Research and Communications in Mathematics and Mathematical Sciences Vol. 3, Issue 1, 2013, Pages 1-19 ISSN 2319-6939 Published Online on September 30, 2013 2013 Jyoti Academic Press http://jyotiacademicpress.net

DEFORMATION OF A CLASS OF NON-COMPACT SPECIAL LAGRANGIAN SUBORBIFOLDS

XIAOMIN CHEN

College of Sciences China University of Petroleum Beijing 102249 P. R. China e-mail: xmchen1983@126.com

Abstract

The theory of strongly asymptotically conical special Lagrangian submanifolds and compact special Lagrangian suborbifolds have been developed by Marshall [12] and Zhang [21], respectively. In this note, we combine their methods to study the deformation of non-compact special Lagrangian suborbifolds.

1. Introduction

As a very interesting extension of deformation theory for complex submanifolds, Mclean [14] developed the deformation theory of special Lagrangian submanifolds, which have become important because Strominger et al. [19, 20] related the moduli space of special Lagrangian toric with flat unitary line bundle to the context of mirror symmetry. The

²⁰¹⁰ Mathematics Subject Classification: 53C38, 53C80.

Keywords and phrases: special Lagrangian orbifold, Calabi-Yau, non-compact manifold.

Communicated by Zhuang-Dan Daniel Guan.

The author is supported by the NNSF 11071257 and partially by Science Foundation of China University of Petroleum (Beijing).

Received May 3, 2013; Revised June 2, 2013

theory is generalized to various situations $(1, 3, 12, 17, 18)$ in the last few years. For the study of non-compact special Lagrangian submanifolds, Joyce presented several results in his series paper ([6]-[10]) and Pacini [15] considered the asymptotically conical special Lagrangian submanifolds. In particular, Marshall [13] studied the deformation of strongly asymptotically conical special Lagrangian submanifolds of \mathbb{C}^n , and Zhang [21] generalized the theory by Mclean and Hitchin to the deformation of compact special Lagrangian suborbifolds in a special class of Calabi-Yau orbifolds. Our purpose is to combine their methods together to study the deformation of non-compact special Lagrangian suborbifolds in special case.

Let $(\tilde{J}, \tilde{\omega}, \tilde{\Omega})$ be the standard Calabi-Yau structure on \mathbb{C}^n with Kähler metric \tilde{e} , and Γ be a finite group acting on \mathbb{C}^n preserving the σ structure $({\tilde{J}}, {\tilde{\omega}}, {\tilde{\Omega}})$. Consider the Calabi-Yau orbifold (M, J, ω, Ω) = $({\mathbb C}^n, \tilde{J}, \tilde{\omega}, \tilde{\Omega})/\Gamma$. Let $C \subset {\mathbb C}^n$ be a cone, smooth away from 0, and Γ-invariant. An embedded special Lagrangian orbifold *f* : *X* → *M* (cf. Subsection 2.3), where *X* is a manifold with ends, is said to be *strongly asymptotically conical with cone C and rate* $\alpha + 1 < 1$, if there exists an embedded special Lagrangian submanifold $\widetilde{f}: X \to \mathbb{C}^n$, which is strongly asymptotically conical with cone *C* and rate $\alpha + 1 < 1$ (see Subsection 2.2 for the precise definition), such that $\Gamma \cdot \widetilde{f}(X) = \widetilde{f}(X)$ and $q \circ \tilde{f} = f$, where $q : \mathbb{C}^n \to M$ is the natural projection. Moreover, for $k \in \mathbb{N}$ and $0 < a < 1$, we say *f* to be of class $C^{k, a}$ (resp., C^k), if \widetilde{f} is of class $C^{k, a}$ (resp., C^k). Denote by $\mathcal{M}^{k, a}$ the set of all $C^{k, a}$ embedded special Lagrangian suborbifolds $f: X \to M$, which are strongly asymptotically conical with cone *C* and rate $\alpha + 1 < 1$. Denote by

$$
\widetilde{\mathcal{M}}^{k+1,a},\tag{1.1}
$$

the set of all $C^{k+1, a}$ embedded special Lagrangian submanifolds $\widetilde{f}: X \to \mathbb{C}^n$, which are strongly asymptotically conical with cone C and rate $\alpha + 1 < 1$. Clearly, there exists a natural action of Γ on it and $\widetilde{\mathcal{M}}^{k+1, a}/\Gamma = \mathcal{M}^{k+1, a}$. We shall prove that $\widetilde{\mathcal{M}}^{k+1, a}$ is a manifold (and thus $\mathcal{M}^{k+1, a}$ is an orbifold). In order to the goal, we define a map $\mathfrak{F}_{\alpha+1}$ and prove that its derivative at (0, 0) is an invertible operator. By applying the implicit function theorem, it is easy to show that $\widetilde{\mathcal{M}}^{k+1, a}$ is a manifold. Moreover, in order to prove that $\mathcal{M}^{k+1, a}$ is an orbifold we need to show that every $f \in \widetilde{\mathcal{M}}^{k+1, a}$ is Γ -invariant, which is given in Section 3. Here is our main result.

Theorem 1.1. *Under the above assumptions, let* $f: X \rightarrow M$ *be a* $C^{k+1, a}$ $(k \geq 2)$ *embedded special Lagrangian suborbifold and strongly asymptotically conical with cone C and rate* α + 1 < 1, *and let* $\widetilde{f}: X \to \mathbb{C}^n$ *be its corresponding* Γ *-invariant lift as above. Let* $\alpha + 2 >$ $2 - n - \lambda$ *with* $\alpha + 2 \in \mathbb{R}^L \setminus \mathcal{D}(\Delta_g^0)$ (see Section 3 for the precise *definition*). *Define* $K_{\alpha+1,\Gamma}$ *to be the subspace of all* Γ *-invariant elements in*

$$
K_{\alpha+1} := \{ \xi \in C_{\alpha+1}^{k+1, \alpha}(T^*X) : d^* \xi = 0, d\xi = 0 \}.
$$

Then there exist two orbifolds \mathfrak{D} *and* \mathfrak{P} *, a point* $b_0 \in \mathfrak{P}$ *, two orbifold* $maps \ G: \mathfrak{D} \to \mathfrak{P} \ and \ \text{ev}: \mathfrak{D} \to \mathcal{M}^{k+1, a} \ such \ that$

(i) $ev(G^{-1}(b_0)) = f$ and the dimension of $\mathfrak P$ is equal to dimension of $K_{\alpha+1,\Gamma}$.

(ii) *For any* $b \in \mathfrak{P}$, $ev(G^{-1}(b))$: $X \to \mathbb{C}^n/\Gamma$ *is a special Lagrangian suborbifold of* \mathbb{C}^n/Γ , *which is strongly asymptotically conical with cone* C *and rate* $\alpha + 1 < 1$.

2. Preliminaries

2.1. Analysis of non-compact manifolds

We here recall the analytic theory on non-compact manifolds given in [13]. Without special statements, we always assume that *X* is a noncompact manifold of dimension $n \geq 3$ and that Σ is a compact manifold of dimension *n* − 1 with *L* connected components $\Sigma = \Sigma_1 \cup \cdots \cup \Sigma_L$. We also suppose that there exists a compact submanifold with boundary $X_0 \subseteq X$ and a diffeomorphism

$$
X_{\infty} := X \setminus X_0 \to (0, \infty) \times \Sigma, \tag{2.1}
$$

This is, *X* is said to be a *manifold with ends*. The identification in (2.1) leads to a projection onto the link of the cylindrical part of $X, \pi : X_{\infty} \to \Sigma$. Let *t* denote the conical coordinate on $(0, \infty)$, and let $(x_2 \cdots x_n)$ denote the coordinates on Σ . For $S \geq 0$, put

$$
X_S = X_0 \cup ((0, S] \times \Sigma).
$$

It is a compact submanifold of *X* with boundary. Fixing any covering of Σ , $\{U_1, \dots, U_N\}$, and writing $V_\nu := (0, \infty) \times U_\nu$ for each $\nu = 1, \dots, N$, we get an open cover of X_{∞} , $\{V_1, \cdots, V_N\}$. (Hereafter, we often identify X_{∞} with $(0, \infty) \times \Sigma$). Then fix any open covering of X_0 , $\{V_{N+1}, \cdots, V_{N+K}\}$, such that

$$
\bigcup_{\nu=N+1}^{N+K} V_{\nu} \subseteq X_1,
$$

and also fix the partition of unity of X, $\rho_1, \dots, \rho_{N+K}$, subordinate to the open cover $\{V_1, \dots, V_{N+K}\}.$

Let $E_{\Sigma} \to \Sigma$ be the vector bundle, which is trivial over each U_{ν} . Then, we have induced trivializations for the vector bundle $\pi^* E_{\Sigma} \to X_{\infty}$ over each V_1, \dots, V_N . Suppose that $E \to X$ is a vector bundle over *X*, trivialized over each V_{ν} , so that $E|_{X_{\infty}} = \pi^* E_{\Sigma}$ on $X \setminus X_S$ for some large $S \geq 0$. We call such a vector bundle *E* over *X admissible* and the vector bundle $E_{\Sigma} \to \Sigma$ the *slice* of *E* over Σ . For the section ξ of an admissible bundle *E*, we denote by $\xi_1^{\nu}, \dots, \xi_{\text{rank}E}^{\nu}$ the components of ξ in the given trivialization of *E* over V_{ν} .

Let *E* be an admissible vector bundle with slice E_{Σ} as above. The fibre metric $\langle \tilde{l} \rangle_E$ on *E* is said to be *translation invariant*, if there exists a metric $\langle \mathsf{I} \rangle_{E_{\Sigma}}$ on E_{Σ} such that

$$
\pi^*\left\langle \mathbf{1}\right\rangle _{E_{\sum }}=\widetilde{\left\langle \mathbf{1}\right\rangle }_{E},
$$

over $X \setminus X_S$ for some large $S \ge 0$. Here are some examples of admissible bundles:

• The tensor bundles $E := (\otimes^r T^*X) \otimes (\otimes^s TX)$, which have slices

$$
\oplus_{i=r,\,r-1\,\,j=s,\,s-1}\,(\otimes^i\,T^*\,\Sigma)\otimes(\otimes^j\,T\,\Sigma).
$$

• The exterior bundles $E := \Lambda^r T^* X$, which have slices $\Lambda^r T^* \Sigma \oplus \Lambda^{r-1}$ T^* Σ .

• The total exterior bundle $E := \Lambda^* T^* X$, which have slices $\Lambda^* T^* \Sigma \oplus$ $\Lambda^* T^* \Sigma$.

To see why the slices are as given, consider the example $E = \Lambda^* T^* X$. For any given $x \in X_\infty$ and any section $\xi \in \Lambda^* T^*_x X$, there are unique $\phi, \psi \in \Lambda^* T_{\sigma}^* \Sigma$ such that $\xi = \phi + dt \wedge \psi$, where $x = (t, \sigma) \in (0, \infty) \times \Sigma$ *X*∞.

In the following, we always assume that *E* is one of the three bundles above without special statements. Then a linear operator $e^{(s-r)t}$ acts on section ξ of *E* as follows. If ξ has *r* covariant (T^*X) parts and *s* contravariant (*TX*) parts $e^{(s-r)t} \xi$ is defined to be $f_{r,s} \xi$, where *f*_{r, *s*} : *X* → (0, ∞) is a smooth function, which over X_{∞} is equal to the exponential function $e^{(s-r)t}$. Then extend the operator $e^{(s-r)t}$ by linearity to act on any section ξ of *E*. It is invertible.

Suppose that the manifold E_{Σ} is equipped with a Riemannian metric g_{\sum} . A metric \widetilde{h} on *X*, which is of the form

$$
\widetilde{h} = dt^2 + g_{\Sigma},
$$

over $X \setminus X_S$ for some large $S \ge 0$ is called a *cylindrical* metric on X. A metric *h* on *X* is said to be *asymptotically cylindrical*, if there exists a cylindrical metric \tilde{h} such that

$$
\sup_{\{t\}\times U_{\nu}}|\rho_{\nu}\partial^{\lambda}(h_{ij}-\widetilde{h}_{ij})|=o(1),
$$

for each $1 \le v \le N$, $1 \le i, j \le n$, and $|\lambda| \ge 0$. Such a metric is always complete, and induces an asymptotically translation invariant fibre metric on each of the above three kinds of the admissible bundles.

 $\text{For } \beta = (\beta_1, \dots, \beta_L) \in \mathbb{R}^L, \text{ let } \beta t \text{ express smooth functions } X \to \mathbb{R},$ which are equal to $\beta_j t$ on the *j*-th end $(0, \infty) \times \sum_j$ of *X*. We write $\beta < a$ (resp., $\beta \le \alpha$), if $\beta_j < \alpha$ (resp., $\beta_j \le \alpha$) for $\alpha \in \mathbb{R}$ and $j = 1, \dots, L$.

Following [13, page 55], given an asymptotically cylindrical metric on *X*, we have a *damped* B^k -space

$$
B_{\beta}^{k}(E) = \{\xi \in C^{k}(E) : \sup_{\{t\} \times \Sigma} |\nabla_{h}^{j}\xi|_{h} = O(e^{\beta t}), \ \forall 0 \leq j \leq k\},\
$$

whose complete norm is given by

$$
\|\xi\|_k \coloneqq \sum_{j=0}^k \sup_X \bigl|e^{-\beta t}\nabla^j_h \xi\bigr|_h, \quad \forall \xi \in B^k_\beta(E).
$$

We have also a *damped* Hölder space

$$
B_{\beta}^{k, \alpha}(E) = \{ \xi \in B_{\beta}^{k}(E) : [e^{-\beta t} \nabla_{h}^{j} \xi]_{\alpha, X}^{h} < \infty \},
$$

whose complete norm is given by

$$
\|\xi\|_{k,a} := \left[e^{-\beta t} \nabla_h^j \xi\right]_{a,X}^h + \sum_{j=0}^k \sup_X \left|e^{-\beta t} \nabla_h^j \xi\right|_h,
$$

where $\left[\cdot\right]_{a,X}^{h}$ is defined as

$$
[\xi]_{a,X}^h := \sup \left\{ \frac{|\xi_x - \xi_y|_E}{d_h(x, y)^a} : x, y \in X \text{ with } 0 < d_h(x, y) < \varepsilon \right\}.
$$

As before, we assume that the manifold Σ has a Riemannian metric *g*∑. Define a *cone metric* on by

$$
\widetilde{g} = e^{2t} (dt^2 + g_{\Sigma}).
$$

A metric *g* on *X* is said to be *asymptotically conical*, if there exists a conical metric \widetilde{g} on X_{∞} such that

$$
\sup_{\{t\}\times U_{\nu}}|\rho_{\nu}\partial^{\lambda}(g_{ij}-\widetilde{g}_{ij})|=o(e^{2t}),
$$

for each $1 \le v \le N$, $1 \le i, j \le n$, and $|\lambda| \ge 0$. Such a metric is always complete.

Now suppose that *X* is endowed with some asymptotically conical metric *g*, asymptotic to the conical metric \tilde{g} on *X*. Then $h := e^{-2t}g$ is asymptotically cylindrical metric, asymptotic to the cylindrical metric \widetilde{h} := $e^{-2t}\widetilde{g}$. According to [13, page 64], we let $C_{\beta}^{k}(E)$ be the set of all C^{k}

sections of *E*, which are forced to decay at rate $O(e^{\beta t})$ on the infinite piece X_{∞} of *X*, as measured using the asymptotically conical metric *g* on *X*. Then a C^k section ξ of *E* lies in $C^k_{\beta}(E)$, if $e^{(s-r)t}\xi \in B^k_{\beta}(E)$. So as a vector space, we have $C_{\beta}^{k}(E) := e^{(s-r)t} B_{\beta}^{k}(E)$. Given $\xi \in C_{\beta}^{k}(E)$ define the norm

$$
\|\xi\|_{C^k_{\beta}(E)} := \|e^{(s-r)t}\xi\|_{B^k_{\beta}(E)},
$$

which makes $C^k_\beta(E)$ into a Banach space because $B^k_\beta(E)$ is a Banach space and the map

$$
e^{(s-r)t}: C^k_{\beta}(E) \to B^k_{\beta}(E),
$$

is an isometric isomorphism. Similarly, we define $C^{k, a}_\beta(E) \coloneqq e^{(s-r)t} B^{k, a}_\beta(E)$ as a vector space. Then

$$
\|\xi\|_{C^{k,\alpha}_{\beta}(E)} := \|e^{(s-r)t}\xi\|_{B^{k,\alpha}_{\beta}(E)},
$$

gives a complete norm on $C^{k, a}_{\beta}(E)$ too. Here is a version of "conical damped embedding theorem".

Theorem 2.1 ([13, Theorem 4.17]). *If* $\beta \leq \delta$ *and* $k + a \geq l + b$, *then there are continuous embeddings*

$$
C_{\beta}^{k+1}(E) \subseteq C_{\beta}^{k, a}(E) \subseteq C_{\delta}^{l, b}(E) \subseteq C_{\delta}^{l}(E) \text{ and } C_{\beta}^{k}(E) \subseteq C_{\delta}^{l}(E).
$$

Proof. Our method is derived from the proof of [11, Theorem 4.8]. In view of the second conclusion in [13, Theorem 4.2], we have the sequence of continue maps

$$
C_{\beta}^{k+1}(E) \xrightarrow{e^{(r-s)t}} B_{\beta}^{k+1}(E) \to B_{\beta}^{k,\alpha}(E) \xrightarrow{e^{-(r-s)t}} C_{\beta}^{k,\alpha}(E).
$$

Since $e^{(s-r)t}$ are isomorphic maps, it follows $C_{\beta}^{k+1}(E) \subseteq C_{\beta}^{k, a}(E)$, $\Gamma_{\beta}^{k+1}(E) \subseteq C_{\beta}^{k,\alpha}(E)$, and the other results can be proved in the same way.

2.2. Asymptotically conical submanifolds of \mathbb{C}^n

A cone is a nonempty closed subset $C \subseteq \mathbb{R}^{2n}$ such that $C \setminus \{0\} \to \mathbb{R}^{2n}$ is a smooth submanifold and $e^t \cdot C = C$ for all $t \in \mathbb{R}$. The Euclidean metric \tilde{e} on \mathbb{R}^{2n} endows the manifold $C \setminus \{0\}$ with a metric \tilde{g} . There is an isomorphism

$$
i: \mathbb{R} \times \Sigma \to C \setminus \{0\} \subseteq \mathbb{R}^{2n},
$$

$$
(t, \sigma) \mapsto e^t \sigma.
$$

Using the identification $X \setminus X_0 \cong (0, \infty) \times \Sigma$, we can extend the restricted map $i : (0, \infty) \times \Sigma \to \mathbb{R}^{2n}$ to a smooth map $i : X \to \mathbb{R}^{2n}$.

For a map $\widetilde{f}: X \to \mathbb{R}^{2n}$, if its components $\widetilde{f}_1, \cdots, \widetilde{f}_{2n} : X \to \mathbb{R}$ all lie in $C_{\beta}^{k}(X)$, then we write $\widetilde{f} \in C_{\beta}^{k}(X, \mathbb{R}^{2n})$. It is easy to see that $i \in C_1^{\infty}(X, \mathbb{R}^{2n}).$

Let $\widetilde{\alpha} \in \mathbb{R}^L$ with $\widetilde{\alpha} < 1$. We call a submanifold $\widetilde{f} : X \to \mathbb{R}^{2n}$ *strongly asymptotically conical* with cone *C* and rate $\tilde{\alpha}$, if $\tilde{f} - i \in C_{\tilde{\alpha}}^{\infty}$ (X, \mathbb{R}^{2n}) . This is equivalent to the following condition:

$$
\sup_{\{t\}\times\Sigma} |\nabla_{\widetilde{g}}^j(\widetilde{f}_k - i_k)|_{\widetilde{g}} = O(e^{(\widetilde{\alpha}-j)t}) \text{ for all } j \ge 0, \quad 1 \le i \le 2n.
$$

Further assume that the submanifold $\widetilde{f}: X \to \mathbb{C}^n$ is special Lagrangian and strongly asymptotically conical with cone $C \subseteq \mathbb{C}^n$ and the rate $\alpha + 1 < 1$, then *C* is also special Lagrangian submanifold by [13, Corollary 6.32].

2.3. The special Lagrangian suborbifolds

An *n*-dimensional orbifold is a paracompact Hausdorff space *Y* with an open covering $U = \{U_i\}$ satisfying the following conditions:

(i) $\forall U_i, U_j \in \mathcal{U}, \exists U_k \in \mathcal{U} \text{ such that } U_k \subseteq U_i \cap U_j \text{ if } U_i \cap U_j \neq \emptyset.$

(ii) $\forall U_i \in \mathcal{U}$, there are a pair (V_i, Γ_i) consisting of a finite group Γ_i and a Γ_i -invariant open neighbourhood V_i of $0 \in \mathbb{R}^n$, and a Γ_i -invariant surjective continuous map $\tilde{\varphi}: V_i \to U_i$ that induces a homeomorphism $V_i / \Gamma_i \approx U_i$.

(iii) If $U_i \subseteq U_j$, then there exists an injection $\psi_{ij} : \Gamma_i \to \Gamma_j$, and an embedding $\phi_{ij} : V_i \to V_j$, which is equivariant with respect to ψ_{ij} (i.e., $\phi_{ij}(\gamma \cdot y) = \psi_{ij}(\gamma) \cdot \phi_{ij}(y) \ \forall y \in V_i, \ \gamma \in \Gamma$ such that $\widetilde{\phi}_i = \widetilde{\phi}_j \circ \phi_{ij}$.

In an obvious way, one may define Riemannian orbifolds and complex orbifolds. In particular, a Kähler orbifold is a triple (*Y*, *J*, *g*) consisting of a complex orbifold (Y, J) and a Kähler metric g on it. (This means that *g* is *J*-invariant, i.e., $g(J\xi_1, J\xi_2) = g(\xi_1, \xi_2) \,\forall \xi_1, \xi_2 \in TM$, and that $\omega_g(\xi_1, \xi_2) \coloneqq \frac{1}{2} g(J\xi_1, \xi_2)$ defines a closed non-degenerate 2-form, called the associated Kähler form on *Y*.) See [5, Subsection 6.5.1] for details. An *orbifold Calabi*-*Yau structure* on a Kähler orbifold (*Y*, *J*, *g*) is a triple (J, g, Ω) , where Ω is a holomorphic volume form that satisfies $\nabla_g \Omega = 0$ for the Levi-Civita connection ∇_g and

$$
(-1)^{\frac{n(n-1)}{2}}\left(\frac{\sqrt{-1}}{2}\right)^n\Omega\wedge\overline{\Omega}=\frac{1}{n!}\,\omega^n_g.
$$

For $k \in \mathbb{N} \cup \{\infty\}$, a C^k map *F* from orbifolds *Y* to *Z* is said to be a C^k *immersion* (resp., *embedding*) if for each $y \in Y$, there is a chart (V_y, Γ_y) of *Y*, a chart $(V'_{F(y)}, \Gamma'_{F(y)})$ of *Z*, such that its local representation

 $F_y: V_y \to V'_{F(y)}$ is an immersion (resp., embedding and the associated group homomorphism $\psi_y : \Gamma_y \to \Gamma'_{F(y)}$ is an isomorphism). In this case, $F(Y)$ is called a C^k *suborbifold* (resp., embedded suborbifold). If each *F_y* is also special Lagrangian (equivalently, $F^* \omega = 0$ and $F^* (\text{Im } \Omega) = 0$), we get the notions of C^k special Lagrangian suborbifolds and C^k special Lagrangian embedded suborbifolds.

3. The Proof of Theorem 1.1

Let $\widetilde{f}: X \to \mathbb{C}^n$ be as in Theorem 1.1. By the assumptions, the finite group Γ preserves the Calabi-Yau structure $(\tilde{J}, \tilde{\omega}, \tilde{\Omega})$, and $\Gamma \cdot \tilde{f} = \tilde{f}$. Then Γ acts on $(\widetilde{f}(X), \widetilde{e}|_{\widetilde{f}(X)})$ isometrically. Since \widetilde{f} is an isometric embedding, Γ (resp., the metric \tilde{e} on \mathbb{C}^n) induces a Γ -action on X (resp., the original metric *g* on *X*). Later, we shall understand the action of Γ on *X* without special statements. Hence, there exists a Γ -action on harmonic 1-form space \mathcal{H}^1 given by $\gamma \cdot \theta = \gamma^{-1,*}\theta$ for all $\gamma \in \Gamma$, $\theta \in \mathcal{H}^1$, which naturally gives rise to an action on $C^{k+1, a}(X, \mathbb{C}^n) \times \mathcal{H}^1$:

$$
\gamma \cdot (\widetilde{f}, \theta) = (\gamma \cdot \widetilde{f}, \gamma^{-1,*} \theta).
$$

Let $N \to X$ be the normal bundle of *X* in $\mathbb{C}^n \cong \mathbb{R}^{2n}$. That is, for any $p \in X$, the fiber N_p is the normal space of $T_{\widetilde{f}(p)}\widetilde{f}(X)$ in \mathbb{R}^{2n} . In particular, we may take $N_p = (T_{\widetilde{f}(p)} \widetilde{f}(X))^{\perp}$. Since Γ preserves metric, $\gamma * \xi_p \in N_{\gamma \cdot p}$ for all $p \in X$ and $\gamma \in \Gamma$. By the Hopf-Rinow theorem [4], the subset $\widetilde{f}(X) \subseteq \mathbb{R}^{2n}$ is complete as a metric space and is closed in \mathbb{R}^{2n} . Hence, there exists a Γ -invariant open neighbourhood $\tilde{U} \subseteq N$ of the zero section such that

$$
\exp|_{\widetilde{U}}:\widetilde{U}\to\mathbb{R}^{2n},
$$

is diffeomorphism onto an open subset of \mathbb{R}^{2n} , which is also Γ-equivariant, i.e.,

$$
\gamma \cdot \exp_{\widetilde{f}(p)} \xi_p = \exp_{\gamma \cdot \widetilde{f}(p)} \gamma_* \xi_p, \quad \forall (p, \xi_p) \in \widetilde{U}.
$$

It follows that any normal vector field $\xi \in C^{\infty}(N)$ with values in \widetilde{U} defines an embedded submanifold $\widetilde{f}_\xi : X \to \mathbb{R}^{2n}$ given by

$$
p \mapsto \widetilde{f}_{\xi}(p) \coloneqq \exp_{\widetilde{f}(p)} \xi_p,\tag{3.2}
$$

which is not necessarily Γ -invariant.

Since $\tilde{f}^* \omega = 0$, the complex structure \tilde{J} defines a vector bundle isomorphism

$$
\widetilde{J}: N \to T(\widetilde{f}(X)) \to TX.
$$

Moreover, the metric *g* on *X* gives rise to an isomorphism

$$
\flat_g: TX \to T^*X.
$$

Hence, we can identify normal bundle N with T^*X via the composition $\flat_g \circ \widetilde{J}$.

Following [13, page 103], there exists a subset $\mathcal{D}(\Delta_g^0) \subset \mathbb{R}^L$ such that the bounded linear map $\Delta_g^0 : C_{\alpha+2}^{k+2,a}(X) \to C_{\alpha}^{k,a}(X)$ $\Delta_{g}^{0} : C_{\alpha+2}^{k+2, a}(X) \to C_{\alpha}^{k, a}(X)$ is Fredholm when $\alpha + 2 \in \mathbb{R}^L \setminus \mathcal{D}(\Delta_g^0)$. Here $\mathcal{D}(\Delta_g^0) = \mathcal{D}(P_\infty) (P_\infty = e^{2t} \Delta_{\widetilde{g}}^0)$ $\mathcal{D}(\Delta_g^0) = \mathcal{D}(P_\infty)(P_\infty = e^{2t}\Delta_{\widetilde{\sigma}}^0)$ is computed as in [13, Subsection 5.1.1; see also Subsection 6.1.2].

Furthermore, according to [13, page 121], we assume that $\alpha + 2$ 2 − *n* − λ with $\alpha + 2 \in \mathbb{R}^L \setminus \mathcal{D}(\Delta_g^0)$, where the definition of λ is given in [13, page 74], and choose $\beta_1 + 1$, $\beta_2 + 1 \in \mathbb{R}^L$ with $\beta_1 + 1 < \alpha + 1 < \beta_2 + 1$ 1 and α − β₁ < *n* such that β₁ + 2, α + 2, β₂ + 2 all belong to the same connected component of $\mathbb{R}^L \setminus \mathcal{D}(\Delta_g^0)$. For any $\varepsilon > 0$, write

$$
V^{k+1,\alpha}_{\alpha+1}\ :=\ \{\xi\in C^{k+1,\,\alpha}_{\alpha+1}(T^*X):\ \bigl\|\xi\bigr\|_{C^0_1(T^*X)}\ <\ \epsilon\},
$$

and define $F_{\alpha+1}: V_{\alpha+1}^{k+1, a} \to C^0(\Lambda^* T^* X)$ by

$$
F_{\alpha+1}(\flat_g \widetilde{J}\xi) = *_{g} \widetilde{f}_{\xi}^* \operatorname{Im} \widetilde{\Omega} + \widetilde{f}_{\xi}^* \widetilde{\omega},
$$

which actually takes values in $C_{\alpha}^{k, a}(X) \oplus C_{\alpha}^{k, a}(\Lambda^2 T^* X)$ by [13, Proposition 6.37]. Taking $\beta = \alpha$ in Propositions 6.38, 6.39, and 6.41 in [13], we get

Proposition 3.1 ([Proposition 6.39])**.** *Let* $k \geq 2$ *and* $\alpha + 1 \in \mathbb{R}^L$ *with* $\alpha + 1 < 1$. Then the map $F_{\alpha+1} : V_{\alpha+1}^{k+1, \alpha} \to C_{\alpha}^{k, \alpha}(X) \oplus C_{\alpha}^{k, \alpha}(\Lambda^2 T^* X)$ is *smooth and has derivative*

$$
F'_{\alpha+1}(0) : C^{k+1, a}_{\alpha+1}(T^*X) \to C^{k, a}_{\alpha}(X) \oplus C^{k, a}_{\alpha}(\Lambda^2 T^*X),
$$

 $at\ 0\ which\ acts\ as\ d^* + d.$

Proposition 3.2 ([Proposition 6.41])**.** *Let* $\alpha + 1 > 2 - n - \lambda$ *with* $\alpha + 2 \in \mathbb{R}^L \diagdown \mathcal{D}(\Delta^0_g)$, then the image of map

$$
F_{\alpha+1}: V_{\alpha+1}^{k+1, a} \to C_{\alpha}^k, {^a(X)} \oplus C_{\alpha}^k, {^a(\Lambda^2T^*X)},
$$

is contained inside $d^*(C^{k+1, a}_{\alpha+1}(T^*X)) \oplus d(C^{k+1, a}_{\alpha+1}(T^*X)).$ $d^*(C^{k+1, a}_{\alpha+1}(T^*X)) \oplus d(C^{k+1, a}_{\alpha+1}(T^*X))$ +1, $a_{\ell} \pi^*$ * $(C_{\alpha+1}^{k+1, a}(T^*X)) \oplus$

Denote by $C_{\alpha+1}^{k+1, a}(\Lambda^* T^* X)_{\Gamma}$ the subspace of all Γ -invariant elements in $C_{\alpha+1}^{k+1, a}(\Lambda^* T^* X)$, and by $C_{\alpha}^{k, a}(X)_{\Gamma}$ the space of all Γ -invariant functions in $C_{\alpha}^{k, a}(X)$. Define

$$
V_{\alpha+1,\Gamma}^{k+1,a} := V_{\alpha+1}^{k+1,a} \cap C_{\alpha+1}^{k+1,a} (\Lambda^* T^* X)_{\Gamma},
$$

$$
K_{\alpha+1,\Gamma} := K_{\alpha+1} \cap C_{\alpha+1}^{k+1,a} (T^* X)_{\Gamma},
$$

where the set $K_{\alpha+1}$ is given in Theorem 1.1. Then $F_{\alpha+1}$ maps $V_{\alpha+1,\Gamma}^{k+1,a}$ + α +1, Γ into $d^*(C^{k+1, a}_{\alpha+1}(T^*X)_{\Gamma}) \oplus d(C^{k+1, a}_{\alpha+1}(T^*X)_{\Gamma}).$ $_{+1}^{+1,\,a}(T^*X)_\Gamma$) \oplus $d(C_{\alpha+1}^{k+1,\,a}(T^*X)_\Gamma)$ $d^*(C_{\alpha+1}^{k+1, a}(T^*X)_{\Gamma}) \oplus d(C_{\alpha+1}^{k+1, a}(T^*X)_{\Gamma}).$ Let

$$
\mathfrak{B}_2 = \Big\{\phi + \psi \in C_{\alpha}^{k+1, \alpha}(X)_{\Gamma} \oplus C_{\alpha}^{k+1, \alpha}(\Lambda^2 T^* X)_{\Gamma} : \phi \in \text{Im}(d), \psi \in \text{Im}(d^*)\Big\},\
$$

and consider a map $\mathfrak{F}_{\alpha+1}: K_{\alpha+1,\Gamma} \times V^{k+1,\alpha}_{\alpha+1,\Gamma} \to \mathfrak{B}_2$ defined by

$$
\mathfrak{F}_{\alpha+1}(\xi_1, \xi_2) = *_{g} \widetilde{f}_{\xi}^* \operatorname{Im}(\widetilde{\Omega}) + \widetilde{f}_{\xi}^* \widetilde{\omega},
$$

where $\xi = \xi_1 + \xi_2$. It is well-defined. In fact, as in the proof of [13, Proposition 6.41], there exist $\theta_1 \in C^{\infty}(T^*\mathbb{C}^n)$ and $\theta_{n-1} \in C^{\infty}(\Lambda^{n-1}T^*\mathbb{C}^n)$ such that $\text{Im }\widetilde{\Omega} = d\theta_{n-1}$ and $\widetilde{\omega} = d\theta_1$. Then for $\xi_1 \in K_{\alpha+1,\Gamma}$, $\xi_2 \in V_{\alpha+1,\Gamma}^{k+1,\alpha}$ and $\xi := \xi_1 + \xi_2$, we have

$$
d^*\left\langle -1\right\rangle^n * \left(\widetilde{f}_{\xi}^*\theta_{n-1} - \widetilde{f}^*\theta_{n-1}\right)\right\} = *_{g}\widetilde{f}_{\xi}^*\operatorname{Im}(\widetilde{\Omega}),
$$

$$
d\left(\widetilde{f}_{\xi}^*\theta_1 - \widetilde{f}^*\theta_1\right) = \widetilde{f}_{\xi}^*\widetilde{\omega}, \quad \text{i.e.,} \quad \widetilde{f}_{\xi}^*\widetilde{\omega} - \widetilde{f}^*\widetilde{\omega} = \widetilde{f}_{\xi}^*\widetilde{\omega}.
$$

Moreover, $\xi \in C_{\alpha+1}^{k+1,\alpha}(T^*X)_\Gamma$ may be viewed as a Γ -invariant map $X \to \mathbb{C}^n$, i.e., $\xi \in C^{k+1, a}_{\alpha+1}(X, \mathbb{C}^n)$. Hence $\widetilde{f}_{\xi} - \widetilde{f} = \widetilde{f} + \xi - \widetilde{f} = \xi$ is Γ-invariant, and thus $\widetilde{f}_{\xi}^* \widetilde{\omega} = \widetilde{f}_{\xi}^* \widetilde{\omega} - \widetilde{f}^* \widetilde{\omega}$ is Γ-invariant. Note that strongly asymptotically is also asymptotically. We get \widetilde{f} , $\widetilde{f}_{\epsilon} \in C_1^{k+1, a}(X, \mathbb{C}^n)$, \widetilde{f} , $\widetilde{f}_{\xi} \in C_1^{k+1, a}(X, \mathbb{C}^n)$ and hence $\widetilde{f}_{\xi}^* \widetilde{\omega} = \widetilde{f}_{\xi}^* \widetilde{\omega} - \widetilde{f}^* \widetilde{\omega} \in C_{\alpha}^{k, a} (\Lambda^2 T^* X)_{\Gamma}$ by [13, Proposition 6.31]. Similarly, we have $*_{g} \widetilde{f}_{\xi}^{*}$ Im $(\widetilde{\Omega}) \in C_{\alpha}^{k, a}(X)_{\Gamma}$. Thus, the image of $\mathfrak{F}_{\alpha+1}$ is contained in \mathfrak{B}_2 .

By Proposition 3.1, $\mathfrak{F}_{\alpha+1}$ is smooth and has partial derivative at $(0, 0),$

$$
D_{\xi_2} \mathfrak{F}_{\alpha+1}(0, 0) : C_{\alpha+1}^{k+1, \alpha} (\Lambda^* T^* X)_{\Gamma} \to \mathfrak{B}_2,
$$

which acts as $d + d^*$ by Proposition 3.2. It follows from [13, Corollary 2.14] that $d + d^*$ is elliptic operator. Then by conical damped version of [13, Corollary 6.8], there exists a constant $C_1 > 0$ such that

$$
\|\xi_2\|_{C^{k+1,\alpha}_{\alpha+1}(\Lambda^*T^*X)_{\Gamma}} \leq C_1 \|D_{\xi_2}\mathfrak{F}(0, 0)\xi_2\|_{C^{k,\alpha}_{\alpha}(\Lambda^*T^*X)_{\Gamma}}.
$$

Thus $D_{\xi_2} \mathfrak{F}(0, 0)$ is an invertible operator from $C_{\alpha+1}^{k+1, a}(T^*X)_{\Gamma}$ to \mathfrak{B}_2 , and the invertible $D_{\xi_2} \mathfrak{F} (0, 0)^{-1}$ is a bounded operator. Since $\widetilde{f} : X \to \mathbb{C}^n$ is a special Lagrangian submanifold, $\mathfrak{F}(0, 0) = 0$. By Theorem 2.1, we $\| \xi_1 \|_{C_1^0(T^*X)} \leq C_2 \| \xi_1 \|_{C_{\alpha+1}^{k+1, \alpha}(T^*X)}$ for some constant C_2 . Then the implicit function theorem ([16, Theorem 3.1]) implies that for $\varepsilon \ll 1$ and any $\|\xi_1\|_{C^{k+1, a}_{\alpha+1}(T^*X)} < \varepsilon / 2C_2$, there exists open neighbourhoods of the origin 0, $W_1^{\alpha+1} \subseteq K_{\alpha+1,\Gamma}$ and $\mathcal{W}_2^{\alpha+1} \subseteq V_{\alpha+1,\Gamma}^{k+1,a}$, $\mathcal{W}_2^{\alpha+1} \subseteq V_{\alpha+1,\Gamma}^{k+1,a}$, and unique smooth map $\chi: W_1^{\alpha+1} \to \mathcal{W}_2^{\alpha+1}$ such that $\mathfrak{F}_{\alpha+1}(\xi_1, \chi(\xi_1)) = 0$ for all $\xi_1 \in W_1^{\alpha+1}$ and $\| \chi(\xi_1) \|_{C_1^0(T^*X)} < \varepsilon / 2C_2.$ Then

$$
\|\xi\|_{C_1^0(T^*X)} \le \|\xi_1 + \chi(\xi_1)\|_{C_1^0(T^*X)} \le \|\xi_1\|_{C_1^0(T^*X)} + \|\chi(\xi_1)\|_{C_1^0(T^*X)} < \varepsilon.
$$

By [13, Theorem 6.43], we have $\xi \in V_{\alpha+1,\Gamma}^{\infty} \subseteq C_{\alpha+1}^{\infty}(T^*X)_{\Gamma}$. Moreover, every $\xi_1 \in W^{\alpha+1}$ gives a special Lagrangian submanifold $\widetilde{f}_{\xi_1 + \chi(\xi_1)}$: $X \to \mathbb{C}^n$, which is strongly asymptotically conical with cone *C* and rate $\alpha + 1$.

Let $\widetilde{\mathcal{M}}^{k+1, a}$ be as in (1.1). Define

$$
\widetilde{\mathfrak{D}} := \{ (\widetilde{f}, \xi_1) \in \widetilde{\mathcal{M}}^{k+1, a} \times K_{\alpha+1, \Gamma} : \|\xi_1\|_{C^{k+1, a}_{\alpha+1}(T^*X)} < \varepsilon / 2C_2 \}.
$$

Let π be the projection from $\widetilde{\mathfrak{D}}$ to

$$
\widetilde{\mathfrak{P}} \coloneqq \{ \xi_1 \in K_{\alpha+1,\Gamma} : \|\xi_1\|_{C^{k+1,\alpha}_{\alpha+1}(T^*X)} < \varepsilon / 2C_2 \},
$$

and let $\tilde{\text{ev}} : \tilde{\mathfrak{D}} \to \widetilde{\mathcal{M}}^{k+1, a}$ be given by

$$
\widetilde{\textnormal{ev}}(\widetilde{f},\,\xi_1)=\widetilde{f}_{\xi_1+\chi(\xi_1)}=:\textnormal{exp}_{\widetilde{f}}\big(\xi_1+\chi(\xi_1)\big).
$$

Since the orbifold structure is Γ -invariant, and

$$
\exp_{\widetilde{f}}\big(\gamma^{-1,\,*}\xi_1\,\big)=\gamma\cdot\exp_{\gamma^{-1,\widetilde{f}}}\ \xi_1,
$$

with $\gamma^{-1,*} := (\gamma^{-1})^*$, we obtain

$$
\begin{aligned}\n\mathfrak{F}_{\alpha+1}(\gamma^{-1,*}\xi_1, \gamma^{-1,*}\xi_2) \\
&= *_{g} \widetilde{f}_{\gamma^{-1,*}\xi} \operatorname{Im} \widetilde{\Omega} + \widetilde{f}_{\gamma^{-1,*}\xi}^* \widetilde{\omega} \\
&= \gamma^{-1,*} \{ (\exp_{\gamma^{-1}\widetilde{f}} \xi)^* \gamma^* \operatorname{Im} \widetilde{\Omega} + (\exp_{\gamma^{-1}\widetilde{f}} \xi)^* \gamma^* \widetilde{\omega} \} \\
&= \gamma^{-1,*} \mathfrak{F}_{\alpha+1}(\xi_1, \xi_2),\n\end{aligned}
$$

for all $\gamma \in \Gamma$. So if $\mathfrak{F}_{\alpha+1}(\xi_1, \chi(\xi_1)) = 0$, then $\mathfrak{F}_{\alpha+1}(\gamma^{-1,*}\xi_1, \gamma^{-1,*}\chi(\xi_1)) = 0$. From the unique property of solution of $\mathfrak{F}_{\alpha+1}(\xi_1, \chi(\xi_1)) = 0$, it follows that $\xi_2 = \chi(\xi_1)$ is Γ -invariant, i.e., $\gamma^{-1,*}\chi(\xi_1) = \chi(\gamma^{-1,*}\xi_1)$, $\forall \gamma \in \Gamma$. This leads to

$$
\widetilde{f}_{\gamma^{-1,*}\xi} \,=\, \mathrm{evp}_{\widetilde{f}}\big(\gamma^{-1,*}\xi_1\, +\, \chi(\gamma^{-1,*}\xi_1\,)\big)=\, \mathrm{evp}_{\gamma \cdot \widetilde{f}}\big(\gamma^{-1,*}\xi\big)=\, \gamma\cdot \big(\mathrm{evp}_{\widetilde{f}}\xi\big)=\, \gamma\cdot \widetilde{f}_\xi.
$$

That is, if $\widetilde{f}_{\xi}: X \to \mathbb{C}^n$ is special Lagrangian so is $\widetilde{f}_{\gamma^{-1,*}\xi}: X \to \mathbb{C}^n$. Furthermore, we have the Γ -invariant of \tilde{ev} :

$$
\begin{aligned} \widetilde{\text{ev}}\left(\,\gamma\cdot\big(\,\widetilde{f},\,\xi_1\,\big)\,\right) &= \left(\,\widetilde{\gamma\cdot f}\,\right)_{\gamma^{-1,*}\xi_1 + \chi(\gamma^{-1,*}\xi_1)} \\ &= \text{evp}_{\widetilde{f}}\left(\gamma^{-1,*}\xi_1 + \chi(\gamma^{-1,*}\xi_1)\right) \\ &= \gamma\cdot\widetilde{f}_{\xi} = \gamma\cdot\widetilde{\text{ev}}(\widetilde{f},\,\xi_1\,),\,\forall\gamma\in\Gamma. \end{aligned}
$$

Since $\widetilde{\text{ev}}(\widetilde{f}, 0) = \widetilde{f}: X \to \mathbb{C}^n$ is a special Lagrangian submanifold, every $\xi_1 \in \widetilde{\mathfrak{P}}$ induces a special Lagrangian submanifold $\widetilde{\text{ev}}(\widetilde{f},\, \xi_1)=\widetilde{f}_{\xi_1+\chi(\xi_1)}$: $X \to \mathbb{C}^n$. Let

$$
\mathfrak{D} = \widetilde{\mathfrak{D}} / \Gamma, \quad \mathfrak{P} = \widetilde{\mathfrak{P}} / \Gamma, \quad b_0 = 0 \in \mathfrak{P},
$$

and let ev be the map from $\mathfrak D$ to $\mathcal M^{k+1, a}$ induced by \widetilde{ev} , and an orbifold map $G : \mathfrak{D} \to \mathfrak{P}$ induced by π . Then $ev(G^{-1}(0)) = f : X \to \mathbb{C}^n / \Gamma$ is a special Lagrangian suborbifold, and for any $b \in \mathfrak{P}$,

$$
\operatorname{ev}(G^{-1}(b)) = \left(\coprod_{\xi_1 \in Q^{-1}(b)} \widetilde{f}_{\xi_1 + \chi(\xi_1)}\right) \bigg/ \Gamma : X \to \mathbb{C}^n / \Gamma,
$$

is a special Lagrangian suborbifold of the Calabi-Yau orbifold $({\mathbb C}^n/\Gamma, J, e, \Omega)$, where $Q : \widetilde{\mathfrak{P}} \to \mathfrak{P}$ is the quotient map.

Acknowledgement

The author thanks Professor Guangcun Lu for giving the topic and providing valuable comments in preparing the draft.

References

- [1] M. Gross, D. Huybrechts and D. D. Joyce, Calabi-Yau Manifolds and Related Geometries, Springer, Berlin, 2003.
- [2] F. R. Harvey and H. B. Lawson, Calibrated geometries, Acta Math. 148 (1982), 47-157.
- [3] N. Hitchin, The moduli space of special Lagrangian submanifolds, Dedicated to E. DeGiorgi, Ann. Scuola. Norm. Sup. Pisa. 25 (1997), 503-515.
- [4] J. Jost, Riemannian Geometry and Geometric Analysis, Springer, 1998.
- [5] D. D. Joyce, Compact Manifolds with Special Holonomy, Oxford University Press, Oxford, 2000.
- [6] D. D. Joyce, Special Lagrangian submanifolds with isolated conical singularities, I: Regularity, Ann. Global Anal. Geom. 24 (2004), 201-251.
- [7] D. D. Joyce, Special Lagrangian submanifolds with conical singularities, II: Moduli spaces, Ann. Global Anal. Geom. 24 (2004), 301-352.
- [8] D. D. Joyce, Special Lagrangian submanifolds with isolated conical singularities, III: Desingularization, the unobstructed case, Ann. Global Anal. Geom. 25 (2004), 1-58.
- [9] D. D. Joyce, Special Lagrangian submanifolds with isolated conical singularities, IV: Desingularization, obstructions and families, Ann. Global Anal. Geom. 25 (2004), 117-174.
- [10] D. D. Joyce, Special Lagrangian submanifolds with isolated conical singularities, V: Survey and applications, J. Differential Geom. 63 (2003), 279-347.
- [11] R. Lockhart, Fredholm, Hodge and Liouville theorems on non-compact manifolds, Trans. Amer. Math. Soc. 305 (1987), 1-35.
- [12] L. Ma, Moduli space of special Lagrangian in almost Kähler spaces, An. Acad. Brasci. 73(1) (2001), 1-5.
- [13] S. P. Marshall, Deformations of Special Lagrangian Submanifolds, Ph.D. Thesis, University of Oxford, 2002.
- [14] R. C. Mclean, Deformation of calibrated submanifolds, Comm. Anal. Geom. 6 (1998), 705-747.
- [15] T. Pacini, Deformations of asymptotically conical special Lagrangian submanifolds, Pacific J. Math. 215(1) (2004), 151-181.
- [16] W. D. Ruan, Generalized special Lagrangian torus fibration for Calabi-Yau hypersurface in toric variaties I, arxiv: math.DG/0303114.
- [17] S. Salur, Deformation of special Lagrangian submanifolds, Comm. Contemp. Math. 2(3) (2000), 365-372.
- [18] S. Salur and A. J. Todd, Deformations of asymptotically cylindrical special Lagrangian submanifolds with fixed boundary, arxiv:math.DG/0902.0565.
- [19] A. Strominger, S. T. Yau and E. Zaslow, Mirror and symmetry is *T*-duality, Nucl. Phys. B 479 (1996), 243-259.
- [20] A. Strominger, S. T. Yau and E. Zaslow, Mirror and symmetry is *T*-duality, In: Winter School on Mirror Symmetry, Vector Bundles and Lagrangian Submanifolds (Cambridge, MA, 1999), Stud. Adv. Math., Vol. 23; Providence: Amer. Math. Soc. (2001), 333-347.
- [21] Y. G. Zhang, Deformation of special Lagrangian suborbifolds, Front. Math. in China 1(3) (2006), 462-475.

g