrete
topology under employment of £ as the index set. So, (A(L), To(£)) is

the subspace of the above-mentioned Tichonoff power. As in

[8, Subsection 4.2], we introduce the topologies
Fr02 70 @aania) & FEO2700) @) @D

of the cone (add),[£] for which [8, (4.2.12)] 7i(£) < 7¢(L). The
nonnegative cone of By(E, £) (of B(E, £)) is denoted as B{(E, L)
(as BT(E, L)); see [8, p. 66].

In this section, we fix r € N. By By ,[E; £] and B,[E; L], we denote
the sets of all processions

(fi)iciy 1 L7 = By(E, £) and (f;); g5 : L. r > BY(E, L),

iel,r
respectively; of course, By ,[E; £] = B/[E; L]. As a corollary, B .[E; L]

= By(E; £)" and B;[E; £] = B*(E, L£)". Moreover, (add);[£]2(add), [£]"

is the set of all processions
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(4)eis 17— (add), 2]

We use the standard variant of the equipment of the (nonempty) set

(add);[£] with a topology. For this, we apply (2.1). So, ® [1{(£)] and

®" [13(£)] are the required topologies of (add);[£] for which
®" [1i(L)] € ®"[15(L)]- (2.2)

Then, triplet ((add);[£], ®" [ti(£)], ®" [r§(L)]) is a bitopological space

in the sense of [16]. Of course, both topologies in (2.2) realize Hausdorff

spaces.

We fix a nonzero FAM n e (add), [£] until the end of present section.
In addition, n(E) # 0. Using definition of [9, Chapter 3], we introduce

the cone
(add)"[£; n] 2 {n € (add),[£]| VL € £ (n(L) = 0) = (W(L) = 0)}, (2.3)

of all weakly absolutely continuous (with respect to n) nonnegative FAM

on L. In connection with (2.3), see [17] also. For our goals, the nonempty

set
(add); [£; n]2 (add)"[£; ], (2.4)

of all weakly absolutely continuous nonnegative vector FAM is very
essential. Of course, (2.4) is the set of all processions

(Wi)ieiy : L 7 > (add)*[£; m].

The density property
For any f € B(E, £), we define by f *n indefinite integral of f with

respect to m; f *m € A(L). So, f *n is n-integral as a set function. Of

course, for f € B*(E, £), f *n € (add)"[£; n]. And what is more, from
statements of [8] and [9], we obtain that
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(add)"[£; n] = cl({f *n: f € BG(E, L)}, 7:(£))
=cl({f *n: f € By(E, L)}, 7o(L))
=cl({f*n: f € Bj(E, £)}, (L))
=c({f *n: f e Bj(E, L)}, 75(L)). (2.5)
We note that (2.5) has a vector analogs. In this connection, we recall that

®" [t5(£)] and ®" [t§(L)] are topologies of the set (add)![L], for which
(2.2) 1s valid. Using (2.5), we obtain that

(@dd); [£; n] = el({(fi * )iy : (Fi)icy € Bo, B L]}, ® [72(£)])

= cl({(f; * )ity )iy € Bo, B L1}, ® [15(0)]).  (2.6)

3. Integral Constraints and their Relaxations

(General Statements)

In this section, we use the space (E, £, n) of the previous section.

Now, we recall statements of [13]. Fix a number n € N and a mapping
S:1,nx1,r— B(E, L). (3.1)

So, in this section, we fix (stratum) matriciant S with components S; ;,

iel,n, je 1,_r Strongly speaking, Vi e 1, n, Vj € 1,_r

Si,j £ S(L, ]) € B(E, ,C)

Moreover, in this section, we fix a closed (with respect to topology T](él))
set Y € P'(R™). Finally, we fix a closed (in T(]é)) bounded set F € P'(R});

we recall that R’ is the nonnegative cone of the space R”. From the

compactness property of F, we obtain that the number
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r

Cp = max x; € |0, oof, (3.2)
F (xi)iel,rdF; 2 [ [

is defined correctly. We consider the set

(r —adm)[F| E; L; n]é{(fi)id,r € Bj ,[E; L]| (IEﬁdnj € F} e P'(Bj ,E; L]).

iel,r

(3.3)

In this section, we consider the following integral constraints:

[ijEsl’ijdnJ (S Y, (34)
j=1 In

iel,n

on the choice of (f;) € (r—adm)[F| E; £; n]. In connection with

jelr
(3.4), we consider the corresponding set of admissible elements; but, it is
useful to consider this notion in more general form: If Y € P(R"), then

we suppose that

((n, r) - ADM)[F| E; £; n; Y; S]

£ (f)ey € (r - adm)[F| E; £; n]|(ZJEsi,jfjdn] e Y| (35)
= In

iel,n

Of course, in (3.5), we can consider the case Y = Y supposing the set of
admissible (in strong sense) elements; we can consider the variant for
which Y in (3.5) is defined as a neighbourhood of Y too. In last case, we

can use different variants of neighbourhoods (see (1.2), (1.3)).

For the set of generalized elements, we use
X, (B £ F12{(u))jery < (@dd) [ ]| (n)(E));q; < F}

€ (®" [1:(£)] - comp)[(add){[L]],  (3.6)
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(see [13, (4.24),(4.26)]). From (3.2) and (3.3), we obtain that

D) E) = Y[ fdn<es Y(f)i < (- - adm)[F] B: £ )
i=1 i=1

3.7

In connection with (3.7), we note some addition connected with (2.6).
Namely, from (2.6), (3.3), and (3.6), we obtain that (see [8, (3.4.10)])

(fi * )iy € Zo[E; Ly F] V()i € (P —adm)[F| E; L;n].  (3.9)

From (3.3) and (3.8), we obtain that (3.6) is a nonempty set. With regard

to (3.8), we introduce the mapping I in the form of

)iy = (i # )iy - (0 —adm)[F| E; £ ] - 2, [E; £; n; Fl. (3.9)

Using (3.6) and (3.9), we obtain under 7 = ® [75(£)] and T = ®"[1{(L)]
that set cl((r—adm)[F|E; £;n], T) 1is defined correctly. With

employment of reasoning similar [13, Proposition 4.2], we obtain that
S [E; £ m; F] = (T ((r - adm) [F| E; £; m]), ® [ (L))
= cl(I'((r - adm)[F| E; £; n]), ®" [t6(L)]). (3.10)

In connection with (3.10), we realize the passage to subspace of

(add); [£]: We introduce the topologies

(t3[E; L5 m Flr]2 @7 [14(L)] |Zr[E;£;n;F])’

and (3.11)

(TOZ[E; L;m; Flr]2®" [15(L)] |Zr [E;[;;n;]y]),
of the set (3.6). Of course, from (3.6) and (3.11), we obtain that

(X,[E; £;m; Fl, w3 [E; £; m; B 7)), (3.12)
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is a nonempty compactum. By (2.2), the following inclusion:
TS [E; L;m; Flr] T%[E; L;n; Flr], (3.13)

is realized. From (3.13), we have the obvious comparability property of
AS;

(@s)[(r - adm)[F | E; £; n]; £,[E; £; n; F); 79[E; £ m; F7]; T; X]

< (as)[(r — adm)[F| E; £; n]; X,[E; £; n; Fl; t3[E; £;m; FIr]; T; X]
VX e P(P((r - adm)[F| E; £; n))). (3.14)

Moreover, from (3.10) and (3.11), the following universal density property

are realized:
(I ((r — adm)[F| E; £; n)), T5[E; £; m; F|r])
= ol(1'((r — adm)[F | E; £; n]), 79 [E; £; n; F|r])
=X, [E; £; n; FI. (3.15)

Now, we recall (3.5). For this definition, we introduce the corresponding

generalized analogue of (3.5). Let S be the following mapping:
r
(},Lj )]eﬁ g {ZJ.ESL]d}J.JJ : Zr[E; [:; n; F] i d Rn. (316)
Jj=1 ieﬁ

Then, the generalized variant of (3.5) defined for precise Y-constraint is

realized in the following form:

(n, r) - ADM)[F| E; £; m; Y; S]2S7H(Y)

.
= (1j)jar € X [E; £ m; F| [ZJESi,jduj] eY;, (317
=1 In

iel,n

is the set of Y-admissible generalized elements. In connection with (3.5),

we note that
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(n, r) = ADM)[F | E; £; m; Y; S]

& {((n, r)— ADM)[F| B; £; m; OP[Y; S]: € € 0, o]

€ Bl(r — adm)[F| E; £; n]]. (3.18)

In (3.18), we have the natural variant of «asymptotic constraints»,
connected with «uniform» weakening of standard Y-constraints. We will
consider another variants of weakening of the Y-constraint. Namely, we

will consider «nonuniform» weakening. For this, again we introduce the

set
(n, r) - step)[E; £; S]2{M e P, n)|S; ; € By(E, £) Vie MVjel, r).

(3.19)
In (3.19), the graduatedness sets of our matriciant are considered. For
any M e ((n, r)-step)[E; £; S] and ¢ € ]0, o, the set 6(;) [Y|M] is
defined. Then, along with (3.18), we consider the families

((n, )~ ADM)[F | E; £; n; Y; M; S|
L {((n, r)-ADM)[F|E; £; n; (AQEH) [Y|M]; S]:¢e]o0, oo[}

eB[(r-adm)[F|E; £;n]] VM e((n, r)-step)[E; £; S]. (3.20)

So, we have two types of «asymptotic» constraints. Namely, we

weaken Y-constraint with respect to «all directions» and with respect to

a part of «directions». In the following, we will establish that, for the both
above-mentioned variants, the corresponding asymptotic is defined by
(3.17). In addition, we require that, in the last case, the choice M from the
family (3.19) is assumed (in this connection, we keep in mind the variant
(3.20)).
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Remark 3.1. In connection with (3.19) and (3.20), we note that
D € ((n, r) - step) [E; L; S]; therefore, the family

(0, r)- ADM)[F| E; £; n; Y; @; S] € B[(r — adm)[F| E; £; n]],
is defined correctly. In addition,
((n, r) - ADM)[F| E; £; m; Y; S] = ((n, ) - ADM)[F| E; £; n; Y; & S].
(3.21)

So, for the case M = & (we keep in mind the choice of M from the family

(3.19)), we obtain unique constraints of asymptotic character.
For the end of the present section, we fix the set

M e ((n, r) - step)[E; L; S]. (3.22)

Proposition 3.1. The set (3.17) of all generalized admissible elements
realizes the «unique» asymptotic of admissible (in the usual sense) sets

under a weakening of Y-constraint
(0, r) = ADM)[F| E; £; m; Y; S]
= (as)[(r - adm)[F| E; £; n]; X,[E; £; n; Fl; 73[E; L5 m; F 7]
L ((n, r) - ADM)[F| E; £; n; Y; S]]
= (as)[(r — adm)[F| E; £; n]; X,[E; £; n; F; 75 [E; £ m; F s
L ((n, r) - ADM)[F| E; £; n; Y; M; S]]
= (as)[(r - adm) [F| E; £; n]; 2, [E; £; n; F); 73 [E; £ w; F7);
L (n, r) - ADM)[F | E; £; m; Y; S]]
= (as)[(r - adm)[F| E; £; n]; 3,[E; £; n; F); 73[E; £ w; F7);

L ((n, r) - ADM)[F| E; £; n; Y5 M; S]]. (3.23)
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The corresponding proof is the simple corollary of statements of
[13, Section 4] (in particular, we keep in mind Theorems 4.1 and 4.2 of
[13]). The base property is the equalities chain (2.6). This proof differ
from analogous statements of [9, Chapter 4] only technical details.

Therefore, we omit this proof.
Attainability property

In this section, we fix k € N and mapping

G, j) AL kx1,r - BE, L). (3.24)

Of course, for any (f; ) € B ;[E; L], the vector

jelr
r
k
{ZJ. Ai,jfjdn] e R,
— ) g _
Jj=1 iel,k
is defined. As a corollary, we define the mapping
A:(r—adm)[F|E; £; n] - Rk,

by the following rule:

el k

:Zl((fz)leﬂ )é(ZJ.EAi’jfjdﬂj V(fj )jeﬂ e(r-adm)[F|E; £; n].
=

(3.25)

We consider AS on the values of A : Forany 2 e P'(P((r- adm)[F| E; £;n)))
(as)[ (" —adm)[F|E; £; n]; RS +%); A: 2 ] e P(RK).
Moreover, along with K, we consider the mapping

;lzzr[E; L; n;IE‘]—)Rk,
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by the following rule:

r

A((H) )iy )é{ZjEAi,jdeJ V(uj)jareX [ E Lin F.
J=1 iel, k

(3.26)

By (3.9), the mapping Aol is defined. By [8, (3.4.11)], from (3.25)
and (3.26), the equality

A=AoT, (3.27)

follows. From definition of the *-weak topology, the obvious continuity

property
A e C(Zr[E; L; n; Fl, 73 [E; £ n; F| 7], RE, T(ﬂé‘)), (3.28)

1s realized. By (3.27) and (3.28), we obtain the very important property:
Using [9, Proposition 5.2.1], we obtain that

(as)[(r—adm)[IHE; L;ml; RK, T%f); A; i)%}

= AN(as)[(r - adm)[F| E; £; n]; X,[E; £; n; Fl; 75[E; £ m; F|r]; I R])
VR e P(P((r - adm)[F| E; £; n])); (3.29)

in this connection, see [12, (3.3), Proposition 3.2]. From (3.29) and

Proposition 3.1, the important result follows:

Proposition 3.2. The next equality chain takes place
AN(((n, r) - ADM)[F| E; £; m; Y; S])
:(as)[(r—adm)[F|E; L;nl; RK, T%lg); A; (n, r)-ADM)[F|E; £; n; Y; S]}
:(as)[(r—adm)[IHE; £;n]; RE, T%); A; (m, r)-ADM)[F|E; L;n; Y; M; S]}

(3.30)
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We recall (3.18) and (3.20); in these families, we have two different
(generally speaking) variants of constraints of asymptotic character.

Now, we introduce the known n-refinement relation: If X and 9 are

families, then

x-10)8vAaecx IBecY:Bc A). (3.31)

In the following, we use (3.31) without additional clarifications. Of

course, in the capacity of X and 2), we can use (see (3.31)) families of

subsets of (r — adm)[F| E; £; n]. In addition,
vx e P(P((r - adm)[F| E; £; n])) VY e P'(P((r - adm)[F| E; £; n]))

x+49)= ((as)[(r—adm)[F|E; £; n]; RS 7% 4; 9]

c(as)[(r—adm)[F| E; £; n]; RE; T%); A; x]). (3.32)
From (1.4), (3.5), (3.18), (3.20), and (3.31), we obtain that
(0, r) = ADM)[F | E; £; n; Y; S]-((n, r) - ADM)[F| E; £; n; Y; M; S].

(3.33)

In connection with (3.33), we note that the natural construction of 4 onto
the product

P'(P((r - adm)[F| E; £; n]))x P'(P((r - adm)[F| E; £; n])),
is a reflexive relation on P'(P((r - adm)[F| E; £; n])).
Theorem 3.1. If Z < P(P((r - adm)[F| E; £; n])), then
(((n, r)— ADM)[F| E; £;m; Y; S]42) &
(24((n, r)- ADM)[F | E; £; n; Y; M; S])

= ((@9)[ (-~ adm) [F| B; £ n; BY; <2 4 2])

= A'((, r) - ADM)[F| E; £L; w; Y5 S]). (3.34)



ABOUT ASYMPTOTIC NONSENSITIVITY PROPERTY IN ... 29

Proof of Theorem 3.1 is reduced to the immediate combination of (3.32)
and Proposition 3.2. In Theorem 3.1, we have the statement about
asymptotic nonsensitivity in the range of constraints of asymptotic

character. The corresponding range is defined in terms of rn-refinement

(see [16]). The essential part of the used construction is Proposition 3.2.

In the following, we use constructions of this section in two variants.
Namely, as in Introduction, we consider the above-mentioned extension
procedures for first and second players (player I and player II)
separately. Of course, for this, some designation changes will be

necessary.
4. Extension of a Game Problem

We use notions of Section 3. Fix the following two measurable spaces
with semialgebras of sets: (Ej, £;) and (Es, L5), where E; # &,

Ey # O, £; is a semialgebra of subsets of Ej; Lo is a semialgebra of

subsets of Eg. Therefore, we use constructions of Section 3 under

suppositions (E, L) = (E;, £L;) or (E, L) = (Eq, Ly).

We fix r e N and rg € N in the capacity of dimensions of

instantaneous controls of players I and II, respectively. We obtain the

following sets of step vector-functions:

Bg,rl [Eq; L], BJ’Q[EQ; L] (4.1)

In the following, vector-functions of the sets (4.1) are used for usual

controls of players I and II. For nonempty sets (add );rl [£,] and (andd);r2 [La],
we use topologies ®[r(£1)],®" [t¢(L£1)] and ®"% [H(Ly)],
®"2 [76(Ls)], respectively.

Fix n; € (add),[£;] and ny € (add),[Ls]; suppose that n;(E;) = 0

and ng(Eg) # 0. In the terms of n; and ng, we form the nonempty sets

(add); [£y; m ] (add); [Lo5 m2].
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Fix n; e N and ny € N. We consider n; and n, as two concrete

variants of n of Section 3. Moreover, fix mappings

S 1 n; x1, 1 — B(E;, £1), S® :1 nyx1, ry - B(Ey, Ls);

in the following, SW and S@ are considered in the capacity of
matriciant for players I and II, respectively. As in Section 3, we suppose
that

(Sflj) 250G j) VieLn Vjeln)

and

(2 e8@ j) vieln, Vijelr)

Let Y; € P(R™) and Y, € P(R™2). We suppose that Y; is closed in
TS(R™, T(]Rnl)) and Yy is closed in TS (R"2, ’I'(RHZ)). So, Y; and Yy are

nonempty closed sets in the corresponding finite-dimensional spaces. By

Y; and Y, the constraints

a
S frdn,
;J.El 1,j]"]

ro
cY, and ZJ‘E S fidns Yy,
=

iE]., n; iel, ny

(4.2)

onthechoiceof(fj) T eBarl[El; ﬁl]and(fj) feBgrz[E%[Q],

jELrl Jel, r9

respectively, are considered. Along with (4.1) and (4.2), constraints of

impulse character will use too. We call (4.2) moment constraints.

Abstract constraints of impulse character

Fix bounded sets F; € P'(R}') and Fy e P'(R’?). We suppose that
(r1) (r2)

F, is closed in (R, T ) and Fg is closed in (R™2, TR~ ). Moreover,

we suppose that F; and Fy are bounded sets. We consider
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(r —adm)[F | Ey; £1; m ]

2 {(fi )ity € BJ,,I [Ey; £1]] UE fidnlj € Fl} € P’(Bg,,l [Eq; £y ]);
1 iel,rl

(ry —adm)[Fy | Eg; L£9; ng]

= {(fi Dict.ry € By, [Bas La]| UE fidﬂzj € ]Fz} € P'(By,,[E2; L2])-
2 iel,r2

In connection with definitions of Section 3, we suppose that

(0, ;) - ADM)[F, | Ey; Ly; ng; Y; S(l)]

a1
£ (fi)ietry € (n —adm)[Fy | By L9 ]| ZJ.E S}}J)fjdﬂl €Yy,
= b

iel,nl
vY e P(R™));
and

((ng, 7 )~ ADM) [ Fy | Eg; Ly ng; Y S

9
A 2 A~
2 iy <o madm) [ | By Lz ) [| D[ sPpamy| ¥},
= ici,ng
vY e P(R™2)). (4.3)

Of course, the sets (4.3) will be used in cases, when questions of

approximate validity of Y;-constraints and Yg-constraints are
considered. In these cases, in (4.3), neighbourhoods of Y; and Y, are

required to use.
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Now, we consider concrete variants of construction of previous section

connected with generalized elements. Namely,
By Lo B 12 (k) ey € (@dd)y [£0s ]| (0i(B1)jeiy, € B

(4.4)

1s the set of generalized elements of the first player. Analogously,
Y[ Eos Lo3 ng; Fo124(v)) iy, € (add)y, [Lo; ma] | (vj(E2))jeiy, € Fal-

(4.5)

So, in fact, we introduce generalized controls of both players. Of course,
usual controls can be represented as generalized controls. For this goal,

we introduce the mapping I by the rule
(fi)icty 2 (i * iy ¢ (0 —adm)[Fy | Ey; Lo ny ] > X5 [Eys L45 s B L

(4.6)

Then, (1, —adm)[F, | E;; £1; ;] can be considered as everywhere dense

subset of the set (4.4)
S (B L35 mps B ] = d(T((5 - adm) [F | By; £q; 1)),
ty[Er; L1 s B ])
= ol(I'((ry - adm)[Fy | Ey; L35 my ), T (B Lo s B | ), (4.7)

where

TSy Ly By | 12@ [7(2y)])| S By Lo By 1o
and

e lEy Lys s By [ 11207 [v(L)] ] s, (8 2y )

The more detailed reasonings are reduced in the previous section.
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Analogously, (r, —adm)[Fs | Eg; Lo; ng] can be considered in the

form of everywhere dense subset of the set (4.5); for this goal, we

introduce the following mapping J:
(fi)ietry 2 (fi *M2)iciy ¢ (2 —adm)[Fy | Eg; Lo Mg ]
= X, [Eg; Lo mg; Fo,

considered as the immersion operator. In addition,

Y, [Eg; Lo ng; Fo] = cl(I((ry - adm) [Fy | Eg; Lg; ng]),

75 [Eo; Lg; mg; Fy | r2])
= cl(J((ry — adm)[Fy | Eg; L£o; ns]),
3 [Eg; Lo mg; B | ry)), (4.8)
where
TS [Ey; Lo mg; Fy| ]2 @™ [r1(Ly)]] o[ Eo; Loima; Fo 1o
and
T3 [Eg; Lo3 s B | 1212 @ [7§(L2)]] 5, [By: £:mg: B }

Moreover, we introduce two natural generalized operators. The mapping

S7 is defined as

rn
(u; )jeLTl - ZJE Sl(l) dy; t X [Ey; £1; n; By ] — R™; (4.9)
=1

iel, np

of course, (4.9) is generalized operator of player I. Analogously, the

mapping Sy is defined in the form
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2
2
vj)jeir, = ZJ.E Sz(;) v X, [Eg; Lo; mg; Fy] - R"2;
EA

iel, ny
(4.10)

(4.10) 1s generalized operator of player II.

The sets of admissible generalized elements of players I and II are

defined as preimages of Y; and Yy under operation of §; and Sy,

respectively;
M= ((ny, i) = ADM)[Fy | Eq; L4; 5 Yy sW]
={j)jeiry € Zn B Lo B[ S1((vj)jeiy) € Vi, (411)
N2 ((ng, ry) — ADM)[Fy | Eg; Lg; ng; Yo; S@)]
={(Vj)jciry € Zry[Eg; Lo Mg Fol[ Sal(v))jay, ) € Yol (4.12)

Elements of (4.11) (of (4.12)) and only they are admissible generalize
controls of player I (of player II). We note that this admissibility is

regarded in the sense of precise constraints corresponding to sets Y; and

Yy, respectively.

Now, we introduce two variants of constraints of asymptotic

character. Let
Ay 2 ((ng, 1y) — ADM)[F | Ey; Lg; mp; Yq; SD]
— {1, 1) - ADM[B | By; £33 mg 00 T SO ¢ e o,
e Bl(r —adm)[F | Ey; £1; m ]l (4.13)
Ay 2 (g, 1) — ADM)[Fy | Ey; Lg; ng; Vo5 S@]
~ (s, rz)—ADM)[Fz | By L3; np; OP2[Y,]; 8(2)]: ¢ e 1o, «

€ Bl(rp — adm)[F, | Eg; Lg; ng]]- (4.14)
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In (4.13) and (4.14), we use weakening of constraints in all directions.
This is connected with employment of neighbourhoods of Y; and Y,

defined in terms of norms.

Now, we consider another weakening of constraints. For this, we use
(3.20). Recall that

(g, ) = step) [2y; £3; SV]

(M e Pl ) SN € Bo(Ey 1) vie M Vel n) (4.15)
and
(ng, 15) - step) [Ey; Lo; S@]

{0 < Pl n,) 8% € By(Ey, £3) Vie M Vjeln) (4.16)
We fix sets M, e ((ny, r)—step)[Ey; £1; SV ] and My e ((ng, ) — step)
[Ey; Lo S(2)]. Of course, by (4.15) and (4.16),

(M clLn) & (Mycl ny).

In addition, we have two index sets defining the «step» directions of our

matriciants. Now, we introduce two variants of the family (4.19)
By 2((ny, ) - ADM)[F, | Ey; £y; g5 Yy3 My; sW]

=\((ny, 1 )-ADM)[F | E;; L4 my; @(gnl) [y | ) SW1:¢e]o, oo
€ Bl(r - adm)[F | Ey; Lo mi]], (4.17)
By = ((ng, ) — ADM)[Fy | Eg; Lo; ng; Yo; My; S]
:{((nz, r2) ~ADM)[F; | Eg; Lg; mg; 6(;2) [y | My ]; S ]:¢€]0, of

€ Bl(ro —adm)[Fy | Eg; Lo; mg]]l.  (4.18)
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Of course, A; and B; are realized two types of «asymptotic constraints»
for player I. Analogously, A, and 9B, are realized two types of

«asymptotic constraints» for player II. In the following, we will consider
immediate variants of constraints too. But, now we are restricted

consideration of the above-mentioned extreme variants 2, B, A5, and
By. From Proposition 3.1, we obtain the following two chains of

equalities:

M = (as)[(ry —adm)[F | Ey; Ly ] 2, [Es Lo B
TS [Eys Lo B n ] L 2]
= (as)[(r —adm)[F [ Ey; L5 m ] 20 [Eys L3 B L
t>[Ey; Lo;ms By r s T By ]
= (as)[(ry —adm)[F | Ey; £y m ] 2, [E Lo B
TS [Es L0 g Bl n ) 2]
= (as)[(r —adm)[F [ Ey; L5 m ] 20 [Eys L3 B L
TOZ[E1; Ly B r ] L 9By, (4.19)
N = (as)[(ry —adm)[Fy | Eg; Log; o ]; Xy, [Eos Lo Mg Fa;

ty[Eg; Lg; no; Fo| i 5 J; A ]

= (as)[(ro —adm)[Fy | Eg; Lo; na]; Xy, [Eg; Lo nas Fo;

ty[Eg; Lg; ng; Fy| 115 J; By ]

= (as)[(ry —adm)[Fy | Eg; Lo; ng s X, [Egs L5 Mg Fo |;

19 [Eg; Lg; mg; Fo| np]; J; Ap ]
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= (as)[(ry —adm)[Fy | Eg; Lo; na]; Xy, [Eg; Lo; nas o s

10 Eg; Lo na; Fo| 115 J; By ]. (4.20)

In the following, we fix k; € N and kg € N. Moreover, we fix the

mappings
AW 1k x1, 7 > B(Ey, £1); AP i1k, x1, rg > B(Ey, Ly).
(4.21)

By AW and A(z), we define two matriciants. In addition, we follow to

stipulations:

W2 aWG, j)vield Vel n)& (A2 2406 j)viel k; Vjel, )

(Al,] s J

(4.22)

Of course, in (4.22), the natural renamings are realized. With (4.21), the
«traditional» vector-functionals are connected: The vector-functional

A, :(rl —adm)[]Fl |E; Lismp > RX1 (4.23)
of player I is defined by the rule
A a2 2] ADG A | () <y —adm) (B | By L5y .
= ik
(4.24)
By analogy with (4.23) and (4.24), we introduce the vector-functional
Zl;:(rz—adm)[FﬂE’z; Ly ny |- RE2, (4.25)
of player II by the rule
9
n A 2
Az ((f; )iy )® ZIE Af;f] dngy V(fj )jcr, € (p—adm)
. il ky
kg
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We can consider (4.23), (4.24) and (4.25), (4.26) as goal operators in [9]-[11].

Moreover, we use AW for constructing of generalized vector-functional of

player I. Namely, we introduce the generalized vector-functional

P2 By Ly B ] - RE, (4.27)

by the following natural rule:

P((uj)jct ) J A(l)duj V(uj)jetry € Zr By L3 is B ]
LEl,kl

(4.28)

Analogously, we define the generalized vector-functional of player II.

Namely, we suppose that
Q: Z,,[Eg; Lo ng; Fy] —» RE2, (4.29)

is defined by the rule

2 _
Q((v))jci,ry re ZI Ai(,j)duj V(Vj)jel,rZ € 3y, [Eg; Lo mg; Fo .
iel, ko

(4.30)

Under employment of the sets 9t and 9 in the capacity of sets of

generalized admissible controls of players I and II, we consider IP’l(Em)

and Q'(M) as distinctive attainability domains.
Of course, the mapping P is generalized analogue of :é\ll, since

Pol=A;. (4.31)

The testing of (4.31) is realized with employment of simplest properties of
indefinite integral; see [8, (3.4.11)]. Moreover, we note that similarly to
(3.28)
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* k k
Pe C(Zrl[E1; Ly;ng; B ] ot By Ly ngs Fy| ], REY, T](Rl)). (4.32)

So, we obtain the collection (X, [Ey; L1;ny; Fy ], v [Eq; Loy Fy|rn ;L P)

with the properties (4.31) and (4.32). Moreover, we have the property
similar to the compactness property of TS (38.12). Namely,

(2, [Evs £1; ms B ] 75 [Eqs £45 g By 1)) is a nonempty compactum.

Then by [12, Corollary 3.1], the equality

(as)[(n —adm)[F | Ey; L4; m |; R¥1, T%l); A1 &)
= P'((as)[(r; - adm)[F, | Ey; L35 m J; Zo By Loy B D

ty[Er; L1 s By m i T &4 ])
vEy € P(P((ry - adm)[F | Ey; L3 mp]))- (4.33)

Of course, we obtain the concrete variant of (3.29). We can use in (4.33)

the families 2A; and 9%; instead of arbitrary family of subsets of
(r;y —adm)[F | Ey; £1; n1]. In these cases, (4.19) and (4.33) are used.
Then,

k —~~
(as) [ (3 —adm) [ F, | By; £q; ng J; RN, 7505 205 00]
—(as)[ (1 —adm)[ By | Ey; £q; my s R¥, <55 Ays 8] =P (). (4.34)

In reality, the more general property takes place. We keep in mind the
following concrete variant of Theorem 3.1: VZ e P'(P((r; — adm)[F |Ey;

Ly; m]))

(([=42)&(Z2+4%;))

= ((as) [ (3 ~adm) [Fy | Ey; 43 m s RS, 780 Gy 2] = P (o). (4.35)
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So, P'(9M) is very universal attraction set in R¥L : We can use

different families Z of subsets of (r; —adm)[F | Ej; £1; ;] with

properties 2; 4 Z and Z —+%B.

Now, we consider Q as generalized analogue of ;{2_ This

interpretation is natural since
Az =Qod. (4.36)

In addition, similar to (4.32), we have the continuity property

Q € C[S,, [Bos L3 ns B, 75 [Ey; Lo nas Fy| ry ], RE2, (52)) (4.37)

We obtain the collection (Z,,[Eg; L9;n2; Fa ], 5 [Eg; Lo;M9; Fo| 2], J, Q)
with the properties (4.36) and (4.37). In addition, TS
(X, [Eo; Lo; ng; B, 7[Eg; Lo} na; Fol 12 ]), (4.38)
is a nonempty compactum. By [12, Corollary 3.1],
(@9)[ ( —adm) [ By | Ey; L3 my s B*2, 7625 Ay; &)
= Q'((as)[(ry — adm)[Fy | Eg; Lo ngl; T,y [Eg; Lg; m2; Fol;
T5[Eg; Lo3 ngs Fol 1515 J: €2])
VEy € P(P((re —adm)[Fy | Eg; Lo; m2])). (4.39)

Of course, we can consider the variants of (4.39) corresponding to
employment of the families 25 and B5. Then, by (4.20) and (4.39),

k o~
(@s)[ (, —adm)[ Fy | E; Lo my s BE2, 52 Ao a1,]

=(as)[(n —adm)[Fy | Eg; Lg; no |; Rk2, T]%{Z); :lg; By | =Q! (97). (4.40)
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Of course, we can supplement the relation (4.40). For this, we use the

corresponding concrete variant of Theorem 3.1: VZ e P'(P((ry — adm)
[Fo | Eg; Lo n2]))

(A4 2)&(Z2-4B3))
= (@9)[ (5 —adm) [ Fy | By; L3 ny J; B2, 7525 Ay; 2]- @' (). (4.41)

We obtain that Q' (M) is very universal attraction set in RK2 Using

Q'(™M), we realize the attraction set for any family Z such that 2y -4 Z
and Z - B,.

On the other hand, P}(9) and Q'(M) are generalized «attainability

domains». We can consider (in the following) some generalized game for

which player I is realized the choice of vector measure
(0j)jetry € Zr By Lo ms B L (4.42)

and player II is realized the choice of vector measure

(v; )je@ € 2, [Eg; Lg; ng; Fa . (4.43)

Of course, vector measures in (4.42) and (4.43) play the role of strategies.
In the following, we will introduce the corresponding cost function. But,
this generalized game problem (we consider only maximin problem) will
be used for realization of asymptotics of usual maximin values under

employment of sets Z; € Z; and Zy € Z4 in the capacity of constraints

on the choice of vector-functions

(fj(l))jeﬁ € (ry —adm)[F | Ey; £q; 1],

and

(fj(Z))jel,Tg € (rg —adm)[F, | Eo; L9; 1o,
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respectively; here Z; € P'(P((r; —adm)[F | Ey; £1; n1])) and Z9 € P’
(P((rg —adm)[Fy | Eg; Lg; na])) satisfy to conditions

(Qll —|Zl)& (Zl 4%1) and (QLQ 422)& (22 4%2),

respectively. The more detailed constructing will be reduced in the next

section.

We recall that by (1.2), (1.3), and (4.3),
~(n1)
((ny, 1 )=ADM)[F | Ej; £45m; Op [V | My ]; s¥ ]

< ((ng. 1 )~ ADM)[F | By £q:my: O™ 1Y, ] 8Y) wee]o, of.

As a corollary, from (4.13) and (4.17), we obtain that

VAeAy 3BeB,:BcA (4.44)
Now, from (3.31) and (4.44), we obtain the property
A 4B (4.45)
Analogously, by (1.2), (1.3), and (4.3), we obtain that

((ng, rp )= ADM)[Fy | Eg; Ly; ng; @ZHZ) [y | My SP ]

C((n2, I )—ADM)[F2|E2, £2, N2; Oén2) [Yz ], S(Z)] VC_, E]O, OO[(446)

From (4.14), (4.18), and (4.46), we obtain that

VAeAy, 3IBeBy:BcA (4.47)
From (3.31) and (4.47), we obtain the following property:
Ag + By, (4.48)
Using (4.45) and (4.48), we obtain that

(Qll 4%1)& (le 4%2 ) (449)
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5. Maximin Problem with Constraints Weakening

(Informative Setting)

We recall that F;, and F, are nonempty finite-dimensional
compactums. Therefore, for some a; € [0, o[ and ay € |0, o[, the

properties
(|7 [M<a, vieR) & (|x|*)<a, vieh), (5.1)
take place. Using (4.4) and the definition of |- |[(¥), we obtain that
(B <ay V(1)) € Zn B Ly Bi] Vie Ln. (5.2

By ||-[;, we denote the natural sup-norm of the space B(E;) of all
bounded real-valued functions on E;: We use the concrete variant of

sup-norm | -| of the space B(E) in Section 2. Then, by (4.28),

A0
l’.]

‘IV(HJ )iciry € Zn B Ly Fy] Viel kg

P((1))jeiry <21 Y |
j=1

As a corollary, we have the following estimates. Namely, for

n
a; £a; max Z“Al(l)“ e [0, o[, the inequality system takes place
iel, kl j:1 ) 1
k
IP(Cr )ity )”( 1) <oy V(Rj)jcy € X B L15 g B L (5.3)

In connection with (5.3), we introduce the following ball:
U2 fx e RS o] *1) <oy ). (5.4)
Then by (5.3) and (5.4), we obtain the obvious inclusion

P2, (B L4y B < UL (5.5)

We equip the nonempty set U (5.4) with the metric p; defined in the

form
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(x', x") > |x' - x”||(k1) :UxU — [0, of.

In addition, topology Ty 1)| of the set U induced from (Rkl, T(Rkl)) is

generated by metric p;. Then, (U, p;) is a compact metric space. In

addition, by (4.11) and (5.5),

PL(m) < P, [Er; Ly mys F]) < UL (5.6)

Now, we consider analogous estimates for player II (we keep in mind
the inclusion chain similar to (5.6)). For this, we use the second
statement of (5.1). By analogy with (5.2),

viEg)l<ag Y (v))jcir, € ZrplE2; Loy mas Fo] Viel .  (5.7)

We introduce sup-norm |-, of the space B(Eg) of all bounded real-

valued function on E5. By (4.30) and (5.7), we obtain that

1Q(v))je75) @) <

2
Ai( )“ V(vj)jciry € Zry[Bos Lo; mg; Ty

Vi el ky. (5.8)

We suppose that oy € [0, oof is the number

2z s Z\
By (5.8), we obtain the following estimates:
1Q((v;)jctry )||(k2) Sag V(Vj)jeir, € ZrylEo; Lo; ng; Fa . (5.9)
In connection with (5.9), we introduce the following ball:

V2 fx e RE2[Jx]%2) <ay). (5.10)

By (5.9) and (5.10), we obtain the obvious inclusion
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Ql( er[E2§ Lo;mg; Fo]) < V. (5.11)

Using (5.10), we define the metric py in the form (x',x")
||x’—x"|(k2) : VxV — [0, o[. Then topology T(Rk2)|v of the set V is

induced by metric py. Of course, (V, pg) is a compact metric space. In

addition, by (4.12) and (5.11),

Q'(M) < Q'(Z,,[Ey; Lg; ng: F]) < V. (5.12)

In the following, we use the natural combination of (5.6) and (5.12).
Moreover, we use operators I and J of Section 4. In this connection, we
note that by (4.7), (4.31), and (5.6),

A1 ((F))a) =B (o)) €U
V(1] )jerr, € —adm)[F [ Ey; 4 g |-
Therefore, we obtain the following property:
A :(n -adm)[ F | E; £q;mg |- U. (5.13)
On the other hand, by (4.8), (4.36), and (5.12),
Az ((F)jr )= QUUfT*n2 )iy, )€V
V(] )jcr, €(p—adm)[Fy | Egs Lo; Mg |-
As a corollary, we have the obvious property
Ag i (ry —adm) [ Fy | Eg; Lg; mp ] > V. (5.14)

So, if player I chooses the vector-function (f; )jeﬁ e (r; —adm)[F |
Ey; £5 m1] and player II chooses (ff);c1,, € (r2 —adm)[Fy | Eg; L5 M2 ],

then the pair

(-’/le ((fl’)leLTl ) 22 ((fs")sesz )eUxV,
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is realized. Analogous situation is realized under the choice of
generalized controls. We consider the set U xV as a metric space.
Namely, we introduce ps : (U xV)x (U x V) — [0, o by the following
rule: If uy e U, v; € V, ug € U, and vy € V, then ps((uy, v;), (ug, vy))
= sup({p;(u1, ug); pa(vy, v9)}). Then, p3 is the concrete metric on
U xV generating the natural product of the topologies of U and V
generated by p; and py, respectively. Of course, (UxV, pg) is a

compact metric space.
In the following, we fix a function

f:UxV > R (5.15)

We consider f as the cost function in the corresponding game problem.

Namely, we consider games
VO ) A2 (o)) T (5.16)

with some constraints on the choice (f/),.i;; and ()5, We suppose

that these constraints are realized by weakening of the initial precise
conditions. As a result, we obtain constraints of asymptotic character
for which the game problems (5.16) are considered. We investigate

maximin problems. Moreover, under (p;);i; € X, [Er; £1; g3 Fi] and

(Vs )selirg € Zry[Eg; L33 ng; Fo], we obtain (see (5.5) and (5.11)) the pair

(P((11 ety )> Qs )setry ) € U V.

Therefore, we can consider the generalized game
‘L f(P((“l )leLTl)’ Q((Vs )SELTQ )) T’ (5'17)

under some fixed constraints on the choice of (n; );ci;; and (vg)seqy, -

(W)t €M) & ((Vg)serr, € N)- (5.18)
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Here, we investigate the maximin problem too. In the following, it is
established that this maximin problem defines important variants of
maximin asymptotics for game problems of type (5.16). So, the
generalized problem (5.17), (5.18) defines the «true» result for game

problems of type (5.16) under weakening of the initial precise conditions.
6. The Generalized Maximin Problem

In this section, we consider the game problem (5.17) and (5.18). Of
course, this problem is correct under M # & and N # &. In the
following, we consider only this case; so, we investigate the case of
compatible constraints of the generalized maximin problem: In the

following, we suppose that
Mm=+2) & M=z00). (6.1)

Proposition 6.1. Each of families 2, 29, B1, and By consists of

nonempty sets.
We use (4.19) and (4.20); moreover, we take into account [8, (2.5.1)].

U

Corollary 6.1. If Z € P'(P((r; —adm)[F; | E1; £1; n1])) and Z -8By,

then @& ¢ Z. Moreover, if Z e P'(P((ry —adm)[Fy| Eq; Lo;n9])) and
E’—HBQ, then @ ¢ Z.

Proof follows from (3.31). We omit this obvious reasoning. From

(4.13), (4.14), and Proposition 6.1, we obtain that
(2 € Bol(ry —adm)[Fy | Ey; L5 mp ]]),
and (6.2)

(g € Bol(rg —adm)[Fy | Eg; Lg; na]]).
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Analogously, from (4.17), (4.18), and Proposition 6.1, the following

properties imply:
(By € Bol(ry —adm)[Fy | Ey; L£1; m]]),
and (6.3)
(B € Bol(ry —adm)[Fy | Eg; Lo nz]]).
Finally, from Corollary 6.1, we obtain that
(VZ e Bl(ry —adm)[F | Ey; £1; m ]](Z2+4%,)
= (2 e Bol(r1 —adm)[F [ Eq; L35 i),
and (6.4)

(VZ € Bl(ry — adm)[Fy | Eg; Lg; ng]](Z+49B5)

= (2 € Bol(rg — adm)[Fy | Eg; Lg; nz]])).

So, in (6.2)-(6.4), we have the required variants of asymptotic
compatibility. Now, we return to (6.1) and will consider the generalized
game problem (5.17) and (5.18).

In the following, suppose that the cost function f (5.15) is continuous

with respect to topology generated by metric ps. By definition of ps, we

obtain that f is a function of two variables continuous with respect to

totality of the above-mentioned variables. Then, for any vector y € V,

the function f(:, y) defined in the form

x> flx, y): U > R, (6.5)
is continuous. In addition, the mapping (4.9) is continuous in the sense of
topologies Ty[E;; £1; my; Fy| ] and ~r(Rn1). Therefore, by (4.11), we

obtain that 9 is a closed set in topology T%[Ej; £1; ny; Fy|n] (recall

that Y; is a closed set) and, as a corollary, a compact set in this topology.



ABOUT ASYMPTOTIC NONSENSITIVITY PROPERTY IN ... 49
With employment of (6.1), we obtain that 9t is a nonempty set compact
in topology T3[E;; £1; ny; Fy| i ]. From (4.32), the compactness property
of P! (M) is realized; of course, we keep in mind compactness in
(Rkl, T(Rkl)). Therefore, from (5.6), we obtain the compactness of p! (om)
in topology T%‘l)| > Which is generated by metric p;. Then, P!(M) is a

nonempty compact set in metric space (U, p;). Therefore, by Weierstrass

theorem and continuity of the functions (6.5), we obtain that, under

yeV, mlin f(x, y) € R is defined correctly. As a result, the function
xelP*(901)

vyt min f(x,y): V - R, (6.6)
xePl(M)

is defined correctly. In addition, under y € V, the function
po= £(PR), y): M - R,
is defined correctly and attains the minimum; as what is more,

min f(P(u), y) = min f(x, y). (6.7)
pel xePH ()

From (6.7), we obtain that (6.6) coincides with the function

y = min f(P(n), y): V > R. (6.8)
nedn

So, we can use (6.8) instead of the above-mentioned function (6.6).

Proposition 6.2. The function (6.6) and (6.8) is continuous:

(g 0w ) <)

The proof is obvious: We use the coincidence of the functions (6.6) and

(6.8) and uniform continuity of f, since (U x V, p3) is a compact metric

space (in this connection, see [18, (3.4)]).
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Recall that

Sy € C(Z [Eg; Lo; mg; Fol, 75[Eg; Lg; ng; Fo| ], RM2, T(R”)).

ro
Since Y, is a closed set, we obtain (see (4.12)) that 91 is a closed set in
the sense of topology T%[Eg; Lo; ng; Fo| ). Using the compactness
property of this topology, in the form of 91, we have a nonempty compact

set in TS (4.38). As a corollary (see (4.37)), the set Q'(M) is a nonempty

compact set in (sz, T%Rk2)); of course, we use the known property of

image of a continuous mapping; for example, [7, p. 199]. With
employment of (5.12) and the transitivity property of operation of the

passage to a subspace of TS, we obtain that Ql(‘ﬁ) is the nonempty
compact set in (V, T%sz )|V ). In the other words, Q'() is the nonempty
compact set in metric space (V, py). Therefore, from Proposition 6.1, the

function (6.8) attains the maximum on the set Q' (MN); in addition,

max min f(P(u), y) = max min f(P(u), Q(v)). (6.9)
max mip €°). 3) = max mip €7, Q)
In (6.9), we use the following property: The image of Q'(9) under
operation of function (6.8) coincides with the image of 91 under operation

of function

v = min f(P(u), Q) : M - R;
peM

the above-mentioned coincidence follows from definition of an image. We

consider the number

V = max ;Ixréli)rjlt f(P(n), Qv)) € R, (6.10)

as generalized maximin or the maximin in generalized problem. In the
following, it will established that (6.10) defines asymptotics of realizable

values of maximin for variants of «constraints» considered in premises of
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implications (4.35) and (4.41). In connection with (6.10), we recall (4.19)
and (4.20). Moreover, from (6.7) and (6.9), we obtain that

V= max min f(x, y). (6.11)
yeQ" () xeP! (M)

In connection with (6.11), we use (4.34), (4.35), (4.40), and (4.41).
7. Asymptotics of Maximin

In this section, we fix families
(21 € P(P((ry —adm)[F | Ey; £33 m])) &
(29 € P(P((rg — adm)[Fy | Eg; Lg; m2]))), (7.1)
with the following properties:
(A 4Z21)&(Z21481) & (A9 41 Z9) & (29 4B9). (7.2)
Then by (4.35), (4.41), and (7.2), we obtain the following two equalities:

(as)[ (1 —adm) [ Fy | Ey; £3; my J; R¥; 260 Aps 2 1= @), (7.9)

(@)[ ( ~adm) [ Fy | Ep: L3 mp |: B52; 62 Ao; 25 ]=01 (). (7.4)
In the following, we suppose that the families Z; and Z, are directed:
(21 eB[(q—adm)[F |Ey; 4;mp ]]),
and (7.5)
(22 €B[(p —adm)[Fy | Eg; Loz ]]).
Remark 7.1. Of course, we can use the cases
(21 =) & (25 = A))V((21 = %) & (23 = By))
V(21 = B1) & (25 = %)) V(21 = B1) & (22 = By)).

These possibilities follow from (4.13), (4.14), (4.17), (4.18), and (4.49). O
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From (1.8), (7.3), and (7.5), we obtain that

Pren= () d (2& (H), Tﬁfl)). (7.6)

HEZI

Analogously, from (1.8), (7.4), and (7.5), the equality

Q' () = ﬂ l (Qé (H), T](}gﬂ), (7.7)

H€Z2
is realized. Of course, by (6.1),
(PL(o) = @) & (Q*(N) = @). (7.8)

We note obvious corollaries of (7.6)-(7.8). Really, by (7.6) and (7.8),
under H e Zq, the property H # O is realized. From (7.5), we have the

property

Zq € Bol(ry —adm)[F | Ey; Ly; nq]]. (7.9)

Analogously, from (7.7) and (7.8), we obtain that H+Q@VHeZzZ 9. From

(7.5), the property
Zy € Bol(re —adm)[Fy | Eg; Lg; na]], (7.10)

is realized. Now, we will use [18, Proposition 3]. In this connection, we

recall (5.13). Then, under S € Z;, we have the inclusion

~1
A1 (S)cU;
as a corollary, the following equality chain is realized:

ol (2& (), 7% |Uj _d (?d ), Tﬁéﬁ)) NU =l (?d ), Tg;fﬂ), (7.11)

(since cl (:Zd (), T(Hgl))cU; really, U is closed in the sense of T%{l)).

From (7.6) and (7.11), we obtain that
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Pem)= ) o (?G (H), % |U). (7.12)
Hez

In addition, by (1.8), (5.13), (7.5), and (7.12), the equality
P O0) = (@s) [ (1 —adm) [ Fy | By; £ m 1 U5 7o) |y Avs 21, (7.19)
holds (in (7.13), we have analogue of the first equality of [18, (2.6)]).

~1
Now, we recall (5.14): Under H € Z4, the inclusion Az (H)c V; as a

corollary,
ol (?é (H), &) |Vj _d (?é H), T%ﬁ)) NV=d [?é (H), T]%‘ﬂ). (7.14)
This property is analogous to (7.11). By (7.7) and (7.14),

Q)= () A ). 2Ny )= @) [ ~adm) [y | By: iy
Hezy

Vel |5 Ay 2], (7.15)

(we use (1.8), (7.5), and (7.14)).

In the following, we use [18, Proposition 4]. For this, we introduce
maximins corresponding to the case, then the constraints of our players
are defined by the pair (H;, Hy) of sets for which H; € Z; and

~1
Hy € Z5. We note that, for H € Z;, the inclusion A; (H) e P’ (U) takes

place. Recall that, in our case, f is a bounded real-valued function
(indeed, f is a continuous real-valued function on compact metric space
(U %V, pg)). Then, under H € Z;, the values

inf f(y, z):inf({f(y, z):ye;l} (H)})z inf f(;ll (), z)eR VzeV.
~1 heH
yeA1(H)

(7.16)
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From the boundedness of f and (7.16), for H € Z;, we obtain that
zl—)}ilglf;f(.Al (h), z):V—)R,

is a bounded real-valued function too. Therefore, under H € Z;, for some

d e ]0, oof

. ~ ~1, ~
{%glf_}f(Al(h),Z):ZGAQ(H)}C]—OO, d] VHe2Z,,

(of course, we use (5.14)). As a corollary,

sup inf £ (A1 (h), 2)= sup fnf £ (A1 (). Az (h)) R

zeAo(H)
VH € 2, VH € Z,, (7.17)

is defined correctly. And what is more, from [18, Theorem 1], the

following statement takes place:

Proposition 7.1. If ( € ]0, [, then there exist H, € Z; and

ﬁC € Z9 such that

<C VHeZ NP(H;) VHe 2, NP (H).

Zzgﬁgfflf(Al (h), Az (h))-V

8. Particular Cases

In this section, we realize several corollaries of Proposition 7.1. Of

course, (6.1) is supposed fulfilled. We recall that in the capacity of Z;
(see (7.1)), we can use ; and B;. Analogously, for Z, (in (7.1)), we can
use Ay and By. Respectively, in constructions of Section 7, the following

variants of the pair (Z;, Z49) can use:

(Qll’ 912)’ (Qll’ %2)’ (%1’ 9[2)7 (%1’ %2 ) (81)
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Then (of course, we use (4.49)), we have the corresponding variants of
(7.16) and (7.17) realized for sets of the families 2;, 2y, B1, and B,.
From (4.13) and (4.14), the following statement takes place:

Proposition 8.1. If ¢ € |0, oo, then there exist ae € |0, o such that,

forany € € 0, ae[ and § € )0, ae[, the inequality

sup < C, (8.2)

p nlgf(ﬁl(u),ﬁg(v))—v

1
veH 4€

holds, where H = ((ny, r)— ADM)[F; | Ey; £q; ny; Oﬁ“l)[yl]; SW] and
H = ((ng, 1ry) - ADM)[Fy | Eg; L; no; @gnZ)[Yz]; S@1.

So, we investigate first variant of (8.1). The second variant of (8.1) is
extracted from (4.49) and Proposition 7.1.

Proposition 8.2. If { € |0, «o[, then there exist ae € |0, o such that,

for any €e€]0,a[ and & € ]0, ae[, the inequality (8.2) holds for
H =((ny,n)~ADM)[F | Ey; £3;y; OPV[Y, 1 SV and H = ((ng, 1)

~(ng)
— ADM) [ Fy | Eg; Lo; ng; O = [ Yo | My |; s?1.

Now, we consider third variant of (8.1) using (4.49) and Proposition 7.1
again.
Proposition 8.3. If { € |0, o[, then there exist ae € |0, oo such that,
for any ¢e€]0,a] and & €0, ae[, the inequality (8.2) holds for
~(ny) ~
H=((ny,1)-ADM)[F | Ey; £3;ny: O - [ M;1; SV ] and H =((ng, 1)

— ADM)[]F2 | EQ; 52; Na; O(an2)[Y2], S(2)]

Finally, for fourth variant of (8.1), we obtain the following statement
(see (4.49)):
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Proposition 8.4. If ¢ € |0, o[, then there exist ae € |0, o such that,

for any ¢e€]0,a] and & € ]0, ae[, the inequality (8.2) holds for

H=((ny, 1)~ ADM)[F |Ey; £15my; 08 [, )M, 1 SO and 7 = ((ng, 1)

~(ny)
~ ADM) [ Fy | Eg; Lo ng; Oy 2 [ Yo | My ; s?1.
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Of course, Propositions 8.1-8.4 are simple corollaries of Proposition 7.1.
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