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Abstract

In this paper, we study the following fourth-order elliptic equations:
Ay — Au+ Vix = f(x, v), in RN

u e H(RN).
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Using the variant fountain theorem, under certain assumptions on V and f,
we obtain infinitely many large solutions.

1. Introduction and Preliminaries

Consider the following nonlinear fourth-order elliptic equations:

Au—Au+V(xu = f(x, u), in RY
1.1

ue HX(RVN),
where N > 1,V e C(RY, R), f €« C(RY xR, R).

In recent years, the existence or multiplicity of solutions for
fourth-order elliptic equations have been widely studied, see, for
example, [1 - 13]. Specially, for the case of a bounded domain, there are a
number of papers concerned with the equations like or similar to (1.1).
For example, An and Liu [2] use the mountain pass theorem to get the
existence results; Wang [9] use linking approaches to obtain at least
three nontrivial solutions; Yang and Zhang [10] consider the existence of

positive, negative, and sign-changing solutions; etc.

There are several authors, who considered the equations like or

similar to (1.1) on the whole space RY. For example, Chabrowski and
Marcos do O [11] studied the existence of two solutions; Liu et al. [12] use
mountain pass theorem to get existence and multiplicity of solutions
under the lack of compactness of embedding of the space; Yin and Wu
[13] use mountain pass theorem to get the high energy solutions and
nontrivial solutions for Equation (1.1) under the following variant “A-R”

type condition: There exist un > 2 and r > 0 such that
u
WE (e, w) = [ fle, 0t < uf(x, w), (*)
0

for all x € RY and || > r. The condition (*) guaranteed the boundedness

of (P.S.) sequences of the corresponding functional.
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In the present paper, we will cancel the assumption (*) and use

variant fountain theorem to research existence of infinitely many large
solutions for Equation (1.1) under the following hypotheses on potential

V and nonlinear term f:

(V1) ian V(x)>a >0 and for any M > 0, meas{x € RY : V(x) <
xeR

M} < ©, where a is a constant and meas denote Lebesgue measure in

RN,

(f1) |f(x, w)| < C(1 + |u|p_1) for all (x, u) € RY x R, here p € (2, 2,),

2N . .
= N =1 <
2 N_41fN>4,2* o if N < 4.
(f3) f(x, u) = o(ju|) as |u| - O uniformly for x e RN,
(f3) There exists o > 2 such that li‘lr‘l inf% > 0 uniformly for
U|l—>0 u
x e RV.

(f,) For a.e. x € R, %f(x, s)s — F(x, s) is increasing in s > 0. For
ae. x e RV, f(x, u) >0 forall u > 0.

(fs) fx, — u) = —f(x, w), V(x, u) € RY x R.

Remark 1.1. There are potentials V do satisfy (V;), for example,
V(x) = x2 +1. There are functions f satisfying the assumptions (f;)- (f5)
but not satisfying (x), for example, f(x, u)= f(u)=u’In(2y| +1).
Evidently, f(u) = u®In(2u| + 1) satisfying the assumptions (f;) - (f3) and

u®In(2)u| + 1) is an increasing in u > 0,

(f5). Since for all x € RY, @ =
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then for u >0, h(¢) == %tzf(x, u)u — F(x, tu) is increasing in t € (0, 1].
This implies the assumption (f;) be satisfied.

Before stating our main results, we give several notations. Define the

function space
H = H*RY) = {u e I*(RN):|Vu|, Au e I2(RY))},
with the inner product and norm

(u, V) = J.RN (AuAv + Vu - Vu + uv)dx, ||u||%{ = (u, u)y.

Set

E={ueH: j N(|Au|2 + |Vu|2 + V(x)u?)dx < o},
R

then E is a Hilbert space with the following inner product and the norm:

(u, V) = .[RN (AuAv + Vu - Vo + V(x)uv)dx, ||u||2E = (u, u)p.

Throughout the paper, c¢; will denote various positive constants

independent of the functions. The main result of the present paper is the

following theorem:

Theorem 1.1. If (V;) and (f;)- (f5) hold, then the Equation (1.1) has

infinitely many large nontrivial solutions.

Remark 1.2. Obviously, it follows from (V;) that the embedding
E <—>LS(RN ) is continuous, for any s € [2, 2,]. Under the assumption
(V1), motivated by Lemma 3.4 in [14], we can prove that the embedding
E < L5(RY) is compact, for any s < [2, 2,).

It is well known that a weak of equation (1.1) is a critical point of the

following functional:



EXISTENCE OF INFINITELY MANY LARGE ... 53

10 = 5 [ 8w + 9l + Vi) = [ P, w)ds.

Under the above assumptions, it is easy to know that I e C* (E, R) and

(I'(w), v) = I N(AuAv +Vu - Vv + V(x)uv)dx —j- Nf(x, w)vdx, Vu, v € E,
R R

where (-,-) denote the duality pairing between E and E”. Since we do
not assume (*), the verification of (P.S.) condition becomes complicated,

so we use the following variant fountain theorem introduced in [15]
without (P.S.) condition to handle this problem.

Lemma 1.1 (Variant fountain theorem). Let E be a Banach space

with the norm ||z and E = @ .y X; with dim X; < « forany j € N.
Set Yk = ®?:0Xj’ Zk = @C}'O:k X] and
BkZ{UEYkZ"LL"Eﬁpk},NkZ{UEZkZ"u"E:Y‘k}fO}“pk>I”k > 0.

Consider the following C! -functional I, : E — R defined by:
L, (u) = A(u) - AB(u), X’ e[, 2].
We assume that

(F;) I, maps bounded sets to bounded sets uniformly for A € [1, 2].
Furthermore, I, (- u) = I, (u) for all (&, u) € [1, 2] x E.

(Fy) B(u) 2 0 forall u € E; A(u) - « or B(u) - «© as |u|; — «.
Let, for & > 2,

¢ (A) == inf max I, (y(v)),
vely, ueBy,

inf Ik(u),

b, (L) =
)=

I (u),

ap(A):= _max
ueYy Julg=pk
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where I, == {y € C(By, E)|v is odd, YlaB;, =id}. If by(L) > az, (1) for all
rell, 2], then cp(r)>0b,(A) for all A e[l,2]. Moreover, for a.e.

A e [1, 2], there exists a sequence {u (1)}, such that

sup [uf ()| g < o, I (uF() > 0 and I (uf (1)) > cx(2) as n — o,
n

2. Proof of Theorem 1.1

Since E < L?(RN) and L*(RY) is a separable Hilbert space, E has a

countable orthogonal basis {e;}. Set X; := Re;, then define Y} =
@fzo X, Zy = @(]p:k X ;. Consider the family of functionals I} : E - R

defined by

L (u) = %"u"% - XJRN F(x, u)dx = A(u) - AB(u),

for & e [1, 2]. Then B(u) > 0 for all u € E, A(u) - « as |ju|y — », and
L, (-u) = I, () for all (A, u) e [l, 2]x E. And it is easy to see that I,
maps bounded sets to bounded sets uniformly for A € [1, 2].

To complete the proof of our theorem, we need the following lemmas:

Lemma 2.1. For any 2 < p < 2,, we have that

L= sup ||u||p —0ask — o
ueZk,HuHE=l

Proof. Obviously, the sequence {B,} is nonnegative and nonincrea-

sing. Suppose that B, > B >0 as k& — . Then for any k sufficiently

url, Zg. For any

large, there exists a u;, € Z, with |ugl; =1 and |

u € E, since {ej} is an orthogonal basis of E, there exists a sequence
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{aj} c R satisfying u = Zj.ozla jej, thus by the Schwartz inequality

and the Parseval equality, we have

o0 o0
K ur)g| = 10O ajes u gl =10 ojess ue) gl
j=1 j=k

® o0
<[ ajeilgluely = [Yof > 0as k-
=k =k

Therefore, we obtain that u;, -~ 0 in E and thus, up to a subsequence,

u, > 0 in LP(R™) because the embedding E - LP(RY) is compact.

This contradiction completes the proof.
Lemma 2.2. If (V;) and (f;)- (f3) hold, then there exist X, — 1 as
n—w ¢, >b, >0 and {u,} c E such that L (u,) =0, 1) (u,)e

Proof. (i) By (f;)-(f3), we know that there are positive constants

¢ > 0, cg > 0 such that

F(x, u) > ¢|ul* - cou®, V(x,u) e RY xR.

Hence, for all u € Yy,

1
I, (u) = §||u||2E - kJ‘RN F(x, u)dx

IN

1 9 2
5l = Reflulg + Aegful;

IN

1 9 2
5 lule = esluly + callulz,

where in the last inequality, we use the equivalence of all norms on the

finite dimensional subspace Yj. Then, we can choose |[lu|, =ps >0

large enough such that
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ap(A) = I, (u) <.

ma
ueYy,lulg=pk
(i) By (f;) and (fy), for any € > 0, there exists C, > 0 such that for
anyxeRN,ueR,
F(x, u) < &uf? + Cylul?.

Hence, for any v € Z; and € > 0 small enough

1
L) = 5 [l = hellully = 2Collul

1 e 2
> (5 =)l = 2CBRlul
where a is a lower bound of V(x) from (V;) and B}, is defined in Lemma
1
2.1. Choosing 1, = (AC,pBY )2-», then

bp(A) = inf I, (u)
ueZp, |ulg=m

i L2y PlylIP
- uezkl,ﬁZHEzrk[( 2 a )ulz = 1CeBilulz]

1 X 1. 9
(5-7 p)'"k

\2

= by,.

X

Since B, > 0 as k£ —> o and p > 2, for small enough & we have

bp(L) > b, — ® as k — o uniformly for L. Therefore, by Lemma 1.1,

for a.e. A e [1, 2], there exists a sequence {1 (A)}_; such that
sup b0 < o, T, (abG)) > 0 and T (ah(h) > e40) > by () >
u

b, as n — o, where c,(1) is defined in Lemma 1.1. Furthermore, since
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¢, (M) < sup I(w) = ¢, and E is imbedded compactly to L*(RY) for any
ueBk

se[2, 2,), by standard argument, {u,’i(k)}le has a convergent
subsequence. Hence, there exists «”(.) such that Ij(z*(1))=0 and
L, (u* () e [by, ], for ae. %ell,2]. So, when A, —1, with
A, €[L, 2], we find a sequence {u*(%,)} (denoted by u, for simplicity)

satisfying I3 (u,) =0, I (u,) € [by,, €, ]. This completes the proof.

Lemma 2.3. Under the assumptions of Theorem 1.1, the sequence

{u, } is bounded.

Un

Proof. We suppose that "un "E — o as n > . Consider w,, = —||u " .
nlE

Then, up to a subsequence, we obtain
w, ~w in E,
w, - w in L*(RY) for any s € [2, 2,),
N
w,(x) - w(x) a.e. x € R™.

Case 1. Suppose w # 0 in E. By I} (u,) = 0, we have
’ 2
0 = (13, u ) ) = ot = e 2t Yt

Therefore, there exists a constant c5 > 0 such that

J.RN fOx, un Ju g

s Cj.
2
e |
On the other hand, by Fatou’s lemma, we have

hmint [ S o I lim ing L5 Yn i

e IRy | A
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L 2 flx, up u
= JRth inf |w, | =2~ dx

e |un|2

This is a contradiction.
Case 2. Suppose w = 0 in E. Inspired by [16], we define

I, (tyu, ) = max b, (tuy ).

For any ¢ > 0, let w, = v4cw,. Since for all x € RN, u e R, F(x, u)

< guf? + ClulP, we get
jRN F(x, @, )dx < SIRNWanx ; CSIRN|wn|de 0.

Then, for n large enough, we have

I, (tyu,)> 1, (@,) = 2c—kn‘[ F(x, w,)dx =
n n R

which implies that lim I, (¢,u,)= «. Evidently, ¢, € (0,1), we know
n—ow N

that (I} (t,u, ), t,u,) = 0. Thus, by conditions (f;) and (f5), we obtain
L, (bt} = T (b)) = 5 (T3 (b)), tattn)
= o[ LG 1 taten ety = Fx, by,
<[y [ £ iy = F(, 0y )]s

= Ixn(un)_%U'hn(u”)’ Un >E

= I, (uy) € [by. ]

This contradiction completes the proof.



EXISTENCE OF INFINITELY MANY LARGE ... 59

Proof of Theorem 1.1. Combining Lemmas 2.2 and 2.3, since

Eo LS(RN ), 2 < s < 2, is compact, standard argument implies that, up
to a subsequence, u, — u* inEas n - . By {u,} c E is bounded, we

have JRN F(x, u, )dx is bounded. Therefore, by I (u,) e [by,, ¢, ] and
1y) = I, () + Oy = V)] )
we obtain I(u”) = r}l—l)lgo I(u,) € [by, ¢, ]. By I;, (uy) =0 and
(I'(up), v) = (I3, (wp), v) = (A = 1).[RN f(x, u, )vdx, for all v € E,

we know that I'(z,)~0 in E* as n — «. Since I e C(E), we have

I'(u,) > I'W®) in E* as n - ». This means I'(z*) = 0. By I, (uy)

e [by,, ] and b, —> » as n — », we know that {u* }%-1 1s an unbound

sequence of critical points of functional I. This completes the proof.
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