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Abstract 

In this paper, we study the following fourth-order elliptic equations: 
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Using the variant fountain theorem, under certain assumptions on V and f,         
we obtain infinitely many large solutions. 

1. Introduction and Preliminaries 

Consider the following nonlinear fourth-order elliptic equations: 
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where ( ) ( ).,,,,1 RRRCfRRCVN NN ×∈∈≥  

In recent years, the existence or multiplicity of solutions for       
fourth-order elliptic equations have been widely studied, see, for 
example, [1 - 13]. Specially, for the case of a bounded domain, there are a 
number of papers concerned with the equations like or similar to (1.1). 
For example, An and Liu [2] use the mountain pass theorem to get the 
existence results; Wang [9] use linking approaches to obtain at least 
three nontrivial solutions; Yang and Zhang [10] consider the existence of 
positive, negative, and sign-changing solutions; etc. 

There are several authors, who considered the equations like or 

similar to (1.1) on the whole space .NR  For example, Chabrowski and 
Marcos do Ó [11] studied the existence of two solutions; Liu et al. [12] use 
mountain pass theorem to get existence and multiplicity of solutions 
under the lack of compactness of embedding of the space; Yin and Wu 
[13] use mountain pass theorem to get the high energy solutions and 
nontrivial solutions for Equation (1.1) under the following variant “A-R” 
type condition: There exist 2>µ  and 0>r  such that 

( ) ( ) ( ),,,:,
0

uxufdttxfuxF
u

≤µ=µ ∫  ( )∗  

for all NRx ∈  and .ru ≥  The condition ( )∗  guaranteed the boundedness 

of (P.S.) sequences of the corresponding functional. 
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In the present paper, we will cancel the assumption ( )∗  and use 

variant fountain theorem to research existence of infinitely many large 
solutions for Equation (1.1) under the following hypotheses on potential 
V and nonlinear term f: 

( ) ( ) 0infV1 >≥
∈

axV
NRx

 and for any ,0>M  { ( ) ≤∈ xVRxmeas N :  

} ,∞<M  where a is a constant and meas denote Lebesgue measure in 

.NR  

( ) ( ) ( )1
1 1,f −+≤ puCuxf  for all ( ) ,, RRux N ×∈  here ( ),2,2 ∗∈p  

4
22
−

=∗ N
N  if ∞=> ∗2;4N  if .4≤N  

( ) ( ) ( )uouxf =,f2  as 0→u  uniformly for .NRx ∈  

( )3f  There exists 2>α  such that ( ) 0,inflim >
α∞→ u

uuxf
u

 uniformly for 

.NRx ∈  

( )4f  For a.e. ( ) ( )sxFssxfRx N ,,2
1, −∈  is increasing in .0>s  For 

a.e. ( ) 0,, ≥∈ uxfRx N  for all .0≥u  

( ) ( ) ( ) ( ) .,,,,f5 RRuxuxfuxf N ×∈∀−=−  

Remark 1.1. There are potentials V do satisfy ( ),V1  for example, 

( ) .12 += xxV  There are functions f satisfying the assumptions ( ) -f1  ( )5f  

but not satisfying ( ),∗  for example, ( ) ( ) ( ).12ln, 3 +== uuufuxf  

Evidently, ( ) ( )12ln3 += uuuf  satisfying the assumptions ( ) ( )31 ff −  and 

( ).f5  Since for all ( ) ( )12ln, 2 +=∈ uuu
ufRx N  is an increasing in ,0>u  



JIU LIU and SHAO XIONG CHEN 52

then for ( ) ( ) ( )tuxFuuxftthu ,,2
1:,0 2 −=>  is increasing in ( ].1,0∈t  

This implies the assumption ( )4f  be satisfied. 

Before stating our main results, we give several notations. Define the 
function space 

( ) { ( ) ( )},,:: 222 NNN RLuuRLuRHH ∈∆∇∈==  

with the inner product and norm 

( ) .,,, 2
HHRH uuudxuvvuvuvu N =+∇⋅∇+∆∆= ∫  

Set 

{ ( ( ) ) },:: 222 ∞<+∇+∆∈= ∫ dxuxVuuHuE NR
 

then E is a Hilbert space with the following inner product and the norm: 

( )( ) .,,, 2
EERE uuudxuvxVvuvuvu N =+∇⋅∇+∆∆= ∫  

Throughout the paper, ic  will denote various positive constants 

independent of the functions. The main result of the present paper is the 
following theorem: 

Theorem 1.1. If ( )1V  and ( ) ( )51 f-f  hold, then the Equation (1.1) has 

infinitely many large nontrivial solutions. 

Remark 1.2. Obviously, it follows from ( )1V  that the embedding 

( )Ns RLE   is continuous, for any [ ].2,2 ∗∈s  Under the assumption 

( ),V1  motivated by Lemma 3.4 in [14], we can prove that the embedding 

( )Ns RLE   is compact, for any [ ).2,2 ∗∈s  

It is well known that a weak of equation (1.1) is a critical point of the 
following functional: 
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( ) ( ( ) ) ( ) .,2
1 222 dxuxFdxuxVuuuI NN RR ∫∫ −+∇+∆=  

Under the above assumptions, it is easy to know that ( )RECI ,1∈  and 

( ) ( )( ) ( ) ,,,,, EvuvdxuxfdxuvxVvuvuvuI NN RR
∈∀−+∇⋅∇+∆∆=′ ∫∫  

where ⋅⋅,  denote the duality pairing between E and .∗E  Since we do 

not assume ( ),∗  the verification of (P.S.) condition becomes complicated, 

so we use the following variant fountain theorem introduced in [15] 
without (P.S.) condition to handle this problem. 

Lemma 1.1 (Variant fountain theorem). Let E be a Banach space 

with the norm E⋅  and jNj XE ∈⊕=  with ∞<jXdim  for any .Nj ∈  

Set jkjkj
k
jk XZXY ∞

== ⊕=⊕= ,0  and 

{ } { } .0:,: >>ρ=∈=ρ≤∈= kkkEkkkEkk rforruZuNuYuB  

Consider the following 1C -functional REI →λ :  defined by: 

( ) ( ) ( ) [ ].2,1,: ∈λλ−=λ uBuAuI  

We assume that 

( )1F  λI  maps bounded sets to bounded sets uniformly for [ ].2,1∈λ  

Furthermore, ( ) ( )uIuI λλ =−  for all ( ) [ ] .2,1, Eu ×∈λ  

( )2F  ( ) 0≥uB  for all ( ) ∞→∈ uAEu ;  or ( ) ∞→uB  as .∞→Eu  

Let, for ,2≥k  

( ) ( )( ),maxinf: uIc
kk Buk γ=λ λ∈Γ∈γ

 

( ) ( ),inf:
,

uIb
kEk ruZuk λ=∈

=λ  

( ) ( ),max:
,

uIa
kEk uYuk λρ=∈

=λ  
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where { ( ) γ∈γ=Γ EBC kk ,:  is odd, }.id
kB =γ ∂  If ( ) ( )λ>λ kk ab  for all 

[ ],2,1∈λ  then ( ) ( )λ≥λ kk bc  for all [ ].2,1∈λ  Moreover, for a.e. 

[ ],2,1∈λ  there exists a sequence { ( )}∞=λ 1n
k
nu  such that 

( ) ( ( )) ( ( )) ( ) .asand0,sup ∞→λ→λ→λ′∞<λ λλ ncuIuIu k
k
n

k
nE

k
n

n
 

2. Proof of Theorem 1.1 

Since ( )NRLE 2  and ( )NRL2  is a separable Hilbert space, E has a 

countable orthogonal basis { }.je  Set ,: jj eRX =  then define =kY  

.,0 jkjkj
k
j XZX ∞

== ⊕=⊕  Consider the family of functionals REI →λ :  

defined by 

( ) ( ) ( ) ( ),:,2
1: 2 uBuAdxuxFuuI NRE λ−=λ−= ∫λ  

for [ ].2,1∈λ  Then ( ) 0≥uB  for all ( ) ∞→∈ uAEu ,  as ,∞→Eu  and 

( ) ( )uIuI λλ =−  for all ( ) [ ] .2,1, Eu ×∈λ  And it is easy to see that λI  

maps bounded sets to bounded sets uniformly for [ ].2,1∈λ  

To complete the proof of our theorem, we need the following lemmas: 

Lemma 2.1. For any ,22 ∗<< p  we have that 

.0sup:
1,

∞→→=β
=∈

kasu puZu
k

Ek
 

Proof. Obviously, the sequence { }kβ  is nonnegative and nonincrea-

sing. Suppose that 0>β→βk  as .∞→k  Then for any k sufficiently 

large, there exists a kk Zu ∈  with 1=Eku  and .2
β≥pku  For any 

,Eu ∈  since { }je  is an orthogonal basis of E, there exists a sequence 
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{ } Rj ⊂α  satisfying ,1 jjj eu α= ∑∞
=

 thus by the Schwartz inequality 

and the Parseval equality, we have 

Ekjj
kj

Ekjj
j

Ek ueueuu ,,,
1

α=α= ∑∑
∞

=

∞

=

 

.as02 ∞→→α=α≤ ∑∑
∞

=

∞

=

kue j
kj

EkEjj
kj

 

Therefore, we obtain that 0ku  in E and thus, up to a subsequence, 

0→ku  in ( )Np RL  because the embedding ( )Np RLE   is compact. 

This contradiction completes the proof. 

Lemma 2.2. If ( )1V  and ( ) ( )31 f-f  hold, then there exist 1→λn  as 

0, >>∞→ kk bcn  and { } Eun ⊂  such that ( ) ( ) ∈=′ λλ nn uIuI nn ,0  

[ ]., kk cb  

Proof. (i) By ( ) ( ),f-f 31  we know that there are positive constants 

0,0 21 >> cc  such that 

( ) ( ) .,,, 2
21 RRuxucucuxF N ×∈∀−≥ α  

Hence, for all ,kYu ∈  

( ) ( )dxuxFuuI NRE ,2
1 2 ∫λ−=λ  

2
221

2
2
1 ucucu E λ+λ−≤ α

α  

,2
1 2

43
2

EEE ucucu +−≤ α  

where in the last inequality, we use the equivalence of all norms on the 
finite dimensional subspace .kY  Then, we can choose 0>ρ= kEu  

large enough such that 
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( ) ( ) .0max
,

≤=λ λρ=∈
uIa

kEk uYuk  

(ii) By ( )1f  and ( ),f2  for any ,0>ε  there exists 0>εC  such that for 

any ,, RuRx N ∈∈  

( ) ., 2 puCuuxF ε+ε≤  

Hence, for any kZu ∈  and 0>ε  small enough 

( ) p
pE uCuuuI ελ λ−λε−≥ 2

2
2

2
1  

( ) ,2
1 2 p

E
p
kE uCua βλ−λε−≥ ε  

where a is a lower bound of ( )xV  from ( )1V  and kβ  is defined in Lemma 

2.1. Choosing ( ) ,2
1

pp
kk pCr −βλ= ε  then 

( ) ( )uIb
kEk ruZuk λ=∈

=λ
,
inf  

[( ) ]p
E

p
kEruZu

uCuakEk
βλ−λε−≥ ε=∈

2
, 2

1inf  

( ) 21
2
1

krpa −λε−≥  

.: kb=  

Since 0→βk  as ∞→k  and ,2>p  for small enough ,ε  we have  

( ) ∞→≥λ kk bb  as ∞→k  uniformly for .λ  Therefore, by Lemma 1.1, 

for a.e. [ ],2,1∈λ  there exists a sequence { ( )}∞=λ 1n
k
nu  such that 

( ) ( ( )) 0,sup →λ′∞<λ λ
k
nE

k
n

u
uIu  and ( ( )) ( ) ( ) ≥λ≥λ→λλ kk

k
n bcuI  

kb  as ,∞→n  where ( )λkc  is defined in Lemma 1.1. Furthermore, since 
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( ) ( ) k
Bu

k cuIc
k

=≤λ
∈

:sup  and E is imbedded compactly to ( )Ns RL  for any 

[ ),2,2 ∗∈s  by standard argument, { ( )}∞=λ 1n
k
nu  has a convergent 

subsequence. Hence, there exists ( )λku  such that ( ( )) 0=λ′λ
kuI  and 

( ( )) [ ],, kk
k cbuI ∈λλ  for a.e. [ ].2,1∈λ  So, when ,1→λn  with 

[ ],2,1∈λn  we find a sequence { ( )}n
ku λ  (denoted by nu  for simplicity) 

satisfying ( ) ( )nn uIuI nn λλ =′ ,0  [ ]., kk cb∈  This completes the proof. 

Lemma 2.3. Under the assumptions of Theorem 1.1, the sequence 
{ }nu  is bounded. 

Proof. We suppose that ∞→Enu  as .∞→n  Consider .:
En

n
n u

uw =   

Then, up to a subsequence, we obtain 

wwn   in E, 

wwn →  in ( )Ns RL  for any [ ),2,2 ∗∈s  

( ) ( )xwxwn →  a.e. .NRx ∈  

Case 1. Suppose 0≠w  in E. By ( ) ,0=′λ nuI n  we have 

( ) ( ) .,,0 2 dxuuxfuuuI nn
R

nEnnn Nn ∫λ−=′= λ  

Therefore, there exists a constant 05 >c  such that 

( ) .,
52 cdx

u
uuxf

En

nn
RN ≤∫  

On the other hand, by Fatou’s lemma, we have 

( ) ( ) dx
u

uuxfdx
u

uuxf

En

nn
nREn

nn
Rn NN 22

,inflim,inflim
∞→∞→ ∫∫ ≥  
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( ) dx
u

uuxfw
n

nn
nnRN 2

2 ,inflim
∞→∫=  

.∞=  

This is a contradiction. 

Case 2. Suppose 0=w  in E. Inspired by [16], we define 

( )
[ ]

( ).max
1,0 ntnn tuIutI nn λ∈λ =  

For any ,0>c  let .4: nn cww =  Since for all ( )uxFRuRx N ,,, ∈∈  

,2 puCu ε+ε≤  we get 

( ) .0, 2 →+ε≤ ∫∫∫ ε dxwCdxwdxwxF p
n

R
n

R
n

R NNN  

Then, for n large enough, we have 

( ) ( ) ( ) ,,2 cdxwxFcwIutI n
R

nnnn Nnn ≥λ−=≥ ∫λλ  

which implies that ( ) .lim ∞=λ∞→ nnn
utI n  Evidently, ( ),1,0∈nt  we know 

that ( ) .0, =′λ nnnn ututI n  Thus, by conditions ( )4f  and ( ),f5  we obtain 

( ) ( ) ( ) Ennnnnnnn ututIutIutI nnn ,2
1

λλλ ′−=  

[ ( ) ( )]dxutxFututxf nnnnnn
R

n N ,,2
1 −λ= ∫  

[ ( ) ( )]dxuxFuuxf nnn
R

n N ,,2
1 −λ≤ ∫  

( ) ( ) Ennn uuIuI nn ,2
1

λλ ′−=  

( ) [ ]., kkn cbuI n ∈= λ  

This contradiction completes the proof. 
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Proof of Theorem 1.1. Combining Lemmas 2.2 and 2.3, since  

( ) ∗<< 22, sRLE Ns  is compact, standard argument implies that, up 

to a subsequence, k
n uu →  in E as .∞→n  By { } Eun ⊂  is bounded, we 

have ( )dxuxF nRN ,∫  is bounded. Therefore, by ( ) [ ]kkn cbuI n ,∈λ  and 

( ) ( ) ( ) ( ) ,,1 dxuxFuIuI n
R

nnn Nn ∫−λ+= λ  

we obtain ( ) ( ) [ ].,lim kknn
k cbuIuI ∈=

∞→
 By ( ) 0=′λ nuI n  and 

( ) ( ) ( ) ( ) ,allfor,,1,, EvvdxuxfvuIvuI n
R

nnn Nn ∈−λ−′=′ ∫λ  

we know that ( ) 0nuI ′  in ∗E  as .∞→n  Since ( ),1 ECI ∈  we have 

( ) ( )k
n uIuI ′→′  in ∗E  as .∞→n  This means ( ) .0=′ kuI  By ( )nuI nλ  

[ ]kk cb ,∈  and ∞→kb  as ,∞→n  we know that { }∞=1k
ku  is an unbound 

sequence of critical points of functional I. This completes the proof. 
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