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Abstract

In this paper, we establish the sharp maximal function estimates for some
Toeplitz type transforms related to the singular integral operator with general
kernel. As an application, we obtain the boundedness of the transforms on
weighted Lebesgue and Triebel-Lizorkin spaces.

1. Introduction and Preliminaries

As the development of singular integral operators (see [7, 17, 18]), their
commutators have been well studied. In [5, 15, 16], the authors prove

that the commutators generated by the singular integral operators and
BMO functions are bounded on L”(R™) for 1 < p < o. Chanillo (see [3])

proves a similar result when singular integral operators are replaced by

the fractional integral operators. In [4, 9, 14], the boundedness for the
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commutators generated by the singular integral operators and Lipschitz
functions on Triebel-Lizorkin and IL”(R")(1 < p < ®) spaces are

obtained. In [1, 8], the boundedness for the commutators generated by
the singular integral operators and the weighted BMO and Lipschitz
functions on LP(R")(1 < p < ») spaces are obtained. In [2], some
singular integral operators with general kernel are introduced, and the
boundedness for the operators and their commutators generated by BMO
and Lipschitz functions are obtained (see [2, 12]). In [10, 11], some
Toeplitz type operators related to the singular integral operators and
strongly singular integral operators are introduced, and the boundedness
for the operators generated by BMO and Lipschitz functions are
obtained. In this paper, we will study the Toeplitz type transforms
generated by the singular integral operators with general kernel and the
weighted Lipschitz functions. First, let us introduce some notations.
Throughout this paper, @ will denote a cube of R" with sides parallel to
the axes. For any locally integrable function f, the sharp maximal

function of fis defined by

# = su 1 -
M) ) = sup 170~ Fold

where, and in what follows, fgo = IQl‘lj f(x)dx. It is well-known that
Q
(see [7, 17])
e 1
MH(f)(x) = sup inf - [ [f(y) - e|dy.
@=x c<C Q] J @
Let

M) @) = sup i 17

For 1 > 0, let M, (f)(x) = M(f|")"/"(x).
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For 0 <n<1land1<r <o, set

1/r
Mn,r(f)(x) Sup{lQll Vﬂ/”j |f(y)| ] .

The A, weight is defined by (see [7])

A, = {w e LI,.(R"): sgp [lélj.Qw(x)dxj (ﬁ J.Qw(x)_l/(p_l)dxjp_1 < oo},

1< p<oo
and

A ={wel? (R"): M(w)(x) < Cw(x), a.e.}.

loc
The A(p, r) weight is defined by (see [13]), for 1 < p, r < o,

A(p, 1) =

1/r (p-1)/
{w >0: sgp (ﬁ IQw(x)rdxj [ﬁ jQw(x)_p/(p_l)dxj o < oo}

Given a non-negative weight function w. For 1 < p < o, the weighted

Lebesgue space L”(w) is the space of functions f such that

"f”LP(w) = (JR” |f(x)|pw(x)dx)1/p < o,

For B>0,p>1 and the non-negative weight function w, let

F g’w(w) be the weighted homogeneous Triebel-Lizorkin space (see [14]).

For 0 < B <1 and the non-negative weight function w, the weighted

Lipschitz space Lipg (w) is the space of functions b such that

- sup— -
"b"LipB(w) = sgp Q) IQ|b(y) bg|dy < .
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Remark. (1) It has been known that, for b e Lipg(w), w € A; and

x €@,
16 ~ Byig < Cilbl o0l he(2 Q)™
(2) Let b e Lipg(w) and w e A;. By [6], we know that spaces
Lipg(w) coincide and the norms [p| Lipg(w) T equivalent with respect to

different values 1 < p < oo,

In this paper, we will study some singular integral operators as

following (see [2]):
Definition. Let 7 : S — S’ be a linear operator such that T is

bounded on LZ(Rn) and there exists a locally integrable function

K(x, y) on R" x R" \ {(x, y) € R" x R" : x = y} such that
(@) = |, Kl 90y,

for every bounded and compactly supported function f, where K satisfies:

There is a sequence of positive constant numbers {C;} such that for any

J=z1

j (K(x, y) - K(x, 2)| + |K(y, x) - K(z, x)))dx < C,
2ly—z|<|x-y|

and

1/q
( j | (K, y)- K(x, 2) + K (y, x) - K(z, x)]) dyj
27 |z—y|<|e—y]<27 T |z — ]

< Cj(27]z -y

where 1 <q' <2 and1/q+1/q =1.
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Let b be a locally integrable function on R™. The Toeplitz type

transform related to 7 is defined by

m
T, =y M, T,
k=1
where T%! are T or +I (the identity operator), T%2 are the bounded

linear operators on L”(R") for 1 < p <o and k =1, ..., m, My(f) = bf.

Note that the classical Calderén-Zygmund singular integral operator
satisfies Definition 1 with C; = PSS (see [7, 17]). And note that the
commutator [b, T|(f) = bT(f) - T(bf) is a particular operator of the
Toeplitz type operators 7j. The Toeplitz type operators 7 are the non-

trivial generalizations of the commutator. It is well known that
commutators are of great interest in harmonic analysis and have been
widely studied by many authors (see [15, 16]). The main purpose of this

paper is to prove the sharp maximal inequalities for the Toeplitz type
transforms 7). As the application, we obtain the weighted L”-norm

inequality and Triebel-Lizorkin spaces boundedness for the Toeplitz type

transforms 7}.

2. Theorems

We shall prove the following theorems:

Theorem 1. Let T be the singular integral operator as Definition, the

sequence {jC;} e PweA,0<B<1l, ¢ <s<w, and be Lipg(w). If
gel’(R")Q < p<wx) and Ti(g)=0, then there exists a constant

C > 0 such that, for any f € C5(R") and X € R",

M*(Ty(1) @) < OBl )0 @) " D My ((T52(1) (R).
k=1
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Theorem 2. Let T be the singular integral operator as Definition, the

sequence {ijﬁCj} ell,weA,0<B<1,¢g <s<w, and b e Lipg(w).
If g e IP(R")(1 < p< o) and Ti(g) =0, then there exists a constant

C > 0 such that, forany f € C5(R") and X € R",

—-cld
s [ 1))l

< Clbl 00 ® P M (T52(1)) (R).
k=1

Theorem 3. Let T be the singular integral operator as Definition,

the sequence {jC;} e I oweA,0<B<min(,n/q), ¢ <p<n/p,
1/r=1/p-B/n, and be Lipgw). If ge LP(R")1<p<w») and
Ti(g) = 0, then Ty, is bounded from LP(w) to Lr(wr/p_r(1+[3/”)).
Theorem 4. Let T be the singular integral operator as Definition,
the sequence {ijBCj} ell,we A,0<B<min(l,n/q), ¢ <p<n/p,
1/r=1/p-B/n, and b e Lipg(w). If g e LP(R")(1<p<wx) and

Ty(g) = 0, then Ty is bounded from LP(w) to EP®(w"/P~r1+B/n)).
3. Proofs of Theorems

To prove the theorems, we need the following lemmas:

Lemma 1 (See [2]). Let T be the singular integral operator as
Definition, the sequence {C;} e I'. Then T is bounded on LP(w) for

weA, withl< p < o,
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Lemma 2 (See [6]). For any cube @, b € Lipg(w), 0 <p <1 and

w € Ay, we have
3 1+B/nj -1
igglb(x) bq| < Cll L p 0y w(@) 1@

Lemma 3 (See [14]). For 0 < B <1,1< p < w and w € A,,, we have

Q

WAl )

1
_ —fild
Q= QP -[ o7~ faldx

LP (w)

. 1
~ |sup me/nJ.Qlf(x) - c|dx

@> ¢ |Q|1 IP (w)

Lemma 4 (See [7]). Let 0 < p < o0 and w € U1<,<n A,. Then, for any
smooth function f for which the left-hand side is finite,

I M) @) wlx)dx < € I M) P ().

Lemma 5 (See [13]). Suppose that 0 <n<n,1<s<p<n/n,
1/r=1/p-n/n and w € A(p, r). Then

"Mn,s(f)"L’(wr) = C”f"Lp(wp)'

Proof of Theorem 1. It suffices to prove for f € Cy(R") and some

constant C, the following inequality holds:

1 ~\1+B/n < . -
@IQ|Tb(f) (x) = Cyldx < C"b”LipB(w)w(x)l B ;MB,S(Tk 2(f))(x).

Without loss of generality, we may assume T™! are Tk =1, ..., m). Fix

acube @ = Q(x(,d) and ¥ € Q. Write

Ty (F) (2) = Tyt () () = Tioty i (N ) + Tt ygaqreF) @) = Fi(x) + fo(a).
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Then

i J /7)) - oo

1 .[ 1 .[
<= x)dx + = x)— folxg)ldx = I; + I5.
|Q| Qlfl( )l |Q| Q|f2( ) f2( O)l 1 2
For I;, by Hélder’s inequality and Lemma 2, we obtain

ﬁ JQ|Tk’1M(b—bQ yag T2 (F) ()] dx
1 rl b9 R

s (@JR,JT M (p-bg oo T (F) ()] de

< CIQIl/s( I | M(5-b Y100 T" > (F) (x)|sdxj1/s
2Q

< c@( [ (b bglI7(1) <x>|>8dle/s
2Q

< ClQ™M* sup |b(x)—sz|U ITk’Z(f)(x)lsdle/s

xe2Q Q

-1/s 2 1+/n s—B/n 1 s Ve
= 010 2@V [ e

1+B/n
j My o(T52() &)

< C||b||upﬁ<w)(%

< Ol 0y 0 ®) P M (T52(1)) @),

thus,

1
I < ;@_[Q|Tk’lM(b—bQ)szTk’2(f)(x)|dx
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< Ol 0y 0 ®) P M (T52() R).
k=1

For Iy, by the boundedness of 7" and recalling that s > ¢', we get, for
x €@,

75 M (b-bg yygae T (1) () = T My T () (0)|

: f oy~ bael 1K, ) = (o, 5) IT%2(f) (y)|dy

_ . k,2
S;jzjdgy_xodmdm(x, ¥) = K(xo, DI[6(y) = by | 1T77(F) (v)|dy

k,2
+ : 1j.2jd§yx0<2j+1d|K(x’ y)_ K(xO’ y)||b2j+1Q - b2Q||T (f)(y)ldy
J:

=¢ .[ ' o [E(@ y) = K(xo, y)?d
Z( Zfds\y—xo\<21+1d| (x, ) (x0, ¥)| yJ

J=1

. \/a
x sup |b(y)-b,; U. TR (y qdyj
y€2j+1Q| ) 2]+1Q| 2]+1Q| ( )( )l

0 1/q
. _ _ q
' C'leb2]+1Q 20l (ijd<y—xo<2j+1d|K(x’ ¥) = K(xo, 7) dyj
]:

" U gl ) (y)l"'dyjl/q’

X . , i+1 A \1+B/n . ’ .
< CZCj(ZJd)fn/q M )|2J+1Q|1/q *1/S|21+1Q|1/s—[3/n
=1

|2j+1Q| "b"Lipﬁ(w

J=

1/s
1 ) .
X(WLMQIT"’Z(H@N dy]
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O ol iy oo BN 20 QP17 €5 (27 )9 |27 QI o 2T o P
j=1

1/s
1 S
" [W L,-+1QIT’“’2(f) ) dy]

© j+1 1+B/n
< C"b”LLpﬁ(w)zC]{MJ MB,s(Tk’Q(f))(j?)

Jj=1 |2j+1Q|

0 j+1 B/n
- Clp (w)(w>(f>2jcj[M] My, ((TH2()) &)
: = WP

< I iy 0y 0@ P My (752 (1) @)Y G+ 1)C;
j=1

< Ol 0y 0 @) P My (T52()) @),

thus,

1~ , :
I < j QZlT’“Mw,bQ yaae T ™ () @) = TH My gy g1 T2 (F) (o )| dx
k=1

< Ol iy o) 0@ Y M (T52() ®):
k=1

These complete the proof of Theorem 1. O

Proof of Theorem 2. It suffices to prove for f € Cy(R") and some

constant Cy, the following inequality holds:

|Q|1+B/n J T () = Colde < Ol @) Y M%) ).
k=1
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Without loss of generality, we may assume 75! are Tk =1,..., m). Fix
a cube @ = Q(xy, d) and X € Q. Similar to the proof of main Lemma 1,

we have
Ty(F) ) = Ty (&) = T g (1) + T e 1) ) = )+ fo ().
and

1

i [T~ o

Wn G Wn J ) teoid = 1y + 14

By using the same argument as in the proof of Theorem 1, we get

dL 1/s
I3 < Zng/n sup|b(x) - b2Q||Q|1/SU 2Q|Tk’2(f)(x)|sdxj

k=1

w@\) "1 k2 . V¢
< CJbl iy oy @)Y M(TH2 (1) (@)
k=1
m 1 00
e kZ;IQIIT/".[szz;-[zfdsy—xo<2f+ld|K(x’ )~ Kixo, 9)
% [b(y) = byjin o ||T52(F) ()] dyd

m [ee]
1 J‘ J-
* 2o g2l K (x ) - K(xo,
k=1|Q|1+B/n Qj:1 2Jdﬁ‘y—x0‘<2]+1d| (x, ¥) (x0, ¥)|

X [byjs1g = bag || T" () (v)| dydx
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m 0 1/q
Z| 1+B/n.[ Z[J‘zdeyxo<2j+1dlK(x’ y)_K(xO’y)lqdy)

k:I

N
< sup |b(y)—b.. U T"2(f yqdy] dx
s 00~y 2 0O)

3 ¢ 3 e 1/q
= bt —b J’ , K ) K(xg, y)d
kz:;llQll-%—ﬁ/n J.sz_;l 2J+1Q 2Q|( 2]d§\y—x0\<2]+1dl ( y) 0 | yj

* U‘ itlg |T]C 2(f) (y)lq dyjl/q'dx

1+B/n

< CZ|Q|*3/”ZC (20 d)y ™7 M
k=1 7=1

1
| J+1Q| | ]+1Q| /q

" "Llpﬁ (w)

1 k,2 s e
X[mm g )TN dyJ

i CZ|Q|_B/n Zj"b"LipB(w)w(i)w(ZjQ)B/n Cj(de)—n/CI'|2j+1 Qll/q,
k=1 =

1 k,2 s e
« [M [T 00 dy]

9B w(2 1Q) ol k2 ~
< CZubllLLpﬁ(w)Z g M (T52(F)) (%)

+ CZMbMLw (w)w(x>zj2fﬁ [”ﬁl QR} M (TH2(£)) &)

< O iy oy B P/ Y ML(TE2 (1) )Y+ 12
k=1 j=1
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< Ol 0y 0@ P M(TH2 (1) (®).
k=1

This completes the proof of Theorem 2. O
Proof of Theorem 3. Choose ¢' <s < p in Theorem 1, notice

w"/P=rA+B/n) A, and wl/P e A(p, r) we have, by Lemmas 1, 4, and 5,
1T (Pl za o/ p-rtsnin)

< | M(To (D)l (1 p-r0+8/m))

< CM™ (T, (N (o -r0581m)

s C"b"szB(w)Z"MB, s (Tk’ 2 (f))w1+ﬁ/n "Lr(wr/P*r(1+[3/n) )
k=1

= Clbl iy ) DM, s (TF 2D
k=1

< C¥l g ) DN (D p
k=1

< Clel iy ) Il 22 0

This completes the proof of Theorem 3. O

Proof of Theorem 4. Choose ¢’ < s < p in Theorem 2, notice that

w/PrA+B/n) o A, and wl/P e A(p, r). By using Lemma 3, we obtain

I (f)"FrB, (" P=r(1+B/n))

s [ [T @)~ Colax

<C |Q|1+[3/n

Lr(wr/p—r(1+[’>/n) )
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N /
k2 1+B/n
< ClBl iy ) 2N M (T2 PP -t
k=1
m
_ k,2
= Clol iy ) 2 MNM (T2 (P a2
k=1
m
k,2
< Col iy ) 2N (P 2 )
k=1
< Ol 17
This completes the proof of Theorem 4. O
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