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Abstract

In this paper, the boundedness for some Toeplitz type operator related to some

singular integral operator with variable Calderén-Zygmund kernels on L”
spaces with variable exponent is obtained by using a sharp estimate of the

operator.
1. Introduction

As the development of the singular integral operators (see [6, 19]),
their commutators have been well studied (see [2, 17, 18]). In [1], some
singular integral operators with variable Calderén-Zygmund kernels are

introduced, and the boundedness for the operators and their
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commutators are obtained (see [11, 12, 13, 15, 20]). In [8, 10, 14], some
Toeplitz type operators related to the singular integral operators and

strongly singular integral operators are introduced, and the boundedness

for the operators are obtained. In the last years, a theory of L? spaces
with variable exponent has been developed because of its connections
with some questions in fluid dynamics, calculus of variations, differential
equations, and elasticity (see [3, 4, 5, 16] and their references). Karlovich

and Lerner study the boundedness of the commutators of singular

integral operators on LP spaces with variable exponent (see [7]).
Motivated by these papers, the main purpose of this paper is to introduce
some Toeplitz type operator related to some singular integral operator

with variable Calderén-Zygmund kernels and prove the boundedness for

the operator on LP spaces with variable exponent by using a sharp

estimate of the operator.
2. Preliminaries and Results

First, let us introduce some notations. Throughout this paper, @ will

denote a cube of R" with sides parallel to the axes. For any locally

integrable function f and & > 0, the sharp function of fis defined by

f#(x) = sup(IQI j () - fol dyjl/s,

where, and in what follows, fg = |Q|71 f Qf(x)dx. It is well-known that

(see [6, 19])

1/8

) ~ suping & [ 170y |

S |Q| Ql |

We write f7 = f6# if 5 =1. We say that f belongs to BMO(R™) if f*

belongs to L”(R") and define ||f||z3,0 = Vi |;. Let M be the Hardy-

Littlewood maximal operator defined by



BOUNDEDNESS OF TOEPLITZ TYPE OPERATOR ... 97
() () = suplQl” [ £l
Q>x Q
For k € N, we denote by M" the operator M iterated k times, 1.e.,
M(f)(x) = M(f)(x) and
M*(f)(x) = M(M*7'()) (x) when k > 2.

Let ® be a Young function and ® be the complementary associated

to @, we denote that the ®-average by, for a function f,

Ifle,q = inf {k >0: ﬁj@@[@)dy < 1},

and the maximal function associated to ® by

Mo (f)(x) = sup I, -

The Young functions to be using in this paper are ®(t) = ¢(1 + logt)" and
®(t) = exp(t'/”), the corresponding average and maximal functions
denoted by |- "L(logL)’,Q’ ML(logL)'"’ and |- ||exp g MeXle/,.

Following [17, 18], we know the generalized Holder’s inequality:
1
161 Ay = Wl glel, o

and the following inequality, for r, 7; > 1, j =1,--,1 with 1/r=1/n

+-++1/7, and any x € R", b € BMO(R"),
I+1
"f”L(logL)l/r’Q < ML(logL)l/r (f) < CML(logL)l (f) <CM " (f)’

”f N fQ "exer,Q < C"f"BMO’

|f2k+1Q - f2q! = CH|fl gpr0-
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The non-increasing rearrangement of a measurable function fon R"

is defined by
FA@)=inf {A >0 :|{x € R" : |f(x) > 2}| < ¢} (0 < ¢ < ).

For X €(0,1) and a measurable function f on R", the local sharp

maximal function of fis defined by

MF(f)(x) = sup Inf((f - c)uq ) ().

Let p: R" — [1, ©) be a measurable function. Denote by Lp(‘)(Rn) the

sets of all Lebesgue measurable functions f on R" such that

m(Mf, p) < © for some A = A(f) > 0, where
mif, o) = [ PGP ds.
R

The sets become a Banach spaces with respect to the following norm:

Il p0) = inf{L > 0 : m(f / %, p) < 1}.

Denote by M(R™) the sets of all measurable functions p : R" — [1, »)
such that the Hardy-Littlewood maximal operator M is bounded on
LPY(R™) and the following holds:

1< p_ =ess inf p(x), ess sup p(x) = p, < . (1)

xeR" xeR"

In recent years, the boundedness of classical operators on spaces
Lp(')(R") have attracted a great attention (see [3, 4, 5, 16] and their

references).

In this paper, we will study some singular integral operator as

following (see [1]):
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Definition 1. Let K(x) = Q(x)/|x[" : R" \ {0} > R. K is said to be

a Calderén-Zygmund kernels, if

(@) Q e C*(R" \ {0});

(b) Q is homogeneous of degree zero;

(0 IZQ(x)x“dG(x) =0 for all multi-indices o e (NU{0})* with
lof = N, where ¥ = {x € R" : |x| = 1} is the unit sphere of R".

Definition 2. Let K(x, y) = Q(x, y)/[y" : R* x(R" \ {0}) > R.

K is said to be a variable Calderén-Zygmund kernels, if

(d) K(x, ) is a Calderén-Zygmund kernels for a.e. x € R";

=L < .
LDO(RHXZ)

(e) maxi<gp

0
MQ(x, y)
o'y

Moreover, let b be a locally integrable function on R"™ and T be the

singular integral operator with variable Calderén-Zygmund kernels as
() @) = [ K x =) ()dy.

Qx, x -

where K(x, x —y) = | |ny) and that Q(x, y)/|y[" is a variable
x-y

Calder6n-Zygmund kernels.

Let b be a locally integrable function on R" and T be the singular
integral operator with variable Calderén-Zygmund kernels. The Toeplitz

type operator associated to 7" are defined by

m
Tb — ZTk,leTk,2,
k=1
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where 751 are the singular integral operator T with variable Calderén-
Zygmund kernels or =I (the identity operator), T%2 are the linear
operators for £ =1, ..., m and My(f) = bf.

Note that the commutator [b, T'|(f) = bT(f) - T(bf) is a particular
operator of the Toeplitz type operator 7Tj. The Toeplitz type operators are

the non-trivial generalizations of the commutator. It is well known that
commutators are of great interest in harmonic analysis and have been
widely studied by many authors (see [18]). In [1, 15], the boundedness of
the singular integral operator with variable Calderén-Zygmund kernels
and their commutator are obtained. Our works are motivated by these
papers. The main purpose of this paper has twofold, first, we establish a

sharp estimate for the operator 7j,, and second, we prove the

boundedness for the operator on L” spaces with variable exponent by

using the sharp estimate.
We shall prove the following theorems:

Theorem 1. Let T be the singular integral operators with variable

Calderén-Zygmund kernel as Definition 2,0 < 6 <1 and b € BMO(R™).
If Ty(g) = 0 forany g € L*(R")(1 < u < »), then there exists a constant

C > 0 such that forany f € Lj(R") and ¥ € R",

(T, () ®) < Clollpao Y, M (TH2(F)) (&),
k=1

Theorem 2. Let T be the singular integral operators with variable

Calderén-Zygmund kernels as Definition 2, p()e M(R") and
b e BMO(R"). If Ty(g) =0 for any g € I*(R")(1 < u < ©) and T*?
are the bounded operators on Lp(')(Rn) for k=1,..., m, then T, is

bounded on LPV)(R™), that is,

IZo( o0 < Clel gagoll /1 z20-
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Corollary. Let [b, T](f) = bT(f)-T(f) be the commutator

generated by the singular integral operator T with variable Calderén-
Zygmund kernels and b. Then Theorems 1 and 2 hold for [b, T.

3. Proof of Theorems

To prove the theorems, we need the following lemmas:

Lemma 1 ([6, p.485]). Let 0 < p < q < . We define that, for any
function f >0and 1/r=1/p-1/gq,

Wlyzs = suplis € B 2 76) > 7%, N, 1) = supllfslr /el
>
where the sup is taken for all measurable sets E with 0 < |E| < «. Then

lwzs < Np.g(F) < (@/ (@~ o) Pl
Lemma 2 ([18]). Let r;j 21 for j=1,-,1l, we denote that
1/r=1/n +--+1/1. Then

1
@1 | i) BN < WMoy 12, - Wlewp 171 g 7.0

Lemma 3 ([1]). Let T be the singular integral operators with variable

Calderon-Zygmund kernels as Definition 2. Then T is bounded from
I}(R™) to WLH(R™).

Lemma 4 ([16]). Let p: R" — [1, ©) be a measurable function

satisfying (1). Then Ly (R™) is dense in Lp(')(Rn ).

Lemma 5 ([7,9]). Let 5 > 0,0 <A <1, and f € L% (R"). Then

loc

MF(F)(x) < (1) MR £F ().
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Lemma 6 ([16]). Let f € I},.(R") and g be a measurable function
satisfying

[{x € R" : |g(x) > a}| < © for all o > 0.

Then
[ Jr@stlax < ¢, ME (1)M(e) ).
R R n
Lemma 7 ([9]). Let p: R" - [1, ©) be a measurable function

satisfying (1). If f € Lp(')(R”) and g € Lp'(')(R”) with p'(x) = p(x)/

(p(x) = 1). Then fg is integrable on R" and

-[R” |f(x)g(x)|dx < C||f||Lp(-)||g||Lp’(-)-

Lemma 8 ([9]). Let p: R" - [1, ©) be a measurable function

satisfying (1). Set

||f||,Lp(-) = sup {J.R" If(x)g(x)|dx : f e LPO(R"), g e LPO(R" )}

Then ||f|p0) < [If] 220 < C|f]zp0)-

Proof of Theorem 1. It suffices to prove for f € Lj(R") and some

constant Cy, the following inequality holds:
1 8 1/8 " 12 ik 2
(] Tt )= Colias | < Cplyo Y- 23T 2(1) B,
@l Je =
Without loss of generality, we may assume %1 are Tk=1,..,m). Fix
acube @ = Q(xg, d) and X € Q. We write, by T3(g) = 0,
Ty(f) () = Ty, (F) (x)
= T(b-byg 1raq () ) + T(b-byg o) () (%)

= fi(x) + fa(x).
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Then

IR )F%zx]l/6

1/ 1/5
< C[ﬁ JQ|f1(x)|5dx] + C[lél .[QlfQ(x)_ £ (x0 )|8dx] eI

For I, by Lemmas 1, 2, and 3, we obtain

1 k1 k.2 5 1/8
(@leT M(p-byg oo T~ (1) ()] dx]

k, k,2 .
-1 "T lM(b—bQQ )XZQ T (f)XQ "Lb
|Q|1 /-1

<@

< ClQl_lllTkﬁlM(bfng )XzQTk’2(f)"WL1
< ClQl_lllM(b—ng )XQQ'—”}‘Z’2(1”)||L1
< Q7 [ 1)~ bog I T%(1) ()]s

k2
< b = bogllexp £, 2017 “ (Nl L10g 1), 29

< ClB]l a0 MP(TH2(F)) (%),

thus,

1 e ]

< Clbllgpo Y MA(TH2()) (3).

k=1
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For II, by [1], we know that

© 8y
x
7)) = 3> agl )j Yuo ,Hi) F(3)dy,
u=lv=1
where g, < Cu""2, layy > < Cu” 2|V - )] < Cu™?*7, and

Yl = 9) Yol - yﬂ<cwvax xol /o - 3",
| lx — 5" leg = "

for [x — y| > 2|xy — x| > 0. Then, we get, for x € @,
|Tk’1M(b—b2Q M(2Q)C (f) (x) - Tk’lM(b—sz )x(2Q)ch’2(f) (xo )l

< I(zQ)Clb(y) - ngHK(x, x —y) - K(xq, x¢ — y)||Tk’2(f) (7)ldy

= 2 sy a2 Bl K = ) = Ko, xo = 1T 2(0) )y
j =[Y=X0

0 w gu
<C b(v) — b
;j2jdﬁy—x0<2j+1d| (y) 2Q|;;|auv(x)|

| U(x y) uv(xO y)||Tk2(f)(y)|dy
Tt oo |

o0

<C J' () - byg| =Tl k2 d
]Zl sty sajerrmial?) ™ B0l S T Oy

o0

O gy Japn g0~ el TN e

N k,2
<32 gy Jaim gt el
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_j . k, .
< sz ]"b - bQQ "expL,Qﬁ'lQ"T 2(f)"L(logL),21+1Q
i1

<Y j277 bl gpso MP(TH2(F)) (&)

0
Jj=1

< Clbl a0 M2(T™2()) (&),

thus,

c m
II < @ jerpk’lM(b—ng )X(QQ)CTkJ(f) (x) - Tk’lM(b—sz )X(2Q)0Tk,2(f) (-xO )l dx
k=1

< Clbll gy Y M*(TH2(F)) (&).

k=1
This completes the proof of Theorem 1.

Proof of Theorem 2. By Lemmas 4-7, we get, for f € Lj(R") and
g e PO(R"),

IA

[ B elds < f | ME (1,0 (x)M(e) ()as

IA

cf (T M) )
< Clblayo . |, M*(TH2(1) ()M (g) (x)d
k=1

m
< Clpllgago Y IM>(TF2 ()] o0 1M ()] 10
k=1

m

k,2 .

< Clpllgaio D IT™ 2P0 1M ()] 0
k=1

< Clol garolfl 0 gl 7 e)
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thus, by Lemma 8,

1o (N p0) < el aroll/1220-

This completes the proof of Theorem 2.
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