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Abstract 

Abstract maximin problem is considered. The statement variant with 
constraints of asymptotic character is considered. In main part, the case of 
«moment» constraints is investigated. In this case, the comparison of different 
variants of constraint weakening are realized. The conditions of asymptotic 
nonsensitive under weakening of constraints part are obtained. 

Introduction 

In the following, some abstract variant of the next informative control 
problem is considered. Now, we discuss this informative problem in the 
simplest form. In addition, we fix two linear control systems on the same 
time interval [0, 1]: 

( ) ( ) ( ) ( ) ( ) ( ).~,~
2211 tbtbtvztbtbtuy +=+= ��   (0.1) 
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We suppose that the phase space of the above-mentioned control system 
is n-dimensional. So, in ( ) y,1.0  and z are n-dimensional vectors. We 

suppose that ( )⋅= uu  and ( )⋅= vv  are programmed controls defined on 

the «pointer» [ [.1,0  Moreover, in ( ) ( ) ( ) ( ),,~~,,1.0 221111 ⋅=⋅=⋅= bbbbbb  

and ( )⋅= 22
~~ bb  are n-vector-functions (the functions with n-dimensional 

values). We have a continuous real-valued function ( )⋅⋅= ,00 ff  of two 
variables of n-dimensional space. Suppose that the cost is defined as 

( ) ( )( ).1,10 zyf  In addition, we suppose that the first player I strives to 
minimize this cost and the second player II strives to maximize this cost. 
We consider the maximin problem for criterion ( ) ( )( ).1,10 zyf  In addition, 

the concrete choice of controls ( )⋅= uu  and ( )⋅= vv  must realize with 
validity of constraint. We consider the case when these constraints 
include impulse and «moment» components. We admit a weakening of 
«moment» constraints both for player I and for player II. As a result, the 
cost maximin can be changed. We consider the corresponding asymptotic 
of the cost maximin under employment of more precise constraints. 

In addition, we consider different types of the weakening of the 
«moment» constraints. We will establish some variant of asymptotic non-
sensitivity under weakening of constraints part. In the following 
investigation, approach connected with extension of the initial problem is 
used. We note constructions of [1]-[4]. For constructing «asymptotic» 
solutions, the corresponding generalized controls are used (see [1]-[4]). In 
class of generalized controls, we can consider the game problem with 
precise constraints (standard constraints). In addition, in many cases, the 
corresponding generalized maximin defines asymptotics of realizable 
values of maximin under weakened constraints. 

We note that, in [1]-[3], for constructing of generalized control 
problems measure-valued mappings (controls-measures) are used; in 
addition, this approach is applied for control problems with geometric 
constraints. In impulse control, we note original approach of Krasovskii 
connected with employment of distributions. This approach was basis of 
many following investigations of control problems with impulse 
constraints. 
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In our investigation, for generalized elements in maximin problem, 
vector finitely additive measures (FAM) are used. The corresponding 
applications can be connected with game control in linear systems under 
constraints of impulse character; in addition, linear systems with 
discontinuity in coefficients under controls can be considered. 

1. General Definitions and Designations 

As usual, we apply quantors and propositional connectives;   is 
equality by definition. We use the term a family for a set all elements of 
which are sets too. By ( ) ( )( ),by HH PP ′  we denote the family of all (of all 

non-empty) subsets of a set H. By ,AB  we denote the set of all mappings 

from a set A into a set B; if ABf ∈  and ( ),AC P∈  then ( ) { ( ) :1 xfCf   

} ( )BCx P∈∈  is the image of the set C under operation of the mapping 

( ( ) ( ) ( )).then,if 1 BCfACf PP ′∈′∈  

By ,R  we denote real line and suppose that { };;2;1 …N  if ,N∈m  

then { } ( ).,1 NN P ′∈≤∈ miim   Let Rτ  be the usual topology of R  

generated by the metric-modulus. As usual, we suppose that elements of 
N� not are sets. Using this stipulation, for any set T and number ,N∈m  

we apply mT  instead of ;,1 mT  so, mT  is the set of all processions 

( ) .,1:,1 Tmt mii →∈  

Then, under mm RN,∈  is m-dimensional arithmetic space; in addition, 

strongly speaking, we consider elements of mR  as mapping from m,1  

into .R  In general, in space of real-valued functions, we consider linear 
operations, product, and order as pointwise. Of course, this stipulation 

extend on spaces ,mR  where .N∈m  Here, we consider m-dimensional 

vector as a function from m,1  into .R  For the definiteness, always, we 

equip finite-dimensional arithmetic space with the norm of the following 

type: If N∈m  and ( ) ,,1
m

miixx R∈= ∈  then 
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( ) [ [.,0max
,1

∞∈
∈

i
mi

m xx   

Of course, under ,N∈m  we use ( )m⋅  for the mapping 

( ) [ [.,0: ∞→mmxx R6   (1.1) 

By ( ),m
Rτ  we denote the usual topology of coordinate-wise convergence in 

.mR  Of course, ( )m
Rτ  is generated by ( ).m⋅  Moreover, we introduce the 

set m
+R  of all vectors ( ) m

miix R∈∈ ,1  with the property .,10 mjx j ∈∀≤  

In the following, the employment of the norm (1.1) is more suitable. We 

introduce two types of neighbourhoods in ( ( ) ),, mm
RR τ  where .N∈m  

Namely, for any ( ),, mSm RN P∈∈  and ] [,,0 ∞∈ζ  we suppose that 

( )[ ] { ( ) } ( ),: mmmm sxSsxSO RR τ∈ζ<−∈∃∈ζ   (1.2) 

and under any ( ),,1 mM P∈  

l ( )
[ ] { ( ) ( ) ( )1, 1, : &

m m
i i j ji m i mO S M x s S x s j Mζ ∈ ∈∈ ∃ ∈ = ∀ ∈ R  

( )};\,1 Mmjsx jj ∈∀ζ<−  (1.3) 

of course, from (1.2) and (1.3), we obtain that 

l ( )
[ ] ( ) [ ],

m mO S M O Sζ ζ⊂  (1.4) 

(if ,∅=M  then l ( )
[ ] ( ) [ ] ).

m mO S O Sζ ζ∅ =  

Some elements of topology 

For any topological space (TS) ( )τ,X  and a set ( ),XA P∈  we 

suppose that ( )τ,cl A  is closure of A in ( )τ,X  and Aτ  is the topology of 

A considered as subspace of ( )τ,X  (of course, { }ττ ∈GGAA :∩ ). We 
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use the neighbourhoods definition of [5, Chapter I]: If ( )τ,X  is a TS and 

,Xx ∈  then by filter base [5, Chapter I] 

( ) { } ( ),0 τττ P ′∈∈∈ GxGxN   

is defined filter of neighbourhoods 

( ) { ( ) ( ) }.:0 YGxNGXYxN ⊂∈∃∈ ττ P  

We consider nets as the triplets of the following type: ( )hD ,,   is a net in 

a set Y in the case when ( ),D  is a nonempty directed set [6, Chapter II] 

and .DYf ∈  We apply the usual Moore-Smith convergence: If ( )τ,X  is a 

TS, ( )fD ,,   is a net, and ,Xx ∈  then 

( ) ( ( ) ( ) ( ( ) )).,, 22121
def HdfddDdDdxNHxfD ∈⇒∈∀∈∃∈∀⇔








→  τ
τ  

(1.5) 

For any net, the corresponding associated filter is defined. Namely, for 
any net ( )fD ,,   in a set Z, 

( ) [ ] { ( ) ( ) ( )( )}.;;ass AfdDDdZAfDZ ∈δ⇒δ∈δ∀∈∃∈−  P  

(1.6) 

Of course, in (1.5) and (1.6), we have the standard definitions of general 
topology; see [5]-[7]. 

For any TS ( ) ,,, ∅≠TtT  and ,N∈k  we suppose that [ ]tk⊗  is a 

natural topology of the set kT  corresponding to standard product of k  
samples of TS ( );, tT  see [7]. 

Attraction sets 

In the following, we use the notion of attraction set (AS) 
corresponding to [8]-[12]. Namely, for any nonempty set X, a TS ( ),, τY  

,∅≠Y  a mapping ,XYg ∈  and a family ( )( ),XPPX ′∈  we denote by 
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(as) [ ]X;;;; gYX τ  the set of all Yy ∈  for which there exists a net 

( )hD ,,   in X with the properties 

( ( ) [ ]) (( ) ).,,&;;ass yhgDfDX τ→−⊂ DX   (1.7) 

In connection with given general definition, we recall the known 
statement of [9, Proposition 3.3.1] concerning to a sequential realization 
of AS. Now, we note only one particular case sufficient for almost all 
following constructions: If (in (1.7)) X  is a directed family with a 
countable base (see [9, (3.3.17)]) and ( )τ,Y  is TS with the first axiom of 

countability, then, for exhausting realization of AS (as) [ ],;;;; XgYX τ  

it is sufficient to use sequences in X, see (1.7). 

For any set X, we define the family 

[ ] { ( )( ) },: 213321 BBBBBBXX ∩⊂∈∃∈∀∈∀′∈ββ BBBPP  

of all directed subfamilies of ( );XP  then [ ] { [ ] }BB ∈/∅β∈β XX 0  is 

the family of all filter bases of the set X. 

We note the following useful representation of AS in the case of 
directed family defining constraints of asymptotic character: If X is a 

nonempty set, ( )τ,Y  is a TS, ,XYg ∈  and [ ],Xβ∈B  then 

( ) [ ] ( ( ) ).,cl;;;; 1 ττ BggYX
B
∩
B

B
∈

=as   (1.8) 

In the following constructions, (1.8) is sufficient for all our goals. If 
( ) ,,, 1 ∅≠UU τ  and ( ) ,,, 2 ∅≠VV τ  are TS, then by definition 

( )21 ,,, ττ VUC  is the set of all ( ) continuous-, 21 ττ  mappings from U 

into V. For any TS ( ) ,,, ∅≠TT τ  we suppose ( ) ( ).,,,, RRC τττ TCT   
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2. Finitely Additive Measures as Generalized Elements 

We follows to approach of [8]-[12] connected with employment of 
finitely additive measures (FAM) in extension constructions for abstract 
control problems. In given section, we recall some required notions of 
FAM theory. And what is more, vector FAM will be required. 

For simplicity, in designation, now we fix a nonempty set E and a 
semialgebra L  of subsets of E (in following sections, we will use the 
corresponding symbols instead of E and L ). So, now we have the 
measurable space ( )L,E  with a semialgebra of sets. In the following, we 

use designations of [9], [11], and [13]. 

The cone ( ) [ ]L+add  of (all) real-valued nonnegative FAM on L  

generates the space ( )LA  of real-valued FAM on L  with the bounded 

variation; see [9, p. 39]. 

In addition, the linear space ( )LA  is equipped with the strong norm 

defined (for any FAM of ( )LA ) as total variation. Of course, ( ) [ ]L+add  

( ).LA⊂  

In the following, we use step function and stratum functions. These 
functions are elements of the Banach space ( )EB  of bounded real-valued 

functions on E with the sup-norm ⋅  (see [14, Chapter IV]). The linear 

manifold ( )L,0 EB  is defined as linear span of the set { }L∈χ LL :  of all 

indicators of sets of L  (in addition, for LL R∈χ∈Λ Λ  is defined by the 

rule  

( ( ) ) ( ( ) );\0&1 Λ∈∀χΛ∈∀χ ΛΛ Eyyxx   

subsets of E and its indicators are identified). The closure of ( ) ∈L,0 EB  

( )( )EBP ′  in the topology generated by sup-norm ⋅  is denoted by 

( );, LEB  of course, ( ) ( ).,,0 LL EBEB ⊂  Then, ( )L,EB  considered as a 

subspace of ( )( )⋅,EB  is a Banach space for with the topological 
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conjugate space ( )L,EB∗  with the traditional (for the Banach space 

theory) norm is isometrically isomorphic to ( )LA  with strong norm-

variation (this property is analogous to similar supposition of                
[14, Chapter IV] for measurable spaces with algebra of sets). In terms of 
the simplest integration construction in [8, Subsection 3.4], the 
corresponding isometric isomorphism is defined by natural rule 

( )
( ) ( ).,:

,
LL

L
EBfd

EBfE
∗

∈
→







 µµ ∫ A6  

Of course, for duality ( ) ( )( ),,, LL AEB  the «usual» -weak∗  topology 

( )L∗τ  of ( )LA  is defined (see [8, Subsection 3.4]). Then ( ) ( )( )LL ∗τ,A  is a 

locally convex compactum.-σ  Along with ( ),L∗τ  we use topology ( )L0τ  

[8, (4.2.9)] of subspace of Tichonoff power of real line R  with discrete 
topology under employment of L  as the index set. So, ( ) ( )( )LL 0, τA  is 

the subspace of the above-mentioned Tichonoff power. As in                     
[8, Subsection 4.2], we introduce the topologies 

( ) ( ) ( ) [ ]( ) ( ) ( ) ( ) [ ]( ),& add00add LL LLLL
++

+
∗

+
∗ ττττ   (2.1) 

of the cone ( ) [ ]L+add  for which [8, (4.2.12)] ( ) ( ).0 L++
∗ ⊂ ττ L  The 

nonnegative cone of ( )L,0 EB  ( )( )L,of EB  is denoted as ( )L,0 EB+      

(as ( ));, LEB+  see [8, p. 66]. 

In this section, we fix .N∈r  By [ ]L;,0 EB r
+  and [ ],; LEBr

+  we denote 

the sets of all processions 

( ) ( ) ( ) ( ),,,1:~and,,1: ,10,1 LL EBrfEBrf riirii
+

∈
+

∈ →→  

respectively; of course, [ ] [ ].;;,0 LL EBEB rr
++ ⊂  As a corollary, [ ]L;,0 EB r

+  

( )rEB L;0
+=  and [ ] ( ) .,; r

r EBEB LL ++ =  Moreover, ( ) [ ] ( ) [ ]rr LL +
+ addadd    

is the set of all processions 
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( ) ( ) [ ].add,1:,1 L+∈ →µ rrii  

We use the standard variant of the equipment of the (nonempty) set 

( ) [ ]L+
radd  with a topology. For this, we apply (2.1). So, [ ( )]L+

∗⊗ τr  and 

[ ( )]L+⊗ 0τ
r  are the required topologies of ( ) [ ]L+

radd  for which 

[ ( )] [ ( )].0 LL ++
∗ ⊗⊂⊗ ττ rr  (2.2) 

Then, triplet (( ) [ ] [ ( )] [ ( )])LLL ++
∗

+ ⊗⊗ 0,,add ττ rr
r  is a bitopological space 

in the sense of [16]. Of course, both topologies in (2.2) realize Hausdorff 
spaces. 

We fix a nonzero FAM ( ) [ ]L+∈η add  until the end of present section. 

In addition, ( ) .0≠η E  Using definition of [9, Chapter 3], we introduce 

the cone 

( ) [ ] { ( ) [ ] ( )( ) ( )( )},00add;add =µ⇒=η∈∀∈µη +
+ LLL LLL    (2.3) 

of all weakly absolutely continuous (with respect to η ) nonnegative FAM 

on .L  In connection with (2.3), see [17] also. For our goals, the nonempty 
set 

( ) [ ] ( ) [ ] ,;add;add r
r ηη ++ LL    (2.4) 

of all weakly absolutely continuous nonnegative vector FAM is very 
essential. Of course, (2.4) is the set of all processions 

( ) ( ) [ ].;add,1:,1 η→µ +
∈ Lrrii  

The density property 

For any ( ),, LEBf ∈  we define by η∗f  indefinite integral of f with 

respect to ( ).; LA∈η∗η f  So, η∗f  is integral-η  as a set function. Of 

course, for ( ) ( ) [ ].;add,, η∈η∗∈ ++ LL fEBf  And what is more, from 

statements of [8] and [9], we obtain that 
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( ) [ ] ({ ( )} ( ))LLL ∗
++ ∈η∗=η τ,,:cl;add 0 EBff  

({ ( )} ( ))LL 00 ,,:cl τEBff +∈η∗=  

({ ( )} ( ))LL +
∗

+∈η∗= τ,,:cl 0 EBff  

({ ( )} ( )).,,:cl 00 LL ++∈η∗= τEBff   (2.5) 

We note that (2.5) has a vector analogs. In this connection, we recall that 

[ ( )]L+
∗⊗ τr  and [ ( )]L+⊗ 0τ

r  are topologies of the set ( ) [ ],add L+
r  for which 

(2.2) is valid. Using (2.5), we obtain that 

( ) [ ] ({( ) ( ) [ ]} [ ( )])LLL +
∗

+
∈∈

+ ⊗∈η∗=η τr
rriiriir EBff ,;:cl;add ,0,1,1  

({( ) ( ) [ ]} [ ( )]).,;:cl 0,0,1,1 LL ++
∈∈ ⊗∈η∗= τr

rriirii EBff  (2.6) 

3. Integral Constraints and their Relaxations 
(General Statements) 

In this section, we use the space ( )η,, LE  of the previous section. 

Now, we recall statements of [13]. Fix a number N∈n  and a mapping 

( ).,,1,1: LEBrS →×n   (3.1) 

So, in this section, we fix (stratum) matriciant S with components ,, jiS  

.,1,,1 rji ∈∈ n  Strongly speaking, rji ,1,,1 ∈∀∈∀ n  

( ) ( ).,,, LEBjiSS ji ∈  

Moreover, in this section, we fix a closed (with respect to topology ( )n
Rτ ) 

set ( ).nRY P ′∈  Finally, we fix a closed ( ( ) )r
Rτin  bounded set ( );r

+′∈ RF P  

we recall that r
+R  is the nonnegative cone of the space .rR  From the 

compactness property of ,F  we obtain that the number 
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( )
[ [,,0max

1,1
∞∈∑

=
∈∈

i

r

ix
x

rii FF c   (3.2) 

is defined correctly. We consider the set 

( ) [ ] ( ) [ ] ( [ ]).;;;;adm ,0
,1

,0,1 LPLL EBdfEBfEr r
ri

i
E

rrii
+

∈

+
∈ ′∈













∈






 η∈η− ∫ F F   

(3.3) 

In this section, we consider the following integral constraints: 

,
,1

,
1

Y∈












η

∈=
∫∑

ni
jji

E

r

j
dfS  (3.4) 

on the choice of ( ) ( ) [ ].;;adm,1 η−∈∈ LErf rjj  F  In connection with 

(3.4), we consider the corresponding set of admissible elements; but, it is 

useful to consider this notion in more general form: If ( ),nY RP∈  then 

we suppose that 

( )( ) [ ]SEr ;;;;ADM, Yn η− L F  

( ) ( ) [ ] .;;adm
,1

,
1

,1












∈












ηη−∈

∈=
∈ ∫∑ Y

ni
jji

E

r

j
rii dfSErf L F  (3.5) 

Of course, in (3.5), we can consider the case Y=Y  supposing the set of 
admissible (in strong sense) elements; we can consider the variant for 
which Y in (3.5) is defined as a neighbourhood of Y  too. In last case, we 
can use different variants of neighbourhoods (see (1.2), (1.3)). 

For the set of generalized elements, we use 

[ ] {( ) ( ) [ ] ( ( )) }FF� ∈µη∈µη∑ ∈
+

∈ rjjrrjjr EE ,1,1 ;add;;; LL   

( [ ( )] ) [( ) [ ]],addcomp LL ++
∗ −⊗∈ r

r τ  (3.6) 
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(see [13, (4.24),(4.26)]). From (3.2) and (3.3), we obtain that 

( ) ( ) ( ) ( ) [ ].;;adm,1
11

η−∈∀η=η∗ ∈
==
∫∑∑ LErfdfEf riii

E

r

i
i

r

i
 FFc  

(3.7) 

In connection with (3.7), we note some addition connected with (2.6). 
Namely, from (2.6), (3.3), and (3.6), we obtain that (see [8, (3.4.10)]) 

( ) [ ] ( ) ( ) [ ].;;adm;;; ,1,1 η−∈∀η∑∈η∗ ∈∈ LL ErfEf riirrii  FF�   (3.8) 

From (3.3) and (3.8), we obtain that (3.6) is a nonempty set. With regard 
to (3.8), we introduce the mapping I  in the form of 

( ) ( ) ( ) [ ] [ ].;;;;;adm:,1,1 F F η∑→η−η∗ ∈∈ LL EErff rriirii 6   (3.9) 

Using (3.6) and (3.9), we obtain under [ ( )]L+
∗⊗= ττ r  and [ ( )]L+⊗= 0ττ r  

that set (( ) [ ] )τ,;;admcl η− LEr  F  is defined correctly. With 

employment of reasoning similar [13, Proposition 4.2], we obtain that 

 [ ] ( (( ) [ ]) [ ( )])LLL +
∗⊗η−=η∑ τr

r ErE ,;;admcl;;; 1  FIF�  

  ( (( ) [ ]) [ ( )]).,;;admcl 0
1 LL +⊗η−= τrEr  FI  (3.10) 

In connection with (3.10), we realize the passage to subspace of 

( ) [ ]:add L+
r  We introduce the topologies 

( [ ] [ ( )] [ ] )

( [ ] [ ( )] [ ] ) 













⊗η

⊗η

η∑
+

∑

η∑
+
∗

∗
∑

,;;;

and

,;;;

;;;0
0

;;;

F

F�

F

F

L

L

LL

LL

E
r

E
r

r

r

rE

rE

ττ

ττ





   (3.11) 

of the set (3.6). Of course, from (3.6) and (3.11), we obtain that 

( [ ] [ ]),;;;,;;; rEEr FF ηη∑ ∗
∑ LL τ   (3.12) 
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is a nonempty compactum. By (2.2), the following inclusion: 

[ ] [ ],;;;;;; 0 FF rErE η⊂η ∑
∗
∑ LL ττ   (3.13) 

is realized. From (3.13), we have the obvious comparability property of 
AS; 

( ) [( ) [ ] [ ] [ ] ]XLLL ;;;;;;;;;;;;adm 0 IFFF rEEEr r ηη∑η− ∑τas  

( ) [( ) [ ] [ ] [ ] ]XLLL ;;;;;;;;;;;;adm IFFF rEEEr r ηη∑η−⊂ ∗
∑τas  

 ( ) [ ]( )( ).;;adm η−′∈∀ LPPX Er F  (3.14) 

Moreover, from (3.10) and (3.11), the following universal density property 
are realized: 

( ( ) [ ]( ) [ ])FFI rEEr ;;;,;;admcl 1 ηη− ∗
∑ LL τ  

( ( ) [ ]( ) [ ])�FFI rEEr ;;;,;;admcl 01 ηη−= ∑ LL τ  

[ ].;;; Fη∑= LEr  (3.15) 

Now, we recall (3.5). For this definition, we introduce the corresponding 
generalized analogue of (3.5). Let S  be the following mapping: 

( ) [ ] .;;;:
,1

,
1

,1
n

n

RF →η∑












µµ

∈=
∈ ∫∑ LEdS r

i
jji

E

r

j
rjj 6  (3.16) 

Then, the generalized variant of (3.5) defined for precise constraint-Y  is 

realized in the following form: 

( )( ) [ ] ( )YYF 1;;;;, −η− SLADM SErn  

( ) [ ] ,;;;
,1

,
1

,1












∈












µη∑∈µ=

∈=
∈ ∫∑ YF

ni
jji

E

r

j
rrjj dSE L  (3.17) 

is the set of admissible-Y  generalized elements. In connection with (3.5), 

we note that 
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( )( ) [ ]SEr ;;;;, YFADM η− Ln  

( )( ) [ ( )[ ] ] ] [{ }∞∈ζη− ζ ,0:;;;;ADM, SEr YF nn OL  

 [( ) [ ]].;;adm η−β∈ LEr F  (3.18) 

In (3.18), we have the natural variant of «asymptotic constraints», 
connected with «uniform» weakening of standard s.constraint-Y  We will 

consider another variants of weakening of the .constraint-Y  Namely, we 

will consider «nonuniform» weakening. For this, again we introduce the 
set 

( )( ) [ ] { ( ) ( ) }.,1,,1;;step 0, rjMiEBSMSEr, ji ∈∀∈∀∈∈− LPL nn   

(3.19) 

In (3.19), the graduatedness sets of our matriciant are considered. For 

any ( )( ) [ ]SEr,M ;;step L−∈ n  and ] [,,0 ∞∈ζ  the set l ( )
[ ]O Y Mζ

n
 is 

defined. Then, along with (3.18), we consider the families 

( )( ) [ ], ; ; ; ; ;r E M S− ηF YLn ADM  

( )( ) [ l ( )
[ ] ] ] [{ }, ADM ; ; ; ; : 0,r E M Sζ− η ζ ∈ ∞ F YL O

n
n  

[ ( ) [ ] ] ( )( ) [ ]adm ; ; , step ; ; .r E M r E S∈β − η ∀ ∈ −F L Ln  (3.20) 

So, we have two types of «asymptotic» constraints. Namely, we 
weaken constraint-Y  with respect to «all directions» and with respect to 

a part of «directions». In the following, we will establish that, for the both 
above-mentioned variants, the corresponding asymptotic is defined by 
(3.17). In addition, we require that, in the last case, the choice M from the 
family (3.19) is assumed (in this connection, we keep in mind the variant 
(3.20)). 
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Remark 3.1. In connection with (3.19) and (3.20), we note that 
( )( ) [ ];;;step SEr, L−∈∅ n  therefore, the family 

( )( ) [ ] ( ) [ ][ ],;;adm;;;;;, η−β∈∅η− LL ErSEr FYFADMn  

is defined correctly. In addition, 

( )( ) [ ] ( )( ) [ ].;;;;;,;;;;, SErSEr ∅η−=η− YFYFMAD LL ADMnn  

(3.21) 

So, for the case ∅=M  (we keep in mind the choice of M from the family 
(3.19)), we obtain unique constraints of asymptotic character. 

For the end of the present section, we fix the set 

( )( ) [ ].;;step SEr,M L−∈ n   (3.22) 

Proposition 3.1. The set (3.17) of all generalized admissible elements 
realizes the «unique» asymptotic of admissible (in the usual sense) sets 
under a weakening of ntconstrai-Y  

( )( ) [ ]SEr ;;;;, YF η− LADMn  

( ) [( ) [ ] [ ] [ ];;;;;;;;;;;adm rEEEr r FFF ηη∑η−= ∗
∑ LLL τas  

( )( ) [ ]]SEr ;;;;,; YFMADI η− Ln  

( ) [( ) [ ] [ ] [ ];;;;;;;;;;;adm rEEEr r FFF ηη∑η−= ∗
∑ LLL τas  

( )( ) [ ]]SMEr ;;;;;,; YFI η− LADMn  

( ) [( ) [ ] [ ] [ ];;;;;;;;;;;adm 0 rEEEr r FFF ηη∑η−= ∑ LLL τas  

( )( ) [ ]]SEr ;;;;,; YFMADI η− Ln  

( ) [( ) [ ] [ ] [ ];;;;;;;;;;;adm 0 rEEEr r FFF ηη∑η−= ∑ LLL τas  

( )( ) [ ]].;;;;;,; SMEr YFI η− LADMn  (3.23) 
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The corresponding proof is the simple corollary of statements of            
[13, Section 4] (in particular, we keep in mind Theorems 4.1 and 4.2 of 
[13]). The base property is the equalities chain (2.6). This proof differ 
from analogous statements of [9, Chapter 4] only technical details. 
Therefore, we omit this proof. 

Attainability property 

In this section, we fix N∈k  and mapping 

( ) ( ).,,1,1:, , LEBrAji ji →×k6   (3.24) 

Of course, for any ( ) [ ],;,0,1 LEBf rrjj
+

∈ ∈  the vector 

,
,1

,
1

k

k

R∈












η

∈=
∫∑

i
jji

E

r

j
dfA  

is defined. As a corollary, we define the mapping 

l ( ) [ ]: adm ; ; ,r E− η →F RA L k  

by the following rule: 

l ( ( ) ) ( ) ( ) [ ], 1,1,
1 1,

adm ; ; .
r

i i j j j j ri r Ej i

f A f d f r E∈∈
= ∈

 
 η ∀ ∈ − η
 
 
∑∫ FA L

k

 

(3.25) 

We consider AS on the values of l :A  For any ( (( )[ ]))η−′∈ ;;adm LPPZ Er F   

( ) [ ( ) [ ] ( ) l ] ( )adm ; ; ; ; ; : .r E− η ∈L A Z PRF R Rkk kas τ  

Moreover, along with l,A  we consider the mapping 

i [ ]: ; ; ; ,r E∑ η →F RA L k  
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by the following rule: 

i ( ( ) ) ( ) [ ],1, 1,
1 1,

; ; ; .
r

j i j j j rj r j rEj i

A d E∈ ∈
= ∈

 
 µ µ ∀ µ ∈∑ η
 
 
∑∫ FA L

k

 

(3.26) 

By (3.9), the mapping IDA~  is defined. By [8, (3.4.11)], from (3.25) 
and (3.26), the equality 

l i ,= D IA A   (3.27) 

follows. From definition of the weak-∗  topology, the obvious continuity 

property 

[ ] [ ] ( )( ),,,;;;,;;;~ kk
RRFF ττ rEEC r ηη∑∈ ∗

∑ LLA  (3.28) 

is realized. By (3.27) and (3.28), we obtain the very important property: 
Using [9, Proposition 5.2.1], we obtain that 

( ) ( ) [ ] ( ) ladm ; ; ; , ; ;r E − η RF R RL Akkas τ  

(( ) [( ) [ ] [ ] [ ] ])R;;;;;;;;;;;;adm~1 IFFF rEEEr r ηη∑η−= ∗
∑ LLLA τas  

 ( ) [ ]( )( );;;adm η−′∈∀ LPP Er FR  (3.29) 

in this connection, see [12, (3.3), Proposition 3.2]. From (3.29) and 
Proposition 3.1, the important result follows: 

Proposition 3.2. The next equality chain takes place 

( ( )( ) [ ])SEr ;;;;,~1 YF η− LADMA n  

( ) ( ) [ ] ( ) l ( )( ) [ ]adm ; ; ; , ; ; , ; ; ; ;r E r E S = − η − η 
kkas nRF R ADM F YL A Lτ  

( ) ( ) [ ] ( ) l ( )( ) [ ]adm ; ; ; , ; ; , ; ; ; ; ; .r E r E M S = − η − η 
kkas n ADMRF R F YL A Lτ  

(3.30) 
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We recall (3.18) and (3.20); in these families, we have two different 
(generally speaking) variants of constraints of asymptotic character. 
Now, we introduce the known refinement-π  relation: If X  and Y  are 

families, then 

( ) ( ).:def ABBA ⊂∈∃∈∀⇔ YXYX    (3.31) 

In the following, we use (3.31) without additional clarifications. Of 
course, in the capacity of X  and ,Y  we can use (see (3.31)) families of 

subsets of ( ) [ ].;;adm η− LEr F  In addition, 

( ) [ ]( )( ) ( ) [ ]( )( )η−′∈∀η−′∈∀ ;;adm;;adm LPPLPP ErEr FF YX  

( ) ( ( ) [ ( ) [ ] ( ) l ]adm ; ; ; ; ; ;r E⇒ − η kkas RF RL AτX Y Y  

( ) [ ( ) [ ] ( ) l ] )adm ; ; ; ; ; ; .r E⊂ − η kkas RF RL Aτ X  (3.32) 

From (1.4), (3.5), (3.18), (3.20), and (3.31), we obtain that 

( )( ) [ ] ( )( ) [ ].;;;;;,;;;;, SMErSEr YFYFADM η−η− LL ADMnn   

(3.33) 

In connection with (3.33), we note that the natural construction of   onto 
the product 

( ) [ ]( )( ) ( ) [ ]( )( ),;;adm;;adm η−′×η−′ LPPLPP ErEr FF  

is a reflexive relation on ( ) [ ]( )( ).;;adm η−′ LPP Er F  

Theorem 3.1. If ( ) [ ]( )( ),;;adm η−′∈ LPPZ Er F  then 

( ( )( ) [ ] ) &;;;;, ZL SEr YFADM η−n  

( ( )( ) [ ])SMEr ;;;;;, YF η− LZ ADMn  

( ) ( ) [ ] ( ) l( )adm ; ; ; ; ; ;r E ⇒ − η RF RL A Zkkas τ  

( ( )( ) [ ]).;;;;,~1 SEr YF η−= LADMA n  (3.34) 
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Proof of Theorem 3.1 is reduced to the immediate combination of (3.32) 
and Proposition 3.2. In Theorem 3.1, we have the statement about 
asymptotic nonsensitivity in the range of constraints of asymptotic 
character. The corresponding range is defined in terms of refinement-π  
(see [16]). The essential part of the used construction is Proposition 3.2. 

In the following, we use constructions of this section in two variants. 
Namely, as in Introduction, we consider the above-mentioned extension 
procedures for first and second players (player I and player II) 
separately. Of course, for this, some designation changes will be 
necessary. 

4. Extension of a Game Problem 

We use notions of Section 3. Fix the following two measurable spaces 
with semialgebras of sets: ( )11, LE  and ( ),, 22 LE  where ,1 ∅≠E  

12 , L∅≠E  is a semialgebra of subsets of 21; LE  is a semialgebra of 
subsets of .2E  Therefore, we use constructions of Section 3 under 
suppositions ( ) ( )11,, LL EE =  or ( ) ( ).,, 22 LL EE =  

We fix N∈1r  and N∈2r  in the capacity of dimensions of 

instantaneous controls of players I and II, respectively. We obtain the 
following sets of step vector-functions: 

[ ] [ ].;,; 22,011,0 21
LL EBEB rr

++  (4.1) 

In the following, vector-functions of the sets (4.1) are used for usual 

controls of players I and II. For nonempty sets ( ) [ ]11
add L+

r  and ( ) [ ],add 22
L+

r  

we use topologies [ ( )] [ ( )]101
11 , LL ++

∗ ⊗⊗ ττ rr  and [ ( )],2
2 L+

∗⊗ τr  

[ ( )],20
2 L+⊗ τr  respectively. 

Fix ( ) [ ]11 add L+∈η  and ( ) [ ];add 22 L+∈η  suppose that ( ) 011 ≠η E  

and ( ) .022 ≠η E  In the terms of 1η  and ,2η  we form the nonempty sets 

( ) [ ] ( ) [ ].;add,;add 2211 21
ηη ++ LL rr  
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Fix N∈1n  and .2 N∈n  We consider 1n  and 2n  as two concrete 

variants of n of Section 3. Moreover, fix mappings 

( ) ( ) ( ) ( );,,1,1:,,,1,1: 2222
2

1111
1 LL EBrSEBrS →×→× nn  

in the following, ( )1S  and ( )2S  are considered in the capacity of 
matriciant for players I and II, respectively. As in Section 3, we suppose 
that 

      ( ) ( )( )( ),,1,1, 11
11

, rjijiSS ji ∈∀∈∀ n  

and 

( ) ( )( )( ).,1,1, 22
22

, rjijiSS ji ∈∀∈∀ n  

Let ( )11
nRY P ′∈  and ( ).22

nRY P ′∈  We suppose that 1Y  is closed in 

TS ( ( ) )11 , nn
RR τ  and 2Y  is closed in TS ( ( ) )., 22 nn

RR τ  So, 1Y  and 2Y  are 

nonempty closed sets in the corresponding finite-dimensional spaces. By 

1Y  and ,2Y  the constraints 

( ) i ( ) l
1 2

1 2
2

1 2
1 1 2 2, ,

1 11, 1,

and ,
r r

j ji j i jE Ej ji i

S f d S f d
= =∈ ∈

   
   η ∈ η ∈
      
   
∑ ∑∫ ∫

1n n

Y Y  

(4.2) 

on the choice of ( ) [ ]11,0,1 ;~
11

LEBf rrjj
+

∈ ∈  and ( l ) [ ]
2 2 2 21, 0, ; ,j j r rf B E+

∈ ∈ L  

respectively, are considered. Along with (4.1) and (4.2), constraints of 
impulse character will use too. We call (4.2) moment constraints. 

Abstract constraints of impulse character 

Fix bounded sets ( )1
1

r
+′∈ RF P  and ( ).2

2
r
+′∈ RF P  We suppose that 

1F  is closed in ( ( ) )11 , rr
RR τ  and 2F  is closed in ( ( ) )., 22 rr

RR τ  Moreover, 

we suppose that 1F  and 2F  are bounded sets. We consider 
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( ) [ ]11111 ;;adm η− LEr F  

( ) [ ] ( [ ]);;; 11,01
,1

111,0,1 1
1111

LPL EBdfEBf r
ri

i
Errii

+

∈

+
∈ ′∈













∈







η∈ ∫ F  

( ) [ ]22222 ;;adm η− LEr F  

( ) [ ] ( [ ]).;; 22,02
,1

222,0,1 2
2222

LPL EBdfEBf r
ri

i
Errii

+

∈

+
∈ ′∈













∈







η∈ ∫ F  

In connection with definitions of Section 3, we suppose that 

( ( )( ) [ ( ) ]1
111111 ;~;;;ADM, SEr Yn η− LF  

( ) ( ) [ ] ( ) ,~;;adm

1
1

1

1
,1

1
1
,

1
11111,1
















∈














ηη−∈

∈=
∈ ∫∑ Y

ni

jjiE

r

j
rii dfSErf LF  

( ));~ 1nY RP∈∀  

and 

((( ) ) [ l ( ) ]2
2 2 2 2 2 2, ADM ; ; ; ;r E S− ηn YF L  

( ) ( ) [ ] ( ) l
2

2 2
2

2
2 2 2 2 2 21, ,

1 1,

adm ; ; ,
r

i ji r i jEj i

f r E S f d∈
= ∈

  
  ∈ − η η ∈      

∑∫
n

YF L  

l ( ) )2 .∀ ∈ nY RP  (4.3) 

Of course, the sets (4.3) will be used in cases, when questions of 
approximate validity of sconstraint-1Y  and sconstraint-2Y  are 

considered. In these cases, in (4.3), neighbourhoods of 1Y  and 2Y  are 

required to use. 
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Now, we consider concrete variants of construction of previous section 
connected with generalized elements. Namely, 

[ ] {( ) ( ) [ ] ( ( )) },;add;;; 1,1111,11111 1111 FF ∈µη∈µη∑ ∈
+

∈ rjjrrjjr EE LL   

(4.4) 

is the set of generalized elements of the first player. Analogously, 

[ ] {( ) ( ) [ ] ( ( )) }.;add;;; 2,1222,12222 2222 FF ∈η∈η∑ ∈
+

∈ rjjrrjjr EE νν LL   

(4.5) 

So, in fact, we introduce generalized controls of both players. Of course, 
usual controls can be represented as generalized controls. For this goal, 
we introduce the mapping I by the rule 

( ) ( ) ( ) [ ] [ ].;;;;;adm: 111111111,11,1 111
FF η∑→η−η∗ ∈∈ LL EErff rriirii 6  

(4.6) 

Then, ( ) [ ]11111 ;;adm η− LEr F  can be considered as everywhere dense 

subset of the set (4.4) 

[ ] ( (( ) [ ]),;;admcl;;; 11111
1

11111 η−=η∑ LL ErEr FF I  

[ ])11111 ;;; rE Fη∗
∑ Lτ  

( (( ) [ ]) [ ]),;;;,;;admcl 11111
0

11111
1 rEEr FF ηη−= ∑ LL τI  (4.7) 

where 

[ ] [ ( )] [ ] ,;;; 11111
1

;;;111111 FF η∑
+
∗

∗
∑ ⊗η LLL E

r
rrE ττ   

and 

[ ] [ ( )] [ ].;;; 11111
1

;;;1011111
0

FF η∑
+

∑ ⊗η LLL E
r

rrE ττ   

The more detailed reasonings are reduced in the previous section. 
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Analogously, ( ) [ ]22222 ;;adm η− LEr F  can be considered in the 

form of everywhere dense subset of the set (4.5); for this goal, we 
introduce the following mapping J: 

( ) ( ) ( ) [ ]22222,12,1 ;;adm:
22

η−η∗ ∈∈ LErff riirii F6  

[ ],;;; 22222 Fη∑→ LEr  

considered as the immersion operator. In addition, 

[ ] ( (( ) [ ]),;;admcl;;; 22222
1

22222 η−=η∑ LL ErEr FF J  

[ ])22222 ;;; rE Fη∗
∑ Lτ  

( (( ) [ ]),;;admcl 22222
1 η−= LEr FJ  

[ ]),;;; 22222
0 rE Fη∑ Lτ  (4.8) 

where 

[ ] [ ( )] [ ] ,;;; 22222
2

;;;222222 FF η∑
+
∗

∗
∑ ⊗η LLL E

r
rrE ττ   

and 

[ ] [ ( )] [ ].;;; 22222
2

;;;2022222
0

FF η∑
+

∑ ⊗η LLL E
r

rrE ττ   

Moreover, we introduce two natural generalized operators. The mapping 

1S  is defined as 

( ) ( ) [ ] ;;;;: 1
1

1
1

1

1 1111

,1

1
,

1
,1

n

n

RF →η∑













µµ

∈=
∈ ∫∑ LEdS r

i

jjiE

r

j
rjj 6  (4.9) 

of course, (4.9) is generalized operator of player I. Analogously, the 
mapping 2S  is defined in the form 
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( ) ( ) [ ] ;;;;: 2
2

2
2

2

2 2222

,1

2
,

1
,1

n

n

RF →η∑














∈=
∈ ∫∑ LEdS r

i

jjiE

r

j
rjj νν 6  

(4.10) 

(4.10) is generalized operator of player II. 

The sets of admissible generalized elements of players I and II are 
defined as preimages of 1Y  and 2Y  under operation of 1S  and ,2S  

respectively; 

( )( ) [ ( ) ]1
1111111 ;;;;, SEr YF η− LADMnM  

{( ) [ ] (( ) ) },;;; 1,111111,1 111
YF ∈µη∑∈µ= ∈∈ rjjrrjj E SL  (4.11) 

( )( ) [ ( ) ]2
2222222 ;;;;, SEr YF η− LADMnN  

 {( ) [ ] (( ) ) }.;;; 2,122222,1 222
YF ∈η∑∈= ∈∈ rjjrrjj E νν SL  (4.12) 

Elements of (4.11) (of (4.12)) and only they are admissible generalize 
controls of player I (of player II). We note that this admissibility is 
regarded in the sense of precise constraints corresponding to sets 1Y  and 

,2Y  respectively. 

Now, we introduce two variants of constraints of asymptotic 
character. Let 

( )( ) [ ( ) ]1
11111111 ;;;;, SEr YFADM η− LnA  

 ( )( ) ( )[ ] ( )[ ] ] [{ }∞∈ζη−= ζ ,0:;;;;ADM, 1
1111111 1 SEr YF nn OL  

[( ) [ ]],;;adm 11111 η−β∈ LEr F  (4.13) 

( )( ) [ ( ) ]2
22222222 ;;;;, SEr YFADM η− LnA  

 ( )( ) ( )[ ] ( )[ ] ] [{ }∞∈ζη−= ζ ,0:;;;;ADM, 2
2222222 2 SEr YF nn OL  

[( ) [ ]].;;adm 22222 η−β∈ LEr F  (4.14) 
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In (4.13) and (4.14), we use weakening of constraints in all directions. 
This is connected with employment of neighbourhoods of 1Y  and 2Y  

defined in terms of norms. 

Now, we consider another weakening of constraints. For this, we use 
(3.20). Recall that 

( )( ) [ ( ) ]1
1111 ;;step, SEr L−n  

( ) ( ) ( ){ },,1,,1 1110
1
,1 rjMiEBSM ji ∈∀∈∀∈∈= LP n  (4.15) 

and 

( )( ) [ ( ) ]2
2222 ;;step, SEr L−n  

( ) ( ) ( ){ }.,1,,1 2220
2
,2 rjMiEBSM ji ∈∀∈∀∈∈= LP n  (4.16) 

We fix sets ( )( )[ ( ) ]1
11111 ;;step, SErM L−∈ n  and (( ) )step, 222 −∈ rM n  

[ ( ) ].;; 2
22 SE L  Of course, by (4.15) and (4.16), 

( ) ( ).,1&,1 2211 nn ⊂⊂ MM  

In addition, we have two index sets defining the «step» directions of our 
matriciants. Now, we introduce two variants of the family (4.19) 

( )( ) [ ( ) ]1
111111111 ;;;;;, SMEr YF η− LADMnB  

 (( ) ) [ l ( )
[ ] ( ) ] ] [{ }1 1

1 1 1 1 1 1 1 1, ADM ; ; ; ; : 0,r E M Sζ= − η ζ ∈ ∞L OF Yn
n  

[( ) [ ]],;;adm 11111 η−β∈ LEr F  (4.17) 

( )( ) [ ( ) ]2
222222222 ;;;;;, SMEr YF η− LADMnB  

(( ) ) [ l ( )
[ ] ( ) ] ] [{ }2 2

2 2 2 2 2 2 2 2, ADM ; ; ; ; : 0,r E M Sζ= − η ζ ∈ ∞F YL O
n

n  

[( ) [ ]].;;adm 22222 η−β∈ LEr F  (4.18) 
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Of course, 1A  and 1B  are realized two types of «asymptotic constraints» 

for player I. Analogously, 2A  and 2B  are realized two types of 

«asymptotic constraints» for player II. In the following, we will consider 
immediate variants of constraints too. But, now we are restricted 
consideration of the above-mentioned extreme variants ,,, 211 ABA  and 

.2B  From Proposition 3.1, we obtain the following two chains of 

equalities: 

( ) [( ) [ ] [ ];;;;;;;adm 111111111 1 FF η∑η−= LL EEr rasM  

[ ] ]111111 ;;;;; AIrE Fη∗
∑ Lτ  

( ) [( ) [ ] [ ];;;;;;;adm 111111111 1 FF η∑η−= LL EEr ras  

[ ] ]111111 ;;;;; BIrE Fη∗
∑ Lτ  

( ) [( ) [ ] [ ];;;;;;;adm 111111111 1 FF η∑η−= LL EEr ras  

[ ] ]111111
0 ;;;;; AIrE Fη∑ Lτ  

( ) [( ) [ ] [ ];;;;;;;adm 111111111 1 FF η∑η−= LL EEr ras  

[ ] ],;;;;; 111111
0 BIrE Fη∑ Lτ  (4.19) 

( ) [( ) [ ] [ ];;;;;;;adm 222222222 2 FF η∑η−= LL EEr rasN  

[ ] ]222222 ;;;;; AJrE Fη∗
∑ Lτ  

( ) [( ) [ ] [ ];;;;;;;adm 222222222 2 FF η∑η−= LL EEr ras  

[ ] ]222222 ;;;;; BJrE Fη∗
∑ Lτ  

( ) [( ) [ ] [ ];;;;;;;adm 222222222 2 FF η∑η−= LL EEr ras  

[ ] ]222222
0 ;;;;; AJrE Fη∑ Lτ  
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( ) [( ) [ ] [ ];;;;;;;adm 222222222 2 FF η∑η−= LL EEr ras  

[ ] ].;;;;; 222222
0 BJrE Fη∑ Lτ  (4.20) 

In the following, we fix N∈1k  and .2 N∈k  Moreover, we fix the 
mappings 

( ) ( ) ( ) ( ).,,1,1:;,,1,1: 2222
2

1111
1 LL EBrAEBrA →×→× kk  

(4.21) 

By ( )1A  and ( ),2A  we define two matriciants. In addition, we follow to 
stipulations: 

( ) ( )( )( ) ( ) ( )( )( ).,1,1,&,1,1, 22
22

,11
11

, rjijiAArjijiAA jiji ∈∀∈∀∈∀∈∀ kk   

(4.22) 

Of course, in (4.22), the natural renamings are realized. With (4.21), the 
«traditional» vector-functionals are connected: The vector-functional 

m ( ) [ ] 11 1 1 1 1 1: adm ; ; ,r E− η →F RA L k   (4.23) 

of player I is defined by the rule 

l (( ) ) ( ) ( ) ( ) [ ]
1

1 1 11
1

1
1 1 1 1 1 11, 1,,

1 1,

adm ; ; .
r

j j jj r j ri jEj i

f A f d f r E∈ ∈
= ∈

 
 η ∀ ∈ − η
  
 
∑∫ FA L

k

  

(4.24) 

By analogy with (4.23) and (4.24), we introduce the vector-functional 

m ( ) [ ] 22 2 2 2 2 2: adm ; ; ,r E− η →F RA L k   (4.25) 

of player II by the rule 

l (( ) ) ( ) ( ) ( )
2

2 22
2

2
2 2 21, 1,,

1 1,

adm
r

j j jj r j ri jEj i

f A f d f r∈ ∈
= ∈

 
 η ∀ ∈ −
  
 
∑∫

k

A   

[ ]2 2 2 2; ; .E× ηF L  (4.26) 
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We can consider (4.23), (4.24) and (4.25), (4.26) as goal operators in [9]-[11]. 

Moreover, we use ( )1A  for constructing of generalized vector-functional of 
player I. Namely, we introduce the generalized vector-functional 

[ ] ,;;;: 1
1 1111

kRFP →η∑ LEr   (4.27) 

by the following natural rule: 

(( ) ) ( ) ( ) [ ].;;; 1111,1
,1

1
,

1
,1 11

1
1

1

1
FP η∑∈µ∀














µµ ∈

∈=
∈ ∫∑ LEdA rrjj

i

jjiE

r

j
rjj

k

  

(4.28) 

Analogously, we define the generalized vector-functional of player II. 
Namely, we suppose that 

[ ] ,;;;: 2
2 2222

kRFQ →η∑ LEr   (4.29) 

is defined by the rule 

(( ) ) ( ) ( ) [ ].;;; 2222,1
,1

2
,

1
,1 22

2
2

2

2
FQ η∑∈∀














∈

∈=
∈ ∫∑ LEdA rrjj

i

jjiE

r

j
rjj ννν

k

  

(4.30) 

Under employment of the sets M  and N  in the capacity of sets of 

generalized admissible controls of players I and II, we consider ( )M1P  

and ( )N1Q  as distinctive attainability domains. 

Of course, the mapping P  is generalized analogue of l1,A  since 

l1.=D IP A   (4.31) 

The testing of (4.31) is realized with employment of simplest properties of 
indefinite integral; see [8, (3.4.11)]. Moreover, we note that similarly to 
(3.28) 
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[ ] [ ] ( )( ).,,;;;,;;; 11
1 111111111

kk
RRFFP ττ rEEC r ηη∑∈ ∗

∑ LL  (4.32) 

So, we obtain the collection ( [ ] [ ] )PFF ,;;;;,;;; 1111111111 IrEEr ηη∑ ∗
∑ LL τ  

with the properties (4.31) and (4.32). Moreover, we have the property 
similar to the compactness property of TS (3.12). Namely, 

( [ ] [ ])111111111 ;;;,;;;1 rEEr FF ηη∑ ∗
∑ LL τ  is a nonempty compactum. 

Then by [12, Corollary 3.1], the equality 

( ) [ ( ) [ ] ( ) l ]11 11 1 1 1 1 1adm ; ; ; , ; ;r E− η kkas RF RL A Eτ  

(( ) [( ) [ ] [ ];;;;;;;adm 111111111
1

1 FFP η∑η−= LL EEr ras  

[ ] ])111111 ;;;;; EL IrE Fη∗
∑τ  

( (( ) [ ])).;;adm 111111 η−′∈∀ LPPE Er F  (4.33) 

Of course, we obtain the concrete variant of (3.29). We can use in (4.33) 
the families 1A  and 1B  instead of arbitrary family of subsets of 

( ) [ ].;;adm 11111 η− LEr F  In these cases, (4.19) and (4.33) are used. 

Then, 

( ) [ ( ) [ ] ( ) m ]111 1 1 1 1 1 1adm ; ; ; , ; ;r E− η kkas RF RL Aτ A  

( ) [ ( ) [ ] ( ) l ] ( )11 1
11 1 1 1 1 1adm ; ; ; , ; ; .r E= − η =kkas RF R PL Aτ B M  (4.34) 

In reality, the more general property takes place. We keep in mind the 
following concrete variant of Theorem 3.1: ( (( ) [ ;adm 111 Er F−′∈∀ PPZ  

]))11; ηL  

( ( ) ( ) )1 1&Z ZA B   

( ) [ ( ) [ ] ( ) l ] ( )( )11 1
11 1 1 1 1adm ; ; ; , ; ; .r E⇒ − η =kkas RF R PL A Zτ M  (4.35) 
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So, ( )M1P  is very universal attraction set in :1kR  We can use 

different families Z  of subsets of ( ) [ ]11111 ;;adm η− LEr F  with 

properties Z1A  and .1BZ  

Now, we consider Q  as generalized analogue of l2.A  This 
interpretation is natural since 

l2 .= DJQA   (4.36) 

In addition, similar to (4.32), we have the continuity property 

[ ] [ ] ( )( ).,,;;;,;;; 22
2 222222222

kk
RRFFQ ττ rEEC r ηη∑∈ ∗

∑ LL  (4.37) 

We obtain the collection ( [ ] [ ] )QFF ,,;;;,;;; 2222222222 JrEEr ηη∑ ∗
∑ LL τ  

with the properties (4.36) and (4.37). In addition, TS 

( [ ] [ ]),;;;,;;; 2222222222 rEEr FF ηη∑ ∗
∑ LL τ   (4.38) 

is a nonempty compactum. By [12, Corollary 3.1], 

( ) [ ( ) [ ] ( ) l ]22 22 2 2 2 2 2adm ; ; ; , ; ;r E− η kkas RF RL A Eτ  

(( ) [( ) [ ] [ ];;;;;;;adm 222222222
1

2 FFQ η∑η−= LL EEr ras  

[ ] ])222222 ;;;;; EL JrE Fη∗
∑τ  

( (( ) [ ])).;;adm 222222 η−′∈∀ LPPE Er F  (4.39) 

Of course, we can consider the variants of (4.39) corresponding to 
employment of the families 2A  and .2B  Then, by (4.20) and (4.39), 

( ) [ ( ) [ ] ( ) l ]22 22 2 2 2 2 2adm ; ; ; , , ;r E− η RF RL A Akkas τ  

( ) [ ( ) [ ] ( ) l ] ( )22 1
22 2 2 2 2 2adm ; ; ; , ; ; .r E= − η =RF R QL A B Nkkas τ  (4.40) 
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Of course, we can supplement the relation (4.40). For this, we use the 
corresponding concrete variant of Theorem 3.1: ( (( )adm2 −′∈∀ rPPZ  

[ ]))2222 ;; ηLEF  

( ( ) ( ) )2 2&Z ZA B   

( ) [ ( ) [ ] ( ) l ] ( )( )22 1
22 2 2 2 2adm ; ; ; , ; ; .r E⇒ − η =kkas RF R QL A Zτ N (4.41) 

We obtain that ( )N1Q  is very universal attraction set in :2kR  Using 

( ),1 NQ  we realize the attraction set for any family Z  such that Z2A  

and .2BZ  

On the other hand, ( )M1P  and ( )N1Q  are generalized «attainability 

domains». We can consider (in the following) some generalized game for 
which player I is realized the choice of vector measure 

( ) [ ],;;; 1111,1 11
Fη∑∈µ ∈ LErrjj   (4.42) 

and player II is realized the choice of vector measure 

( ) [ ].;;; 2222,1 22
Fη∑∈∈ LErrjjν   (4.43) 

Of course, vector measures in (4.42) and (4.43) play the role of strategies. 
In the following, we will introduce the corresponding cost function. But, 
this generalized game problem (we consider only maximin problem) will 
be used for realization of asymptotics of usual maximin values under 
employment of sets 11 Z∈Z  and 22 Z∈Z  in the capacity of constraints 

on the choice of vector-functions 

( )( ) ( ) [ ],;;adm 11111,1
1

1
η−∈

∈
LErf

rjj F  

and 

( )( ) ( )[ ],;;adm 22222,1
2

2
η−∈

∈
LErf

rjj F  
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respectively; here ( (( ) [ ]))111111 ;;adm η−′∈ LPPZ Er F  and PZ ′∈2  

( (( ) [ ]))22222 ;;adm η− LP Er F  satisfy to conditions 

( ) ( ) ( ) ( ),&and& 22221111 BABA  ZZZZ  

respectively. The more detailed constructing will be reduced in the next 
section. 

We recall that by (1.2), (1.3), and (4.3), 

( ( ) ) [ l ( )
[ ] ( ) ]1 1

1 1 1 1 1 1 1 1, ADM ; ; ; ;r E M Sζ− η
n

n F YL O  

( ( ) ) [ ( ) [ ] ( )] ] [1 1
1 1 1 1 1 1 1, ADM ; ; ; ; 0, .r E Sζ⊂ − η ∀ζ ∈ ∞F YL O nn  

As a corollary, from (4.13) and (4.17), we obtain that 

.:11 ABBA ⊂∈∃∈∀ BA   (4.44) 

Now, from (3.31) and (4.44), we obtain the property 

.11 BA    (4.45) 

Analogously, by (1.2), (1.3), and (4.3), we obtain that 

( ( ) ) [ l ( )
[ ] ( ) ]2 2

2 2 2 2 2 2 2 2, ADM ; ; ; ;r E M Sζ− η
n

n F YL O  

( ( ) ) [ ( ) [ ] ( )] ] [2 2
2 2 2 2 2 2 2, ADM ; ; ; ; 0, .r E Sζ⊂ − η ∀ζ ∈ ∞F YL O nn (4.46) 

From (4.14), (4.18), and (4.46), we obtain that 

.:22 ABBA ⊂∈∃∈∀ BA   (4.47) 

From (3.31) and (4.47), we obtain the following property: 

.22 BA    (4.48) 

Using (4.45) and (4.48), we obtain that 

( ) ( ).& 2211 BABA   (4.49) 
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5. Maximin Problem with Constraints Weakening  
(Informative Setting) 

We recall that 1F  and 2F  are nonempty finite-dimensional 
compactums. Therefore, for some ] [∞∈ ,01a  and ] [,,02 ∞∈a  the 
properties 

( i ( ) i ) ( l ( ) l )1 21 2 21 & ,x x x x∈ ∀ ∈∀k k aa F F   (5.1) 

take place. Using (4.4) and the definition of ( ),1k⋅  we obtain that 

( ) ( ) [ ] .,1;;; 11111,111 11
rlEE rrjjl ∈∀η∑∈µ∀µ ∈ FLa   (5.2) 

By ,1⋅  we denote the natural sup-norm of the space ( )1EB  of all 

bounded real-valued functions on :1E  We use the concrete variant of 
sup-norm ⋅  of the space ( )EB  in Section 2. Then, by (4.28), 

(( ) ) ( ) ( ) ( ) [ ] .,1;;; 11111,11
1
,

1
1,1 11

1

1
ka ∈∀η∑∈µ∀µ ∈

=
∈ ∑ iEAi rrjjji

r

j
rjj FP L  

As a corollary, we have the following estimates. Namely, for 

( ) [ [,,0max
1

1
,

1,1
11

1

1
∞∈α ∑

=∈ ji

r

ji
A

k
a  the inequality system takes place 

(( ) ) ( ) ( ) [ ].;;; 1111,11,1 111
FP η∑∈µ∀αµ ∈∈ LErrjjrjj 1k   (5.3) 

In connection with (5.3), we introduce the following ball: 

{ ( ) }.11 α∈ 1kk xxU R   (5.4) 

Then by (5.3) and (5.4), we obtain the obvious inclusion 

( [ ]) .;;; 1111
1

1 UEr ⊂η∑ FP L   (5.5) 

We equip the nonempty set U (5.4) with the metric 1ρ  defined in the 
form 
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( ) ( ) [ [.,0:, ∞→×′′−′′′′ UUxxxx 1k6  

In addition, topology ( )
U

1k
Rτ  of the set U induced from ( )( )11 , kk

RR τ  is 

generated by metric .1ρ  Then, ( )1, ρU  is a compact metric space. In 

addition, by (4.11) and (5.5), 

( ) ( [ ]) .;;; 1111
11

1 UEr ⊂η∑⊂ FPP LM   (5.6) 

Now, we consider analogous estimates for player II (we keep in mind 
the inclusion chain similar to (5.6)). For this, we use the second 
statement of (5.1). By analogy with (5.2), 

( ) ( ) [ ] .,1;;; 22222,122 22
rlEE rrjjl ∈∀η∑∈∀ ∈ FLνν a   (5.7) 

We introduce sup-norm 2⋅  of the space ( )2EB  of all bounded real-

valued function on .2E  By (4.30) and (5.7), we obtain that 

(( ) ) ( ) ( ) ( ) [ ]2222,12
2
,

1
,1 ;;;22

2

2
FQ η∑∈∀ ∈

=
∈ ∑ LEAi rrjjji

r

j
rjj νν 2a  

.,1 2k∈∀i   (5.8) 

We suppose that [ [∞∈α ,02  is the number 

( ) .max
2

2
,

1,1
22

2

2
ji

r

ji
A∑

=∈
α

k
a  

By (5.8), we obtain the following estimates: 

(( ) ) ( ) ( ) [ ].;;; 2222,12,1 222
FQ η∑∈∀α ∈∈ LErrjjrjj νν 2k   (5.9) 

In connection with (5.9), we introduce the following ball: 

{ ( ) }.222 α∈ kk xxV R   (5.10) 

By (5.9) and (5.10), we obtain the obvious inclusion 
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( [ ]) .;;; 2222
1

2 VEr ⊂η∑ FQ L   (5.11) 

Using (5.10), we define the metric 2ρ  in the form ( ) 6xx ′′′,  
( ) [ [.,0: ∞→×′′−′ VVxx 2k  Then topology ( )

V
2k

Rτ  of the set V is 

induced by metric .2ρ  Of course, ( )2, ρV  is a compact metric space. In 

addition, by (4.12) and (5.11), 

( ) ( [ ]) .;;; 2222
11

2 VEr ⊂η∑⊂ FQQ LN   (5.12) 

In the following, we use the natural combination of (5.6) and (5.12). 
Moreover, we use operators I and J of Section 4. In this connection, we 
note that by (4.7), (4.31), and (5.6), 

l ( ( ) ) ( ( ) )
1 11 11, 1,j jj r j rf f U∈ ∈′ ′= ∗η ∈PA  

( ) ( ) [ ]
1 1 1 1 1 11, adm ; ; .j j rf r E∈′∀ ∈ − ηF L  

Therefore, we obtain the following property: 

l ( ) [ ]1 1 1 1 1 1: adm ; ; .r E U− η →FA L   (5.13) 

On the other hand, by (4.8), (4.36), and (5.12), 

l ( ( ) ) ( ( ) )
2 22 21, 1,j jj r j rf f V∈ ∈′′ ′′= ∗η ∈A Q  

( ) ( ) [ ]
2 2 2 2 2 21, adm ; ; .j j rf r E∈′′∀ ∈ − ηLF  

As a corollary, we have the obvious property 

l ( ) [ ]2 2 2 2 2 2: adm ; ; .r E V− η →A LF   (5.14) 

So, if player I chooses the vector-function ( ) ( ) [ 11,1 adm
1

F−∈′ ∈ rf rjj  

]111 ;; ηLE  and player II chooses ( ) ( )[ ],;;adm 22222,1 2
η−∈′′ ∈ LErf rjj F  

then the pair 

l ( ( ) ) l ( ( ) )( )1 21 21, 1,, ,l sl r s rf f U V∈ ∈′ ′′ ∈ ×A A  
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is realized. Analogous situation is realized under the choice of 
generalized controls. We consider the set VU ×  as a metric space. 
Namely, we introduce ( ) ( ) [ [∞→×××ρ ,0:3 VUVU  by the following 

rule: If ,,, 211 UuVvUu ∈∈∈  and ,2 Vv ∈  then (( ) ( ))22113 ,,, vuvuρ  

({ ( ) ( )}).,;,sup 212211 vvuu ρρ=  Then, 3ρ  is the concrete metric on 

VU ×  generating the natural product of the topologies of U and V 
generated by 1ρ  and ,2ρ  respectively. Of course, ( )3, ρ× VU  is a 

compact metric space. 

In the following, we fix a function 

.: R→× VUf   (5.15) 

We consider f as the cost function in the corresponding game problem. 
Namely, we consider games 

l ( ( ) ) l ( ( ) )( )1 21 21, 1,, ,l sl r s rf f∈ ∈′ ′′↓ ↑A Af   (5.16) 

with some constraints on the choice ( )
1,1 rllf ∈′  and ( ) .

2,1 rssf ∈′′  We suppose 

that these constraints are realized by weakening of the initial precise 
conditions. As a result, we obtain constraints of asymptotic character       
for which the game problems (5.16) are considered. We investigate 
maximin problems. Moreover, under ( ) [ ]1111,1 ;;;11

Fη∑∈µ ∈ LErrll  and 

( ) [ ],;;; 2222,1 22
Fη∑∈∈ LErrssν  we obtain (see (5.5) and (5.11)) the pair 

( (( ) ) (( ) )) .,
21 ,1,1 VUrssrll ×∈µ ∈∈ νQP  

Therefore, we can consider the generalized game 

( (( ) ) (( ) )) ,,
21 ,1,1 ↑µ↓ ∈∈ rssrll νQPf   (5.17) 

under some fixed constraints on the choice of ( )
1,1 rll ∈µ  and ( ) :

2,1 rss ∈ν  

(( ) ) (( ) ).&
21 ,1,1 NM ∈∈µ ∈∈ rssrll ν   (5.18) 



ABOUT ASYMPTOTIC NONSENSITIVITY PROPERTY IN … 47

Here, we investigate the maximin problem too. In the following, it is 
established that this maximin problem defines important variants of 
maximin asymptotics for game problems of type (5.16). So, the 
generalized problem (5.17), (5.18) defines the «true» result for game 
problems of type (5.16) under weakening of the initial precise conditions. 

6. The Generalized Maximin Problem 

In this section, we consider the game problem (5.17) and (5.18). Of 
course, this problem is correct under ∅≠M  and .∅≠N  In the 
following, we consider only this case; so, we investigate the case of 
compatible constraints of the generalized maximin problem: In the 
following, we suppose that 

( ) ( ).& ∅≠∅≠ NM   (6.1) 

Proposition 6.1. Each of families ,,, 121 BAA  and 2B  consists of 

nonempty sets.  

We use (4.19) and (4.20); moreover, we take into account [8, (2.5.1)].  

 
 

Corollary 6.1. If ( (( ) [ ]))11111 ;;adm η−′∈ LPPZ Er F  and ,1BZ  

then .Z∈/∅  Moreover, if ( (( ) [ ]))22222 ;;adm~ η−′∈ LPPZ Er F  and 

,~
2BZ  then .~Z∈/∅  

Proof follows from (3.31). We omit this obvious reasoning. From 
(4.13), (4.14), and Proposition 6.1, we obtain that 

( [( ) [ ]])

( [( )[ ]]) 











η−β∈

η−β∈

.;;adm

and

,;;adm

2222202

1111101

L

L

Er

Er

F

F

A

A

  (6.2) 
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Analogously, from (4.17), (4.18), and Proposition 6.1, the following 
properties imply: 

( [( ) [ ]])

( [( )[ ]]) 











η−β∈

η−β∈

.;;adm

and

,;;adm

2222202

1111101

L

L

Er

Er

F

F

B

B

 (6.3) 

Finally, from Corollary 6.1, we obtain that 

( [( ) [ ]] ( )

( [( ) [ ]]))

( [( ) [ ]] ( )

( [( ) [ ]])) 


















η−β∈⇒

η−β∈∀

η−β∈⇒

η−β∈∀

.;;adm~

~;;adm~

and

,;;adm

;;adm

222220

222222

111110

111111

LZ

ZLZ

LZ

ZLZ

Er

Er

Er

Er

F

F

F

F

B

B





(6.4) 

So, in (6.2)-(6.4), we have the required variants of asymptotic 
compatibility. Now, we return to (6.1) and will consider the generalized 
game problem (5.17) and (5.18). 

In the following, suppose that the cost function f (5.15) is continuous 
with respect to topology generated by metric .3ρ  By definition of ,3ρ  we 

obtain that f is a function of two variables continuous with respect to 
totality of the above-mentioned variables. Then, for any vector ,Vy ∈  

the function ( )y,⋅f  defined in the form 

( ) ,:, R→Uyxx f6   (6.5) 

is continuous. In addition, the mapping (4.9) is continuous in the sense of 

topologies [ ]11111 ;;; rE Fη∗
∑ Lτ  and ( ).1n

Rτ  Therefore, by (4.11), we 

obtain that M  is a closed set in topology [ ]11111 ;;; rE Fη∗
∑ Lτ  (recall 

that 1Y  is a closed set) and, as a corollary, a compact set in this topology. 
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With employment of (6.1), we obtain that M  is a nonempty set compact 

in topology [ ].;;; 11111 rE Fη∗
∑ Lτ  From (4.32), the compactness property 

of ( )M1P  is realized; of course, we keep in mind compactness in 

( )( )., 11 kk
RR τ  Therefore, from (5.6), we obtain the compactness of ( )M1P  

in topology ( ) ,1
U

k
Rτ  which is generated by metric .1ρ  Then, ( )M1P  is a 

nonempty compact set in metric space ( )., 1ρU  Therefore, by Weierstrass 

theorem and continuity of the functions (6.5), we obtain that, under 

( )
( ) R

P
∈∈

∈
yxVy

x
,min,

1
f

M
 is defined correctly. As a result, the function 

( )
( ) ,:,min

1
R

P
→

∈
Vyxy

x
f

M
6   (6.6) 

is defined correctly. In addition, under ,Vy ∈  the function 

( )( ) ,:, RP →µµ Myf6  

is defined correctly and attains the minimum; as what is more, 

( )( )
( )

( ).,min,min
1

yxy
x

ff
MM P

P
∈∈µ

=µ  (6.7) 

From (6.7), we obtain that (6.6) coincides with the function 

( )( ) .:,min RP →µ
∈µ

Vyy f
M

6  (6.8) 

So, we can use (6.8) instead of the above-mentioned function (6.6). 

Proposition 6.2. The function (6.6) and (6.8) is continuous: 

( )( ) ( ( ) ).,,min 2
V

Vy
Vy kf RCP τ∈





 µ

∈∈µ M
 

The proof is obvious: We use the coincidence of the functions (6.6) and 
(6.8) and uniform continuity of f, since ( )3, ρ× VU  is a compact metric 

space (in this connection, see [18, (3.4)]). 
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Recall that 

[ ] [ ] ( )( ).,,;;;;;; 22
2 2222222222

nn
RRFF ττ, rEEC r ηη∑∈ ∗

∑ LLS  

Since 2Y  is a closed set, we obtain (see (4.12)) that N  is a closed set in 

the sense of topology [ ].;;; 22222 rE Fη∗
∑ Lτ  Using the compactness 

property of this topology, in the form of ,N  we have a nonempty compact 

set in TS (4.38). As a corollary (see (4.37)), the set ( )N1Q  is a nonempty 

compact set in ( )( );, 22 kk
RR τ  of course, we use the known property of 

image of a continuous mapping; for example, [7, p. 199]. With 
employment of (5.12) and the transitivity property of operation of the 

passage to a subspace of TS, we obtain that ( )N1Q  is the nonempty 

compact set in ( ( ) )., 2
VV k

Rτ  In the other words, ( )N1Q  is the nonempty 

compact set in metric space ( )., 2ρV  Therefore, from Proposition 6.1, the 

function (6.8) attains the maximum on the set ( );1 NQ  in addition, 

( )
( )( ) ( ) ( )( ).,minmax,minmax

1
ν

ν
QPP

Q
µ=µ

∈µ∈∈µ∈
ff

MNMN
y

y
 (6.9) 

In (6.9), we use the following property: The image of ( )N1Q  under 

operation of function (6.8) coincides with the image of N  under operation 
of function 

( ) ( )( ) ;:,min RQP →µ
∈µ

N
M

νν f6  

the above-mentioned coincidence follows from definition of an image. We 
consider the number 

( ) ( )( ) ,,minmax RQP ∈µ=
∈µ∈

ν
ν

fV
MN

 (6.10) 

as generalized maximin or the maximin in generalized problem. In the 
following, it will established that (6.10) defines asymptotics of realizable 
values of maximin for variants of «constraints» considered in premises of 
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implications (4.35) and (4.41). In connection with (6.10), we recall (4.19) 
and (4.20). Moreover, from (6.7) and (6.9), we obtain that 

( ) ( )
( ).,minmax

11
yx

xy
fV

MN PQ ∈∈
=  (6.11) 

In connection with (6.11), we use (4.34), (4.35), (4.40), and (4.41). 

7. Asymptotics of Maximin 

In this section, we fix families 

( ( (( ) [ ]))) &;;adm 111111 η−′∈ LPPZ Er F  

( ( (( ) [ ]))),;;adm 222222 η−′∈ LPPZ Er F  (7.1) 

with the following properties: 

( ) ( ) ( ) ( ).&&& 22221111 BABA  ZZZZ   (7.2) 

Then by (4.35), (4.41), and (7.2), we obtain the following two equalities: 

( ) [ ( ) [ ] ( ) l ] ( )11 1
11 1 1 1 1 1adm ; ; ; ; ; ; ,r E− η =L A ZRF R P Mkkas τ   (7.3) 

( ) [ ( ) [ ] ( ) l ] ( )22 1
22 2 2 2 2 2adm ; ; ; ; ; ; .r E− η =L A ZRF R Q Nkkas τ   (7.4) 

In the following, we suppose that the families 1Z  and 2Z  are directed: 

( [ ( ) [ ] ] )

( [ ( ) [ ] ] )

1 1 1 1 1 1

2 2 2 2 2 2

adm ; ; ,

and

adm ; ; .

r E

r E

∈β − η 




∈β − η 

F

F

Z L

Z L

 (7.5) 

Remark 7.1. Of course, we can use the cases 

(( ) ( )) (( ) ( ))22112211 && BAAA ==== ZZZZ   

(( ) ( )) (( ) ( )).&& 22112211 BBAB ==== ZZZZ   

These possibilities follow from (4.13), (4.14), (4.17), (4.18), and (4.49).  
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From (1.8), (7.3), and (7.5), we obtain that 

( ) l ( ) ( )1

1

11
1cl , .

H
H

∈

 =  
 ∩

Z

A RP M kτ  (7.6) 

Analogously, from (1.8), (7.4), and (7.5), the equality 

( ) l ( ) ( )2

2

11
2cl , ,

H
H

∈

 =  
 ∩

Z

A RQ N kτ  (7.7) 

is realized. Of course, by (6.1), 

( ( ) ) ( ( ) ).& 11 ∅≠∅≠ NM QP   (7.8) 

We note obvious corollaries of (7.6)-(7.8). Really, by (7.6) and (7.8), 
under ,1Z∈H  the property ∅≠H  is realized. From (7.5), we have the 

property 

[( ) [ ]].;;adm 1111101 η−β∈ LZ Er F   (7.9) 

Analogously, from (7.7) and (7.8), we obtain that .~~
2Z∈∀∅≠ HH  From 

(7.5), the property 

[( ) [ ]],;;adm 2222202 η−β∈ LZ Er F   (7.10) 

is realized. Now, we will use [18, Proposition 3]. In this connection, we 
recall (5.13). Then, under ,1Z∈S  we have the inclusion 

l ( )
1
1 ;S U⊂A  

as a corollary, the following equality chain is realized: 

l ( ) ( ) l ( ) ( ) l ( ) ( )1 1 11 1 1
1 1 1cl , cl , cl , ,US S U S     = =     

     
∩A A AR R R

k k kτ τ τ  (7.11) 

(since l ( ) ( )11
1cl , ;S U  ⊂ 

 
A R

kτ  really, U is closed in the sense of ( )1
R
kτ ). 

From (7.6) and (7.11), we obtain that 
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( ) l ( ) ( )1

1

11
1cl , .U

H
H

∈

 =  
 ∩

Z

A RP M kτ  (7.12) 

In addition, by (1.8), (5.13), (7.5), and (7.12), the equality 

( ) ( ) [ ( ) [ ] ( ) l ]11
11 1 1 1 1 1adm ; ; ; ; ; ; ,Ur E U= − ηL A ZRP FM kas τ  (7.13) 

holds (in (7.13), we have analogue of the first equality of [18, (2.6)]). 

Now, we recall (5.14): Under ,2Z∈H  the inclusion l ( )
1
2 ;H V⊂A  as a 

corollary, 

l ( ) ( ) l ( ) ( ) l ( ) ( )2 2 21 1 1
2 2 2cl , cl , cl , .VH H V H     = =     

     
∩A A AR R R

k k kτ τ τ  (7.14) 

This property is analogous to (7.11). By (7.7) and (7.14), 

( ) l ( ) ( ) ( ) [ ( ) [ ]2

2

11
2 2 2 2 2 2cl , adm ; ; ;V

H
H r E

∈

 = = − η 
 ∩

Z

A LRQ FN k asτ  

( ) l ]2 2 2; ; ; ,VV A ZR
kτ   (7.15) 

(we use (1.8), (7.5), and (7.14)). 

In the following, we use [18, Proposition 4]. For this, we introduce 
maximins corresponding to the case, then the constraints of our players 
are defined by the pair ( )21, HH  of sets for which 11 Z∈H  and 

.22 Z∈H  We note that, for ,1Z∈H  the inclusion l ( ) ( )
1
1 H U′∈A P  takes 

place. Recall that, in our case, f is a bounded real-valued function 
(indeed, f is a continuous real-valued function on compact metric space 
( )3, ρ× VU ). Then, under ,1Z∈H  the values 

l ( )
( ) { ( ) l ( ) } l ( )( )1

1

1
1 1inf , inf , : inf , .

h Hy H
y z y z y H h z z V

∈
∈

 = ∈ = ∈ ∀ ∈ 
 A

A A Rf f f  

(7.16) 
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From the boundedness of f and (7.16), for ,1Z∈H  we obtain that 

l ( )( )1inf , : ,
h H

z h z V
∈

→6 A Rf  

is a bounded real-valued function too. Therefore, under ,1Z∈H  for some 

] [∞∈ ,0d  

l ( )( ) l ( j ){ } ] ] j1
1 2 2inf , : , ,

h H
h z z H H

∈
∈ ⊂ − ∞ ∀ ∈A A Zf d  

(of course, we use (5.14)). As a corollary, 

l (j )

l ( )( )
i j

l ( ) l ( � )( )
1
2

1 1 2sup inf , sup inf ,
h H h Hh Hz H

h z h h
∈ ∈∈∈

= ∈
A

A A A Rf f  

j
1 2,H H∀ ∈ ∀ ∈Z Z   (7.17) 

is defined correctly. And what is more, from [18, Theorem 1], the 
following statement takes place: 

Proposition 7.1. If ] [,,0 ∞∈ζ  then there exist 1Z∈ζH  and 

2
~ Z∈ζH  such that 

i j
l ( ) l ( � )( ) ( ) j ( i )1 2 1 2sup inf , .

h Hh H
h h H H ζζ∈∈

− < ζ ∀ ∈ ∀ ∈∩ ∩f V H HA A Z P Z P  

8. Particular Cases 

In this section, we realize several corollaries of Proposition 7.1. Of 
course, (6.1) is supposed fulfilled. We recall that in the capacity of 1Z  

(see (7.1)), we can use 1A  and .1B  Analogously, for 2Z  (in (7.1)), we can 

use 2A  and .2B  Respectively, in constructions of Section 7, the following 

variants of the pair ( )21, ZZ  can use: 

( ) ( ) ( ) ( ).,,,,,,, 21212121 BBABBAAA   (8.1) 
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Then (of course, we use (4.49)), we have the corresponding variants of 
(7.16) and (7.17) realized for sets of the families ,,, 121 BAA  and .2B  

From (4.13) and (4.14), the following statement takes place: 

Proposition 8.1. If ] [,,0 ∞∈ζ  then there exist ] [∞∈ ,0ea  such that, 

for any ] [ea,0∈ε  and ] [,ea,0∈δ  the inequality  

j
l ( ) l ( )( )1 2sup inf , ,

u Hv H
u v

∈∈
− < ζA Af V  (8.2) 

holds, where (( ) ) [ ( )[ ] ( ) ]1
1111111 ;;;;ADM, 1 SErH YF nn εη−= OL  and 

(( ) ) [ ( )[ ] ( ) ].;;;;ADM,~ 2
2222222 2 SErH YF nn δη−= OL  

So, we investigate first variant of (8.1). The second variant of (8.1) is 
extracted from (4.49) and Proposition 7.1. 

Proposition 8.2. If ] [,,0 ∞∈ζ  then there exist ] [∞∈ ,0ea  such that, 

for any ] [ea,0∈ε  and ] [,ea,0∈δ  the inequality (8.2) holds for 

(( ) )[ ( )[ ] ( ) ]1
1111111 ;;;;ADM, 1 SErH YF nn εη−= OL  and (( )22,~ rH n=  

) [ l ( )
[ ] ( ) ]2 2

2 2 2 2 2 2ADM ; ; ; ; .E M Sδ− ηF YL O
n

 

Now, we consider third variant of (8.1) using (4.49) and Proposition 7.1 
again. 

Proposition 8.3. If ] [,,0 ∞∈ζ  then there exist ] [∞∈ ,0ea  such that, 

for any ] [ea,0∈ε  and ] [,ea,0∈δ  the inequality (8.2) holds for 

( ( ) )[ l ( )
[ ] ( ) ]1 1

1 1 1 1 1 1 1 1, ADM ; ; ; ;H r E M Sε= − ηF YL O
n

n  and (( )22,~ rH n=  

) [ ( )[ ] ( ) ].;;;;ADM 2
22222 2 SE YF n

δη− OL  

Finally, for fourth variant of (8.1), we obtain the following statement 
(see (4.49)): 
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Proposition 8.4. If ] [,,0 ∞∈ζ  then there exist ] [∞∈ ,0ea  such that, 

for any ] [ea,0∈ε  and ] [,ea,0∈δ  the inequality (8.2) holds for 

( ( ) )[ l ( )
[ ] ( ) ]1 1

1 1 1 1 1 1 1 1, ADM ; ; ; ;H r E M Sε= − ηF YL O
n

n  and (( )22,~ rH n=  

) [ l ( )
[ ] ( ) ]2 2

2 2 2 2 2 2ADM ; ; ; ; .E M Sδ− ηF YL O
n

 

Of course, Propositions 8.1-8.4 are simple corollaries of Proposition 7.1. 
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