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Abstract

The theory of strongly asymptotically conical special Lagrangian submanifolds
and compact special Lagrangian suborbifolds have been developed by Marshall
[12] and Zhang [21], respectively. In this note, we combine their methods to
study the deformation of non-compact special Lagrangian suborbifolds.

1. Introduction

As a very interesting extension of deformation theory for complex
submanifolds, Mclean [14] developed the deformation theory of special
Lagrangian submanifolds, which have become important because
Strominger et al. [19, 20] related the moduli space of special Lagrangian

toric with flat unitary line bundle to the context of mirror symmetry. The
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theory is generalized to various situations ([1, 3, 12, 17, 18]) in the last few
years. For the study of non-compact special Lagrangian submanifolds,
Joyce presented several results in his series paper ([6]-[10]) and Pacini
[15] considered the asymptotically conical special Lagrangian

submanifolds. In particular, Marshall [13] studied the deformation of

strongly asymptotically conical special Lagrangian submanifolds of C”,

and Zhang [21] generalized the theory by Mclean and Hitchin to the
deformation of compact special Lagrangian suborbifolds in a special class
of Calabi-Yau orbifolds. Our purpose is to combine their methods
together to study the deformation of non-compact special Lagrangian

suborbifolds in special case.

Let (J, ® Q) be the standard Calabi-Yau structure on C" with

Kahler metric €, and I'" be a finite group acting on C" preserving the
structure (j , ® Q). Consider the Calabi-Yau orbifold (M, J, o, Q) =

(cn, J, @, Q)/T. Let C = C" be a cone, smooth away from 0, and
I-invariant. An embedded special Lagrangian orbifold f: X — M

(cf. Subsection 2.3), where X is a manifold with ends, is said to be

strongly asymptotically conical with cone C and rate o +1 < 1, if there

exists an embedded special Lagrangian submanifold }7 : X —» C", which

is strongly asymptotically conical with cone C and rate a+1<1

(see Subsection 2.2 for the precise definition), such that T - f(X) = f(X)
and q 07 = f, where g : C* - M is the natural projection. Moreover,
for k e N and 0 < a <1, we say f to be of class cka (resp., Ck), if }7 1s

of class C®% (vesp., C*). Denote by M*? the set of all C*? embedded
special Lagrangian suborbifolds f: X — M, which are strongly

asymptotically conical with cone C and rate o +1 < 1. Denote by

—~k+l,a
M

) (1.1)
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the set of all CF*?_embedded special Lagrangian submanifolds

)7 : X —» C", which are strongly asymptotically conical with cone C and

rate o +1 < 1. Clearly, there exists a natural action of ' on it and

—~Fk+l,a

M /T = M¥1% We shall prove that /A\//lkﬂ’a is a manifold (and thus

MP+1:9 is an orbifold). In order to the goal, we define a map Fous1 and

prove that its derivative at (0, 0) is an invertible operator. By applying

. .. . .. —~k+1,
the implicit function theorem, it is easy to show that M s a

manifold. Moreover, in order to prove that MFL@ g an orbifold we need

~k+l,a . . . . . . . .
to show that every fe M s T -invariant, which is given in Section
3. Here is our main result.

Theorem 1.1. Under the above assumptions, let f: X — M be a

Ck+1’a(k > 2) embedded special Lagrangian suborbifold and strongly

asymptotically conical with cone C and rate o +1<1, and let
}7 : X - C" be its corresponding T-invariant lift as above. Let o + 2 >
2-n-A with a+2e€ RL\D(A%) (see Section 3 for the precise
definition). Define K1 1 to be the subspace of all T -invariant elements
in

Ky = {8 eCHb9(T*X): d*t = 0, dt = 0).

o+l
Then there exist two orbifolds © and B, a point by € B, two orbifold

maps G : D — P and ev : D — MY such that

(i) ev(G1(by)) = f and the dimension of P is equal to dimension of

Ka+1,l"-
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(i) For any b e P, ev(GL(b)): X > C"/T is a special Lagrangian

suborbifold of C" /T, which is strongly asymptotically conical with cone C

and rate o +1 < 1.
2. Preliminaries

2.1. Analysis of non-compact manifolds

We here recall the analytic theory on non-compact manifolds given in
[13]. Without special statements, we always assume that X is a non-

compact manifold of dimension n >3 and that X is a compact manifold
of dimension n —1 with L connected components > = >; U---U X7 . We

also suppose that there exists a compact submanifold with boundary
Xop < X and a diffeomorphism

X, =X\ X, > (0, 0)xY, 2.1)

This is, X is said to be a manifold with ends. The identification in (2.1)
leads to a projection onto the link of the cylindrical part of

X, n:X, - Y. Let t denote the conical coordinate on (0, ), and let
(xg -+~ x, ) denote the coordinates on >.. For S > 0, put
Xg = Xo U((0, S]x ).

It is a compact submanifold of X with boundary. Fixing any covering of
>, {U;, -+, Uy}, and writing V,, := (0, ©)x U,, foreach v =1, ---, N, we
get an open cover of X, {V;, -+, Vy}. (Hereafter, we often identify X,
with (0, ©) x ). Then fix any open covering of X, {Vn,1, =+, VNiK |, such
that

N+K
VU c Xl’
v=N+1

and also fix the partition of unity of X, py, -, py,+x, subordinate to the

open cover {Vy, -, VN.k }.
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Let Ey — X be the vector bundle, which is trivial over each U,,.

Then, we have induced trivializations for the vector bundle n*Ez - X,
over each Vi, .-, Viy. Suppose that £ — X is a vector bundle over X,
trivialized over each V,,, so that E|, = n'Ey on X\Xg for some large

S > 0. We call such a vector bundle E over X admissible and the vector

bundle Ey — X the slice of E over ). For the section & of an
admissible bundle E, we denote by &j, -+, &, » the components of & in
the given trivialization of E over V,,.

Let E be an admissible vector bundle with slice Ey as above. The

fibre metric (T) g on E is said to be translation invariant, if there exists a

metric (|) By OD Es such that

T <|>EZ = <T>E’

over X \ Xg for some large S > 0. Here are some examples of

admissible bundles:

e The tensor bundles E = (®” T*X)® (®° T X), which have slices

®i=r,r—l j=s,s-1 (®l T* Z) ® (®] TY).

e The exterior bundles E := A’T*X, which have slices A"T* ¥ @A™ !
T Y.

e The total exterior bundle E := A*T*X, which have slices A"T* Y ®
ANT* Y.

To see why the slices are as given, consider the example E = A"T™*X.
For any given x € X,, and any section & e A"T;X, there are unique

o, ¥ € A"T, ¥ such that & = ¢ +dt Ay, where x = (¢, 5) € (0, 0)x X =
X,
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In the following, we always assume that E is one of the three bundles

(s—r)t

above without special statements. Then a linear operator e acts on

section & of E as follows. If & has r covariant (7°X) parts and
s contravariant (7X) parts e(s_r)ti is defined to be f, ;& where

frs 1 X > (0, ©) is a smooth function, which over X, is equal to the

exponential function e Then extend the operator el by linearity

to act on any section & of E. It is invertible.

Suppose that the manifold Ey is equipped with a Riemannian metric

gy . A metric h on X, which is of the form
}; = dt2 + gz,

over X \ Xg for some large S > 0 is called a cylindrical metric on X.
A metric h on X is said to be asymptotically cylindrical, if there exists a

cylindrical metric h such that

N -
{tsiggylpua (hij = hyj)| = o(1),

for each 1<v < N,1<1i, j<n, and [A| 2 0. Such a metric is always

complete, and induces an asymptotically translation invariant fibre

metric on each of the above three kinds of the admissible bundles.

For B = (By, -, By ) € R, let Bt express smooth functions X — R,
which are equal to Bt on the j-th end (0, ©)x X; of X. We write f < a

(resp., p < a),if B; < a (resp., B; <a)foraeR and j =1, -, L.

Following [13, page 55], given an asymptotically cylindrical metric on

X, we have a damped B -space

BY(E) = {& « CH(E): {f}‘i@vmh =0(ef), vo < j < k),

whose complete norm is given by
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=

— z: —BtJ k
= suple "'V , VE&e By(E).
||§||k Xp| §|h g [3( )

=0
We have also a damped Holder space

BY “(E) = {& € B{(E) : [e PViE]l x < w0},

whose complete norm is given by

>

[0 = [7PVhED x + D suple Vg,
j=0

where []2 x 1s defined as

[Q]ZX = su {% cx, y e X with 0 < dj(x, y) < a}.
n\X, Yy

As before, we assume that the manifold > has a Riemannian metric

gy . Define a cone metric on by
g = e2t(dt2 +85).

A metric g on X is said to be asymptotically conical, if there exists a

conical metric g on X such that

A ~ 2t
sup |p, 07 (8 — &; )| = ole™ ),
{t}valpV ( 1] Y )l ( )

for each 1<v < N,1<4i, j<n, and [A| 2 0. Such a metric is always

complete.

Now suppose that X is endowed with some asymptotically conical
metric g, asymptotic to the conical metric § on X. Then A = e Zg is
asymptotically cylindrical metric, asymptotic to the cylindrical metric

~

h = e 3. According to [13, page 64], we let C§(E) be the set of all C*
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sections of E, which are forced to decay at rate O(eP!) on the infinite

piece X of X, as measured using the asymptotically conical metric g on
X. Then a C* section & of E lies in Cée(E), if e e ¢ B[]f(E) So as a

vector space, we have C{f(E) = e(s_r)tB{f(E). Given & € Céf(E) define the

norm
el ) = 18l gty

which makes Cé’ (E) into a Banach space because Bé’ (E) is a Banach

space and the map

et CH(E) - BJ(E),

is an isometric isomorphism. Similarly, we define C[If "YE) = e(s_r)th "UE)

as a vector space. Then

et = 1€ el o),

gives a complete norm on Cé”a(E) too. Here is a version of “conical
damped embedding theorem”.

Theorem 2.1 ([13, Theorem 4.17]). If B <6 and k+a >1+b, then

there are continuous embeddings
ChH(E) c Cf“(B) < C¢°(E) < CY(E) and CF(E) c CY(E).

Proof. Our method is derived from the proof of [11, Theorem 4.8]. In
view of the second conclusion in [13, Theorem 4.2], we have the sequence

of continue maps

e(r—s)t e—(r—s)t

CKH(E) Bf*Y(E) > By *(E) Ch(B).

Since e are isomorphic maps, it follows C§+l (E) c Cg’a(E), and the

other results can be proved in the same way.
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2.2. Asymptotically conical submanifolds of C"

A cone is a nonempty closed subset C = R?" such that C \ {0} > R?"

is a smooth submanifold and e’ -C = C for all ¢ € R. The Euclidean

metric &€ on R?" endows the manifold C \ {0} with a metric g. There is

an isomorphism
i:RxY > C\ {0} c R?",

(t, o) > elo.
Using the identification X \ Xy = (0, ©)x >, we can extend the

restricted map i : (0, ©)x ¥ — R?" to a smooth map i : X — R?".

~

For a map }7 : X > R?", if its components }71, o fon, 1 X > R all
lie in Cg(X), then we write f e Céf(X, R2"). Tt is easy to see that

i e CP(X, R?M).

Let & e R with & <1. We call a submanifold f :X — R?"
strongly asymptotically conical with cone C and rate a, if }7—i e CF

(X, R?"). This is equivalent to the following condition:

sup|VL(7k -z = O(e(afj)t) forall j >0, 1<i<2n.
iz # ¢

Further assume that the submanifold 7 : X —» C" is special Lagrangian

and strongly asymptotically conical with cone C < C" and the rate
a+1<1, then C 1s also special Lagrangian submanifold by

[13, Corollary 6.32].
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2.3. The special Lagrangian suborbifolds

An n-dimensional orbifold is a paracompact Hausdorff space Y with

an open covering U = {U;} satisfying the following conditions:
(l) VUL', U] e U, E|Uk € U such that Uk c Ui ﬂU] if Ui ﬂU] = 0.

(1) VU; € U, there are a pair (V;, ;) consisting of a finite group T;
and a T -invariant open neighbourhood V; of 0 € R", and a T -invariant

surjective continuous map ¢ : V; — U,; that induces a homeomorphism
Vi /T; = U

(iii) If U; c Uj, then there exists an injection y;; : I; — I';, and an
embedding ¢;; : V; = V;, which is equivariant with respect to v;; (i.e.,
bij (v - ¥) = ¥ (v) - ¢;(y) Vy € V}, y € T') such that ¢; = §; © ¢;;.

In an obvious way, one may define Riemannian orbifolds and complex

orbifolds. In particular, a Kihler orbifold is a triple (Y, JJ, g) consisting
of a complex orbifold (Y, J) and a Kihler metric g on it. (This means

that g is J-invariant, i.e., g(J&;, JEg) = g(&1, &) V&1, Eo € TM, and

that 04(&;, &) = %g(e]&l, €9 ) defines a closed non-degenerate 2-form,

called the associated Kahler form on Y.) See [5, Subsection 6.5.1] for details.
An orbifold Calabi-Yau structure on a Kéhler orbifold (Y, J, g) is a
triple (J, g, Q), where Q is a holomorphic volume form that satisfies

VQ = 0 for the Levi-Civita connection V g and

(—1) 2 m(l)g.

T 00 L

For k e N U {»}, a C* map F from orbifolds Y to Z is said to be a C*
immersion (resp., embedding) if for each y € Y, there is a chart (V,, I',)

of Y, a chart (Vp(y), [F(y)) of Z, such that its local representation
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F,:V, > Vl’m(y) 1s an immersion (resp., embedding and the associated
group homomorphism v, : I, — F}p(y) is an isomorphism). In this case,
F(Y) is called a C* suborbifold (vesp., embedded suborbifold). If each
F, is also special Lagrangian (equivalently, F *o =0 and F*(Im Q) = 0),
we get the notions of c* special Lagrangian suborbifolds and ck special

Lagrangian embedded suborbifolds.

3. The Proof of Theorem 1.1

Let }7 : X - C" be as in Theorem 1.1. By the assumptions, the finite
group I' preserves the Calabi-Yau structure (j , ©, §~2), and T }7 = }7

Then T acts on (f(X), Elf(X)) isometrically. Since f is an isometric

embedding, I' (resp., the metric € on C") induces a I -action on X
(resp., the original metric g on X). Later, we shall understand the action

of ' on X without special statements. Hence, there exists a I' -action on

harmonic 1-form space ‘H' given by v-0= yfl’ *0 forall yeT, 0e H,

which naturally gives rise to an action on C**5(X, C")x H':
y-(f,0)= (v, v""0)
Let N — X be the normal bundle of Xin C" = R?". That is, for any
p € X, the fiber N, is the normal space of Tf(p)F(X) in R?". In
particular, we may take N, = (le(p)}?(X ))'. Since T preserves metric,
v+&p € Nyp for all p € X and y € I. By the Hopf-Rinow theorem [4],

the subset F(X) c R?" is complete as a metric space and is closed in

R2, Hence, there exists a I' -invariant open neighbourhood U c N of

the zero section such that
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exp|g : U - R?",

is diffeomorphism onto an open subset of Rzn, which 1is also

I'-equivariant, i.e.,
v expr Ep = expF o Vabp, V(P &) e U

It follows that any normal vector field & € C*(N) with values in U

defines an embedded submanifold }7& : X > R*" given by

b= fﬁ(p) = eXp’f(p) gpa (32)
which is not necessarily I -invariant.

Since }?*co =0, the complex structure J defines a vector bundle

isomorphism
J: N - T(f(X)) > TX.
Moreover, the metric g on X gives rise to an isomorphism

by : TX — T"X.

Hence, we can identify normal bundle N with 7*X via the composition

by od.

8
Following [13, page 103], there exists a subset D(A?g) c RY such

that the bounded linear map A(;,  cF2a(x) Ck(X) is Fredholm

o+2
when a+2e RL\D(A(‘)g ). Here ’D(A?g) =D(Py) (P, = eztA%) is
computed as in [13, Subsection 5.1.1; see also Subsection 6.1.2].

Furthermore, according to [13, page 121], we assume that o + 2 >

2-n-h with a+2 ¢ RL\D(A% ), where the definition of A is given in
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[13, page 74], and choose B; +1, By +1 € RE with B+l <a+1<Pg+1
<1 and a-B; <n such that B; +2, a+2, By +2 all belong to the

same connected component of R \D(A?g, ). For any ¢ > 0, write

a+1 a+1

ykila _ (€ e Ck+l’a(T*X) : "allcf(T*X) <&l

and define F, ., : V% 5 CO(A'T*X) by

a+l
Fa+1(bgj§) - *g]?g* ImQ + }7{5

which actually takes values in CF%(X)® CP(A2T*X) by [13,
Proposition 6.37]. Taking B = a in Propositions 6.38, 6.39, and 6.41 in
[13], we get

Proposition 3.1 ([Proposition 6.39]). Let k > 2 and a +1 € RE with
a+1<1. Then the map F,, : V¥1e 5 chyx)ye Ch Y(A2T*X) is

a+1

smooth and has derivative

F. 1 (0): Cfha(r x) 5 che(x) @ CF ¢(A2T*X),

a+l

at 0 which acts as d* + d.

Proposition 3.2 ([Proposition 6.41]). Let a+1>2-n—-A with
o+2e RL\D(A% ), then the image of map

F . : Vb o ckaxye ek ¢(aA217X),

o+l a+l

is contained inside d*(C*-%(T*X))® d(C*14(T*X)).

o+l o+l

Denote by C}?’Jrl’a(A*T*X)r the subspace of all T -invariant elements

o+l

in CHLO(A*T*X), and by CE%(X). the space of all T -invariant

o+l

functions in C*%(X). Define
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Vk+1,a — Vk+1,a N Ck+1’a(A*T*X)F,

a+l,T o+l o+l

k+1, *
Kyiar =Keq NCETHUT* X))y,

o+l

where the set K ,; is given in Theorem 1.1. Then F,,; maps Vf:lllg

into d*(C* LT X))@ d(CF9(T*X)L). Let

o+l a+l

By = {¢ +9 e CHLYX) @ CE LY (AT X)L 1 ¢ e Im(d), p e Im(d*)},

and consider a map §q1 : Kqiq 1 X V(f:lll? — By defined by

Fari(E1, &2) = *g e Im(B) + 1B,
where & = &; + &y. It is well-defined. In fact, as in the proof of [13,
Proposition 6.41], there exist 6; € C*(T*C") and 0,,_; € C* (A" 1T*C")
such that Im Q = d0,,_; and & = d6;. Thenfor & € K, 1, &3 € V(frlll‘}

and & = &; + &9, we have
A1) (0,1 10, 0)) = 72" Im(@),
d(f0, - 701) = '3, ie, fB-7'0=f0

k+1,a

a1 (T"X)r may be viewed as a T -invariant map

Moreover, & e C
X > C", e, &€ Cfﬂ’a(X, C"). Hence }é ~f=f+E-f=¢ is
I-invariant, and thus }7&*(7) = }7&*(7) — £*® is T -invariant. Note that strongly
asymptotically is also asymptotically. We get f, ]7@ c Cf+1’a(X, c™),
and hence }?g*(T) = 756 - 7*(7) € C’g’ a(A2T*X)F by [13, Proposition 6.31].
Similarly, we have *, }7&* Im(Q) e CP (X)p. Thus, the image of §,q is

contained in Bsy.
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By Proposition 3.1, §,,.; is smooth and has partial derivative at

(0, 0),

Dy Fq1(0, 0): CHEHAT X)) — By,

o+l

which acts as d + d* by Proposition 3.2. It follows from [13, Corollary

2.14] that d +d” is elliptic operator. Then by conical damped version of
[13, Corollary 6.8], there exists a constant C; > 0 such that

(11

chtagpy. S CilDey S0, 008s gk e vrex ).

Thus De,§(0, 0) is an invertible operator from CkJrl’a(T*X)r to Boy,

o+l

and the invertible Dy, F(0, 0)"! is a bounded operator. Since f : X — C"

is a special Lagrangian submanifold, §(0, 0) = 0. By Theorem 2.1, we

have |&; ||010(T*X) < CQ"&]_ngii,a(T*X) for some constant Cy. Then the

implicit function theorem ([16, Theorem 3.1]) implies that for e <1 and

any |[&; ”Cﬁ}*“(T*X) < ¢/2Cy, there exists open neighbourhoods of the

<. o+l a+1 k+1,a .
origin 0, Wi""* < Ky, r and Wy < V /;"r, and unique smooth map

1 W > W such that §o.q (&, 2(&1)) = 0 for all & e W** and

"X(gl )"C{)(T*X) < 8/202. Then
eleorx) < ex + xEleormx) < Pealeoqrxy + & loocrx) < e

By [13, Theorem 6.43], we have & e V%1 < Cqy1(T°X)r. Moreover,

a+l

every &; € wort gives a special Lagrangian submanifold }éﬁ w(&)

X — C", which is strongly asymptotically conical with cone C and rate

o+ 1.
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Let .X//lkﬂ’a be as in (1.1). Define

—~Fk+l,a

D ::{(/CN’ & )eM XBo,r e "cﬁ}va(T*X) <e/2Cy §.
Let n be the projection from D to
P=1{g € Kyar & ||c§ﬁ’a(T*X) <e/2Cy},
and let év:D — /\A//lkﬂ’a be given by
5‘7(7, &)= 7;“31-%—)((&1) = epr(EA + (&)
Since the orbifold structure is I' -invariant, and
epr(Y_l’ e )= expfl; &1

with y 5% == (y71)*, we obtain

Faan (v 17E, vHEy)

_ 71,* - * % ~ - * sk~
=7y {(expyfl.f €)'y ImQ+ (eXpyfl.f &)y o}
=7 " F (G, E2),

forall y € T Soif §o.1(&1, 2(&1)) = 0, then Fouq (v "8, v (&) = 0.

From the unique property of solution of F,.,1(&;, x(&1)) = 0, it follows

that &, = y(&;) is T -invariant, i.e., y " *x(&1) = x(y " *¢;), Vy e I. This

leads to

[ore, = evpr (1778 +2(r778) = evp, 7 (17078 = v+ (evpge) = v fo
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That is, if }7& : X > C" is special Lagrangian so is fv_l’*é X > C".

Furthermore, we have the I' -invariant of év:
ev(v-(f,&))=( m}'—l’*iﬁx(“{_l’*ﬁ)
_ —1,* —-1,%
= evpr(v 76 +x(v 7))

=v-fe=v-&(f, &), vy eT.
Since &I(F, 0) = f : X — C" is a special Lagrangian submanifold, every
€l € P induces a special Lagrangian submanifold e~v(}7, &)= 7@1+X(§1) :
X — C". Let
D=9/I, P=P/I, b =0eP,

and let ev be the map from ® to MEL2 induced by év, and an orbifold
map G : © — P induced by . Then ev(G1(0))=f:X > C"/T isa

special Lagrangian suborbifold, and for any & € 3,

(@0 =| [ Fow| /Tix>cm/m,
£1€Q7(b)

is a special Lagrangian suborbifold of the Calabi-Yau orbifold
(C"/T, J, e, Q), where @ : p — P is the quotient map. O
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