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Abstract 

The theory of strongly asymptotically conical special Lagrangian submanifolds 
and compact special Lagrangian suborbifolds have been developed by Marshall 
[12] and Zhang [21], respectively. In this note, we combine their methods to 
study the deformation of non-compact special Lagrangian suborbifolds. 

1. Introduction 

As a very interesting extension of deformation theory for complex 
submanifolds, Mclean [14] developed the deformation theory of special 
Lagrangian submanifolds, which have become important because 
Strominger et al. [19, 20] related the moduli space of special Lagrangian 
toric with flat unitary line bundle to the context of mirror symmetry. The 
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theory is generalized to various situations ([1, 3, 12, 17, 18]) in the last few 
years. For the study of non-compact special Lagrangian submanifolds, 
Joyce presented several results in his series paper ([6]-[10]) and Pacini 
[15] considered the asymptotically conical special Lagrangian 
submanifolds. In particular, Marshall [13] studied the deformation of 

strongly asymptotically conical special Lagrangian submanifolds of ,nC  

and Zhang [21] generalized the theory by Mclean and Hitchin to the 
deformation of compact special Lagrangian suborbifolds in a special class 
of Calabi-Yau orbifolds. Our purpose is to combine their methods 
together to study the deformation of non-compact special Lagrangian 
suborbifolds in special case. 

Let ( )Ωω ~,~,~J  be the standard Calabi-Yau structure on nC  with 

Kähler metric ,~e  and Γ  be a finite group acting on nC  preserving the 

structure ( ).~,~,~ ΩωJ  Consider the Calabi-Yau orbifold ( ) =Ωω,,, JM  

( ) .~,~,~, ΓΩωJnC  Let nC C⊂  be a cone, smooth away from 0, and 

invariant.-Γ  An embedded special Lagrangian orbifold MXf →:       

(cf. Subsection 2.3), where X is a manifold with ends, is said to be 
strongly asymptotically conical with cone C and rate ,11 <+α  if there 

exists an embedded special Lagrangian submanifold ,:~ nXf C→  which 

is strongly asymptotically conical with cone C and rate 11 <+α              

(see Subsection 2.2 for the precise definition), such that ( ) ( )XfXf ~~
=⋅Γ  

and ,~ ffq =D  where Mq n →C:  is the natural projection. Moreover, 

for N∈k  and ,10 << a  we say f to be of class akC ,  (resp., kC ), if f~  is 

of class akC ,  (resp., kC ). Denote by ak,M  the set of all akC ,  embedded 
special Lagrangian suborbifolds ,: MXf →  which are strongly 

asymptotically conical with cone C and rate .11 <+α  Denote by 

j 1, ,k a+
M   (1.1) 
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the set of all akC ,1+ -embedded special Lagrangian submanifolds 

,:~ nXf C→  which are strongly asymptotically conical with cone C and 

rate .11 <+α  Clearly, there exists a natural action of Γ  on it and 

j 1, 1,/ .k a k a+ +Γ =M M  We shall prove that j 1,k a+
M  is a manifold (and thus 

ak ,1+M  is an orbifold). In order to the goal, we define a map 1+αF  and 

prove that its derivative at ( )0,0  is an invertible operator. By applying 

the implicit function theorem, it is easy to show that j 1,k a+
M  is a 

manifold. Moreover, in order to prove that ak ,1+M  is an orbifold we need 

to show that every j 1,k af +
∈M  is Γ -invariant, which is given in Section 

3. Here is our main result. 

Theorem 1.1. Under the above assumptions, let MXf →:  be a 

( )2,1 ≥+ kC ak  embedded special Lagrangian suborbifold and strongly 

asymptotically conical with cone C and rate ,11 <+α  and let 
nXf C→:~  be its corresponding iantvarin-Γ  lift as above. Let >+α 2  

λ−− n2  with ( )0\2 g
L ∆∈+α DR  (see Section 3 for the precise 

definition). Define Γ+α ,1K  to be the subspace of all Γ -invariant elements 

in 

{ ( ) }.0,0:: ,1
11 =ξ=ξ∈ξ= ∗∗+
+α+α ddXTCK ak  

Then there exist two orbifolds D  and ,P  a point ,0 P∈b  two orbifold 

maps PD →:G  and ak ,1:ev +→ MD  such that 

(i) ( ( )) fbG =−
0

1ev  and the dimension of P  is equal to dimension of 

.,1 Γ+αK  
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(ii) For any ( ( )) Γ→∈ − nXbGb C:ev, 1P  is a special Lagrangian 

suborbifold of ,ΓnC  which is strongly asymptotically conical with cone C 

and rate .11 <+α  

2. Preliminaries 

2.1. Analysis of non-compact manifolds 

We here recall the analytic theory on non-compact manifolds given in 
[13]. Without special statements, we always assume that X is a non-
compact manifold of dimension 3n  and that ∑  is a compact manifold 

of dimension 1−n  with L connected components .1 L∑∑=∑ ∪"∪  We 

also suppose that there exists a compact submanifold with boundary 
XX ⊆0  and a diffeomorphism 

( ) ,,0\: 0 ∑×∞→=∞ XXX   (2.1) 

This is, X is said to be a manifold with ends. The identification in (2.1) 
leads to a projection onto the link of the cylindrical part of 

.:, ∑→π ∞XX  Let t denote the conical coordinate on ( ),,0 ∞  and let 

( )nxx "2  denote the coordinates on .∑  For ,0≥S  put 

( ]( ).,00 ∑×= SXXS ∪  

It is a compact submanifold of X with boundary. Fixing any covering of 
{ },,,, 1 NUU "∑  and writing ( ) νν UV ×∞= ,0:  for each ,,,1 N"=ν  we 

get an open cover of { }.,,, 1 NVVX "∞  (Hereafter, we often identify ∞X  

with ( ) ).,0 ∑×∞  Then fix any open covering of { },,,, 10 KNN VVX ++ "  such 

that 

,1
1

XV
KN

N
⊆

+

+=
ν

ν
∪  

and also fix the partition of unity of ,,,, 1 KNX +ρρ "  subordinate to the 

open cover { }.,,1 KNVV +"  
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Let ∑→∑E  be the vector bundle, which is trivial over each .νU  

Then, we have induced trivializations for the vector bundle ∞∑
∗ →π XE  

over each .,,1 NVV "  Suppose that XE →  is a vector bundle over X, 

trivialized over each ,νV  so that ∑
∗π=

∞
EE X  on SXX \  for some large 

.0≥S  We call such a vector bundle E over X admissible and the vector 
bundle ∑→∑E  the slice of E over .∑  For the section ξ  of an 

admissible bundle E, we denote by νν
Erank1 ,, ξξ "  the components of ξ  in 

the given trivialization of E over .νV  

Let E be an admissible vector bundle with slice ∑E  as above. The 

fibre metric j| E  on E is said to be translation invariant, if there exists a 

metric 
∑E|  on ∑E  such that 

j| | ,E E∑
∗π =  

over SXX \  for some large .0≥S  Here are some examples of 

admissible bundles: 

● The tensor bundles ( ) ( ),: XTXTE sr ⊗⊗⊗= ∗  which have slices 

( ) ( ).1,1, ∑⊗⊗∑⊗⊕ ∗
−=−= TT ji

ssjrri  

● The exterior bundles ,: XTE r ∗Λ=  which have slices 1−∗ Λ⊕∑Λ rrT  

.∑∗T  

● The total exterior bundle ,: XTE ∗∗Λ=  which have slices ⊕∑Λ ∗∗T  

.∑Λ ∗∗T  

To see why the slices are as given, consider the example .XTE ∗∗Λ=  

For any given ∞∈ Xx  and any section ,XTx
∗∗Λ∈ξ  there are unique 

∑Λ∈/φ ∗
σ

∗Tv,  such that ,vdt /∧+φ=ξ  where ( ) ( ) =∑×∞∈σ= ,0,tx  

.∞X  
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In the following, we always assume that E is one of the three bundles 

above without special statements. Then a linear operator ( )trse −  acts on 

section ξ  of E as follows. If ξ  has r covariant ( )XT ∗  parts and                 

s contravariant ( )TX  parts ( ) ξ− trse  is defined to be ,, ξsrf  where 

( )∞→ ,0:, Xf sr  is a smooth function, which over ∞X  is equal to the 

exponential function ( ) .trse −  Then extend the operator ( )trse −  by linearity 
to act on any section ξ  of E. It is invertible. 

Suppose that the manifold ∑E  is equipped with a Riemannian metric 

.∑g  A metric h~  on X, which is of the form 

,~ 2
∑+= gdth  

over SXX \  for some large 0≥S  is called a cylindrical metric on X.      

A metric h on X is said to be asymptotically cylindrical, if there exists a 

cylindrical metric h~  such that 

{ }
( ) ( ),1~sup ohh ijij

Ut
=−∂ρ λ

×
ν

ν
 

for each ,,1,1 njiN ≤≤≤≤ ν  and .0≥λ  Such a metric is always 

complete, and induces an asymptotically translation invariant fibre 
metric on each of the above three kinds of the admissible bundles. 

For ( ) ,,,1
L

L R∈ββ=β "  let tβ  express smooth functions ,R→X  

which are equal to tjβ  on the j-th end ( ) j∑×∞,0  of X. We write a<β  

(resp., a≤β ), if aj <β  (resp., aj ≤β ) for R∈a  and .,,1 Lj "=  

Following [13, page 55], given an asymptotically cylindrical metric on 

X, we have a damped kB -space 

( ) { ( )
{ }

( ) },0,sup: kjeOECEB t
h

j
ht

kk ≤≤∀=ξ∇∈ξ= β

∑×
β  

whose complete norm is given by 
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( ).,sup:
0

EBe k
h

j
h

t
X

k

j
k β

β−

=

∈ξ∀ξ∇=ξ ∑  

We have also a damped Hölder space 

( ) { ( ) [ ] },: ,
, ∞<ξ∇∈ξ= β−

ββ
h

Xa
j
h

tkak eEBEB  

whose complete norm is given by 

[ ] ,sup:
0

,, h
j
h

t
X

k

j

h
Xa

j
h

t
ak ee ξ∇+ξ∇=ξ β−

=

β− ∑  

where [ ]h Xa,⋅  is defined as 

[ ]
( )

( ) .,0with,:
,

sup:, 











ε<<∈
ξ−ξ

=ξ yxdXyx
yxd

ha
h

Eyxh
Xa  

As before, we assume that the manifold ∑  has a Riemannian metric 
.∑g  Define a cone metric on by 

( ).~ 22
∑+= gdteg t  

A metric g on X is said to be asymptotically conical, if there exists a 
conical metric g~  on ∞X  such that 

{ }
( ) ( ),~sup 2t

ijij
Ut

eogg =−∂ρ λ

×
ν

ν
 

for each ,,1,1 njiN ≤≤≤≤ ν  and .0≥λ  Such a metric is always 

complete. 

Now suppose that X is endowed with some asymptotically conical 

metric g, asymptotic to the conical metric g~  on X. Then geh t2: −=  is 

asymptotically cylindrical metric, asymptotic to the cylindrical metric 

.~:~ 2 geh t−=  According to [13, page 64], we let ( )ECk
β  be the set of all kC  
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sections of E, which are forced to decay at rate ( )teO β  on the infinite 

piece ∞X  of X, as measured using the asymptotically conical metric g on 

X. Then a kC  section ξ  of E lies in ( ),ECk
β  if ( ) ( ).EBe ktrs

β
− ∈ξ  So as a 

vector space, we have ( ) ( ) ( ).: EBeEC ktrsk
β

−
β =  Given ( )ECk

β∈ξ  define the 

norm 

( )
( )

( ),: EB
trs

EC kk e
ββ

ξ=ξ −  

which makes ( )ECk
β  into a Banach space because ( )EBk

β  is a Banach 

space and the map 

( ) ( ) ( ),: EBECe kktrs
ββ

− →  

is an isometric isomorphism. Similarly, we define ( ) ( ) ( )EBeEC aktrsak ,, : β
−

β =  

as a vector space. Then 

( )
( )

( ),: ,, EB
trs

EC akak e
ββ

ξ=ξ −  

gives a complete norm on ( )EC ak,
β  too. Here is a version of “conical 

damped embedding theorem”. 

Theorem 2.1 ([13, Theorem 4.17]). If δ≤β  and ,blak +≥+  then 

there are continuous embeddings 

( ) ( ) ( ) ( ) ( ) ( ).,,1 ECECandECECECEC lklblakk
δβδδβ

+
β ⊆⊆⊆⊆  

Proof. Our method is derived from the proof of [11, Theorem 4.8]. In 
view of the second conclusion in [13, Theorem 4.2], we have the sequence 
of continue maps 

( )
( )

( ) ( )
( )

( ).,,11 ECEBEBEC akeakkek tsrtsr
ββ

+
β

+
β  →→ →

−−−
 

Since ( )trse −  are isomorphic maps, it follows ( ) ( ),,1 ECEC akk
β

+
β ⊆  and the 

other results can be proved in the same way. 
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2.2. Asymptotically conical submanifolds of nC  

A cone is a nonempty closed subset nC 2R⊆  such that { } nC 20\ R→  

is a smooth submanifold and CCet =⋅  for all .R∈t  The Euclidean 

metric e~  on n2R  endows the manifold { }0\C  with a metric .~g  There is 

an isomorphism 

{ } ,0\: 2nCi RR ⊆→∑×  

( ) ., σσ tet 6  

Using the identification ( ) ,,0\ 0 ∑×∞≅XX  we can extend the 

restricted map ( ) ni 2,0: R→∑×∞  to a smooth map .: 2nXi R→  

For a map ,:~ 2nXf R→  if its components R→Xff n :~,,~
21 "  all 

lie in ( ),XCk
β  then we write ( ).,~ 2nk XCf Rβ∈  It is easy to see that 

( )., 2
1

nXCi R∞∈  

Let LR∈α~  with .1~ <α  We call a submanifold nXf 2:~ R→  

strongly asymptotically conical with cone C and rate ,~α  if ∞
α∈− ~

~ Cif  

( )., 2nX R  This is equivalent to the following condition: 

{ }
( ) ( ( ) ) .21,0allfor~sup

~
~~ nijeOif tj
gkk

j
gt

≤≤≥=−∇ −α

∑×
 

Further assume that the submanifold nXf C→:~  is special Lagrangian 

and strongly asymptotically conical with cone nC C⊆  and the rate 

,11 <+α  then C is also special Lagrangian submanifold by                   

[13, Corollary 6.32]. 
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2.3. The special Lagrangian suborbifolds 

An n-dimensional orbifold is a paracompact Hausdorff space Y with 
an open covering { }iU=U  satisfying the following conditions: 

(i) UU ∈∃∈∀ kji UUU ,,  such that jik UUU ∩⊆  if .0/≠ji UU ∩  

(ii) ,U∈∀ iU  there are a pair ( )iiV Γ,  consisting of a finite group iΓ  

and a iΓ -invariant open neighbourhood iV  of ,0 nR∈  and a iΓ -invariant 

surjective continuous map ii UV →ϕ :~  that induces a homeomorphism 

.iii UV ≈Γ  

(iii) If ,ji UU ⊆  then there exists an injection ,: jiijv Γ→Γ/  and an 

embedding ,: jiij VV →φ  which is equivariant with respect to ( .,i.eijv/   

( ) ( ) ( ) )Γ∈γ∈∀φ⋅γ/=⋅γφ ,iijijij Vyyvy  such that .~~
ijji φϕ=ϕ D  

In an obvious way, one may define Riemannian orbifolds and complex 
orbifolds. In particular, a Kähler orbifold is a triple ( )gJY ,,  consisting 

of a complex orbifold ( )JY ,  and a Kähler metric g on it. (This means 

that g is J-invariant, i.e., ( ) ( ) ,,,, 212121 TMgJJg ∈ξξ∀ξξ=ξξ  and 

that ( ) ( )2121 ,2
1:, ξξ=ξξω Jgg  defines a closed non-degenerate 2-form, 

called the associated Kähler form on Y.) See [5, Subsection 6.5.1] for details. 
An orbifold Calabi-Yau structure on a Kähler orbifold ( )gJY ,,  is a 

triple ( ),,, ΩgJ  where Ω  is a holomorphic volume form that satisfies 

0=Ω∇g  for the Levi-Civita connection g∇  and 

( )
( )

.!
1

2
11 2

1 n
g

n

n
nn

ω=ΩΩ






 −−
−

  

For { },∞∈ ∪Nk  a kC  map F from orbifolds Y to Z is said to be a kC  

immersion (resp., embedding) if for each ,Yy ∈  there is a chart ( )yyV Γ,  

of Y, a chart ( ( ) ( ) )yFyFV Γ′′ ,  of Z, such that its local representation 
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( )yFyy VVF ′→:  is an immersion (resp., embedding and the associated 

group homomorphism ( )yFyyv Γ′→Γ/ :  is an isomorphism). In this case, 

( )YF  is called a kC  suborbifold (resp., embedded suborbifold). If each 

yF  is also special Lagrangian (equivalently, 0=ω∗F  and ( ) 0Im =Ω∗F ), 

we get the notions of kC  special Lagrangian suborbifolds and kC  special 
Lagrangian embedded suborbifolds. 

3. The Proof of Theorem 1.1 

Let nXf C→:~  be as in Theorem 1.1. By the assumptions, the finite 

group Γ  preserves the Calabi-Yau structure ( ),~,~,~ ΩωJ  and =⋅Γ f~  .~f  

Then Γ  acts on ( ( ) ( ) )XfeXf ~~,~  isometrically. Since f~  is an isometric 

embedding, Γ  (resp., the metric e~  on nC ) induces a Γ -action on X 
(resp., the original metric g on X). Later, we shall understand the action 
of Γ  on X without special statements. Hence, there exists a Γ -action on 

harmonic 1-form space 1H  given by θγ=θ⋅γ ∗− ,1  for all ,, 1H∈θΓ∈γ  

which naturally gives rise to an action on ( ) :, 1,1 H×+ nak XC C  

( ) ( ).,~,~ ,1 θγ⋅γ=θ⋅γ ∗−ff  

Let XN →  be the normal bundle of X in .2nn RC ≅  That is, for any 

,Xp ∈  the fiber pN  is the normal space of ( ) ( )XfT pf
~

~  in .2nR  In 

particular, we may take ( ( ) ( )) .~
~ ⊥= XfTN pfp  Since Γ  preserves metric, 

pp N ⋅γ∗ ∈ξγ  for all Xp ∈  and .Γ∈γ  By the Hopf-Rinow theorem [4], 

the subset ( ) nXf 2~ R⊆  is complete as a metric space and is closed in 

.2nR  Hence, there exists a Γ -invariant open neighbourhood NU ⊆~  of 

the zero section such that 
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,~:exp 2~ n
U U R→  

is diffeomorphism onto an open subset of ,2nR  which is also 

t,equivarian-Γ  i.e., 

( ) ( ) ( ) .~,,expexp ~~ Up pppfppf ∈ξ∀ξγ=ξ⋅γ ∗⋅γ  

It follows that any normal vector field ( )NC∞∈ξ  with values in U~  

defines an embedded submanifold nXf 2:~ R→ξ  given by 

( ) ( ) ,exp:~
~ ppfpfp ξ=ξ6   (3.2) 

which is not necessarily Γ -invariant. 

Since ,0~
=ω∗f  the complex structure J~  defines a vector bundle 

isomorphism 

( ( )) .~:~ TXXfTNJ →→  

Moreover, the metric g on X gives rise to an isomorphism 

.: XTTXg
∗→  

Hence, we can identify normal bundle N with XT ∗  via the composition 

.~Jg D  

Following [13, page 103], there exists a subset ( ) L
g R⊂∆0D  such 

that the bounded linear map ( ) ( )XCXC akak
g

,,2
2

0 : α
+
+α →∆  is Fredholm 

when ( ).\2 0
g

L ∆∈+α DR  Here ( ) ( ) ( )0
~

20
g

t
g ePP ∆==∆ ∞∞DD  is 

computed as in [13, Subsection 5.1.1; see also Subsection 6.1.2]. 

Furthermore, according to [13, page 121], we assume that >+α 2  

λ−− n2  with ( ),\2 0
g

L ∆∈+α DR  where the definition of λ  is given in 
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[13, page 74], and choose LR∈+β+β 1,1 21  with 111 21 +β<+α<+β  

1<  and n<β−α 1  such that 2,2,2 21 +β+α+β  all belong to the 

same connected component of ( ).\ 0
g

L ∆DR  For any ,0>ε  write 

{ ( ) ( ) },:: 0
1

,1
1

,1
1 ε<ξ∈ξ= ∗

∗+
+α

+
+α XTC

akak XTCV  

and define ( )XTCVF ak ∗∗+
+α+α Λ→ 0,1
11 :  by 

( ) ,~~~Im~~
1 ω+Ω∗=ξ ∗

ξ
∗
ξ+α ffJF gg  

which actually takes values in ( ) ( )XTCXC akak ∗
αα Λ⊕ 2,,  by [13, 

Proposition 6.37]. Taking α=β  in Propositions 6.38, 6.39, and 6.41 in 

[13], we get 

Proposition 3.1 ([Proposition 6.39]). Let 2≥k  and LR∈+α 1  with 

.11 <+α  Then the map ( ) ( )XTCXCVF akakak ∗
αα

+
+α+α Λ⊕→ 2,,,1
11 :  is 

smooth and has derivative 

( ) ( ) ( ) ( ),:0 2,,,1
11 XTCXCXTCF akakak ∗

αα
∗+

+α+α Λ⊕→′  

at 0 which acts as .dd +∗  

Proposition 3.2 ([Proposition 6.41]). Let λ−−>+α n21  with 

( ),\2 0
g

L ∆∈+α DR  then the image of map 

( ) ( ),: 2,,,1
11 XTCXCVF akakak ∗

αα
+
+α+α Λ⊕→  

is contained inside ( ( )) ( ( )).,1
1

,1
1 XTCdXTCd akak ∗+

+α
∗+

+α
∗ ⊕  

Denote by ( )Γ
∗∗+

+α Λ XTC ak ,1
1  the subspace of all Γ -invariant elements 

in ( ),,1
1 XTC ak ∗∗+
+α Λ  and by ( )Γα XC ak,  the space of all Γ -invariant 

functions in ( )., XC ak
α  Define 
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( ) ,: ,1
1

,1
1

,1
,1 Γ

∗∗+
+α

+
+α

+
Γ+α Λ= XTCVV akakak ∩  

( ) ,: ,1
11,1 Γ

∗+
+α+αΓ+α = XTCKK ak∩  

where the set 1+αK  is given in Theorem 1.1. Then 1+αF  maps akV ,1
,1

+
Γ+α  

into ( ( ) ) ( ( ) ).,1
1

,1
1 Γ

∗+
+αΓ

∗+
+α

∗ ⊕ XTCdXTCd akak  Let 

( ) ( ) ( ) ( ){ },Im,Im:2,1,1
2

∗
Γ

∗+
αΓ

+
α ∈/∈φΛ⊕∈/+φ= dvdXTCXCv akakB  

and consider a map 2
,1
,1,11 : BF →× +
Γ+αΓ+α+α
akVK  defined by 

( ) ( ) ,~~~Im~, 211 ω+Ω∗=ξξ ∗
ξ

∗
ξ+α ffgF  

where .21 ξ+ξ=ξ  It is well-defined. In fact, as in the proof of [13, 

Proposition 6.41], there exist ( )nTC C∗∞∈θ1  and ( )nn
n TC C∗−∞
− Λ∈θ 1
1  

such that 1
~Im −θ=Ω nd  and .~

1θ=ω d  Then for akVK ,1
,12,11 , +
Γ+αΓ+α ∈ξ∈ξ  

and ,: 21 ξ+ξ=ξ  we have 

( ) ( ){ } ( ),~Im~~~1 11 Ω∗=θ−θ∗− ∗
ξ−

∗
−

∗
ξ

∗ fffd gnn
n  

( ) .~~~~~~.,e.i,~~~~
11 ω=ω−ωω=θ−θ ∗

ξ
∗∗

ξ
∗
ξ

∗∗
ξ ffffffd  

Moreover, ( )Γ
∗+

+α∈ξ XTC ak ,1
1  may be viewed as a Γ -invariant map 

,nX C→  i.e., ( ).,,1
1

nak XC C+
+α∈ξ  Hence ξ=−ξ+=−ξ ffff ~~~~  is 

invariant,-Γ  and thus ω−ω=ω ∗∗
ξ

∗
ξ

~~~~~~ fff  is Γ -invariant. Note that strongly 

asymptotically is also asymptotically. We get ( ),,~,~ ,1
1

nak XCff C+
ξ ∈  

and hence ( )Γ
∗

α
∗∗

ξ
∗
ξ Λ∈ω−ω=ω XTCfff ak 2,~~~~~~  by [13, Proposition 6.31]. 

Similarly, we have ( ) ( ) .~Im~ ,
Γα

∗
ξ ∈Ω∗ XCf ak

g  Thus, the image of 1+αF  is 

contained in .2B  
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By Proposition 3.1, 1+αF  is smooth and has partial derivative at 

( ),0,0  

( ) ( ) ,:0,0 2
,1

112 BF →Λ Γ
∗∗+

+α+αξ XTCD ak  

which acts as ∗+ dd  by Proposition 3.2. It follows from [13, Corollary 

2.14] that ∗+ dd  is elliptic operator. Then by conical damped version of 
[13, Corollary 6.8], there exists a constant 01 >C  such that 

( ) ( ) ( ) .0,0 ,2,1
1 212 Γ

∗∗
αΓ

∗∗+
+α ΛξΛ ξ≤ξ XTCXTC akak DC F  

Thus ( )0,02FξD  is an invertible operator from ( )Γ
∗+

+α XTC ak ,1
1  to ,2B  

and the invertible ( ) 10,02
−

ξ FD  is a bounded operator. Since nXf C→:~  

is a special Lagrangian submanifold, ( ) .00,0 =F  By Theorem 2.1, we 

have ( ) ( )XTCXTC akC ∗+
+α

∗ ξ≤ξ ,1
1

0
1 121  for some constant .2C  Then the 

implicit function theorem ([16, Theorem 3.1]) implies that for 1ε  and 

any ( ) ,2 21 ,1
1

CXTC ak ε<ξ ∗+
+α

 there exists open neighbourhoods of the 

origin 0, Γ+α
+α ⊆ ,1
1

1 KW  and ,,1
,1

1
2

akV +
Γ+α

+α ⊆W  and unique smooth map 

1
2

1
1: +α+α →χ WW  such that ( ( )) 0, 111 =ξχξ+αF  for all 1

11
+α∈ξ W  and 

( ) ( ) .2 21 0
1

CXTC ε<ξχ ∗  Then 

( ) ( ) ( ) ( ) ( ) ( ) .0
1

0
1

0
1

0
1 1111 ε<ξχ+ξ≤ξχ+ξ≤ξ ∗∗∗∗ XTCXTCXTCXTC  

By [13, Theorem 6.43], we have ( ) .1,1 Γ
∗∞

+α
∞

Γ+α ⊆∈ξ XTCV  Moreover, 

every 1
1

+α∈ξ W  gives a special Lagrangian submanifold ( ) :~
11 ξχ+ξf  

,nX C→  which is strongly asymptotically conical with cone C and rate 
.1+α  
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Let j 1,k a+
M  be as in (1.1). Define 

i { ( ) j
( ) }1,

1

1,
1 1, 1 2

~: , : / 2 .k a
k a

C T Xf K C+ ∗
α+

+
α+ Γ= ξ ∈ × ξ < εD M  

Let π  be the projection from D~  to 

{ ( ) },2::~
21,11 ,1

1
CK XTC ak ε<ξ∈ξ= ∗+

+α
Γ+αP  

and let i j 1,~ev : k a+
→D M  be given by 

( ) ( ) ( ( )).exp:~,~ev~ 11~1 11 ξχ+ξ==ξ ξχ+ξ fff  

Since the orbifold structure is Γ -invariant, and 

( ) ,expexp 11
,1~ ~.1 ξ⋅γ=ξγ −γ
∗−

ff  

with ( ) ,: 1,1 ∗−∗− γ=γ  we obtain 

( )2
,1

1
,1

1 , ξγξγ ∗−∗−
+αF  

ω+Ω∗= ∗
ξγ

∗
ξγ ∗−∗−

~~~Im~
,1,1 ffg  

{( ) ( ) }ωγξ+Ωγξγ= ∗∗
γ

∗∗
γ

∗−
−−

~exp~Imexp ~~,1
.1.1 ff  

( ),, 211
,1 ξξγ= +α
∗− F  

for all .Γ∈γ  So if ( ( )) ,0, 111 =ξχξ+αF  then ( ( )) .0, 1
,1

1
,1

1 =ξχγξγ ∗−∗−
+αF  

From the unique property of solution of ( ( )) ,0, 111 =ξχξ+αF  it follows 

that ( )12 ξχ=ξ  is Γ -invariant, i.e., ( ) ( ) .,1
,1

1
,1 Γ∈γ∀ξγχ=ξχγ ∗−∗−  This 

leads to 

( ( )) ( ) ( ) .~evpevpevp~
~,1~1

,1
1

,1~,1 ξ
∗−

⋅γ
∗−∗−

ξγ
⋅γ=ξ⋅γ=ξγ=ξγχ+ξγ=∗− ff fff  
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That is, if nXf C→ξ :~  is special Lagrangian so is .:~
,1

nXf C→
ξγ ∗−  

Furthermore, we have the Γ -invariant of :ev~  

( ( ) ) ( )k
( )1, 1,

1 11
~~ev ,f f − ∗ − ∗γ ξ + χ γ ξγ ⋅ ξ = γ ⋅  

( ( ))1
,1

1
,1~evp ξγχ+ξγ= ∗−∗−

f  

( )~ .,,~ev~
1 Γ∈γ∀ξ⋅γ=⋅γ= ξ ff  

Since ( ) nXff C→= :~0,~ev~  is a special Lagrangian submanifold, every 

P
~

1 ∈ξ  induces a special Lagrangian submanifold ( ) ( ) :~,~ev~ 111 ξχ+ξ=ξ ff  

.nX C→  Let 

,0,~,~
0 PPPDD ∈=Γ=Γ= b  

and let ev be the map from D  to ak ,1+M  induced by ev,~  and an orbifold 

map PD →:G  induced by .π  Then ( ( )) Γ→=− nXfG C:0ev 1  is a  

special Lagrangian suborbifold, and for any ,P∈b  

( ( ))
( )

( ) ,:~ev 11
1

1

1 Γ→Γ















= ξχ+ξ

∈ξ

−

−

n

bQ

XfbG C�  

is a special Lagrangian suborbifold of the Calabi-Yau orbifold 

( ),,,, ΩΓ eJnC  where PP →~:Q  is the quotient map.  
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