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Abstract

This paper concerns the study of the numerical approximation for the following

boundary value problem:
up(x, 1) = Uy (x, t) = = b(x)f(ulx, 1)), -1l<ax<l, >0,
up(-1,8) =0, u,(l,t)=0, t>0,

u(x, 0) =up(x) >0, -1<x<1,
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where f:(0, ) > (0, ) is a C' convex, nondecreasing function,
. © ds 2 ’ ,
limg_, 1+ f(-=1) = oo, J‘O 76) <o, up € C*([-1,1)),up(-1) = 0, up(1) = 0, up(x)

is symmetric for x e [-1, 1], uf(x) < 0, x  [-1, 0]. The potential b € C'((-1, 1)),
(-1, 1)), b(x) >0, x € (-1, 1), '(-1) = 0, (1) = 0. We find some conditions
under which the solution of a semidiscrete form of the above problem quenches
in a finite time and estimate its semidiscrete quenching time. We also prove
that the semidiscrete quenching time converges to the real one when the mesh
size goes to zero. A similar study has been also investigated taking a discrete

form of the above problem. Finally, we give some numerical experiments to
illustrate our analysis.

1. Introduction

Consider the following boundary value problem:

w(x, £) — Uy (x, t) = —=b(x)f(wlx, t)), -1<x<1, >0, (1)
u(-1,¢) =0, wu,(1,t)=0, ¢>0, (2)
u(x, 0) = ug(x) >0, -1<x<1, (3)

where [ :(0, ) > (0, ®) is a C! convex, nondecreasing function,

lim, , j+ f(—1) = o, jwﬁ <, uy e CH[-1,1]), uh(=1) = 0, uh(1) = 0, uy(x)
0o f(s)

is symmetric for x e[-1,1], up(x) <0, x € [-1,0]. The potential

beC(-1,1),bx)>0 xe(-11),b(-1)=0,b(1) = 0.

Definition 1.1. We say that the classical solution u of (1)-(3)

quenches in a finite time, if there exists a finite time 7}, such that

Upin (t) > 0 for t € [0, T}, ), but
hmt—)Tq umin(t) =0,

where i, (1) = min_j<, u(x, t). The time T, is called the quenching

time of the solution u.

The theoretical study of solutions for semilinear parabolic equations,

which quench in a finite time has been the subject of investigations of
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many authors (see [2], [3], [4], [7], [14], [15], [20], and the references cited
therein). Local in time existence of a classical solution has been proved

and this solution is unique.

It is not hard to prove the local in time existence of a classical
solution, which is unique (see [3], [4], and [20]). Also in [3], Boni has
proved that the solution of (1)-(3) quenches in a finite time, and its
quenching set is located on the boundary of the domain Q. In [7], Fila

and Levine have considered the above problem in the case, where
x €(0,1), f(u) = u™® with p > 0. They have proved that the solution u
quenches in a finite time at the point x = 1. For quenching results of
other problems, one may consult the following references [5], [14], [16],
[17].

In addition, it is shown that if the initial data at (3) satisfies
uh(x) - b(x)uyP(x) < — AugP(x) in [0,1], where A e(0,1], then the
classical solution u of (1)-(3) quenches in a finite time 7T and we have the

following estimates:

. 1 : 1
min ;.o (o ()" <T < min ;< (o (x))””
p+1 T A(p+1) ’

(A(p + )51 (T ~ 55T < thgin(0) < (B(p + D)1 (T~ 1)o7 for ¢ < (0,7),
(see, for instance, [4] and [7]).

In this paper, we are interested in the numerical study of the
phenomenon of quenching. Under some assumptions, we show that the
solution of a semidiscrete form of (1)-(3) quenches in a finite time and
estimate its semidiscrete quenching time. We also prove that the
semidiscrete quenching time goes to the real one when the mesh size goes
to zero. Similar results have been also given for a discrete form of (1)-(3).
Our work was motivated by the papers in [1], [3], and [20]. In [1] and
[20], the authors have used semidiscrete and discrete forms for some
parabolic equations to study the phenomenon of blow-up (we say that a
solution blows up in a finite time, if it reaches the value infinity in a

finite time). In [3], some schemes have been used to study the
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phenomenon of extinction (we say that a solution extincts in a finite time,
if it becomes zero after a finite time for equations without singularities).
One may also consult the papers in [11]-[13], where the authors have
studied theoretically the dependence with respect to the initial data of
the blow-up time of nonlinear parabolic problems. Concerning the
numerical study, one may find some results in [18], [19], [23], and [24],
where the authors have proposed some numerical schemes for computing
the numerical solutions for parabolic problems, which present a solution

with one singularity.

This paper is organized as follows. In the next section, we give some
results about the discrete maximum principle. In the third section, under
some conditions, we prove that the solution of a semidiscrete form of
(1)-(3) quenches in a finite time and estimate its semidiscrete quenching
time. In the fourth section, we prove the convergence of the semidiscrete
quenching time. In the fifth section, we study the results of Sections 3
and 4 taking a discrete form of (1)-(3). Finally, in the last section, we give

some numerical results to illustrate our analysis.
2. Properties of a Semidiscrete Problem

In this section, we give some results about the discrete maximum
principle. We start by the construction of a semidiscrete scheme as
follows. Let I be a positive integer and let A = % Define the grid x; = ih,
0 <i < I and approximate the solution u of the problem (1)-(3) by the

solution Uy, (t) = (Up(t), Uy(2), ..., Us(t))T of the following semidiscrete

equations:
%‘;ﬁ(t)— 8%Ui(t) = -Bif(Ui(t)), O0<is<I, te(0,T/), (4
U;(0)=9; >0, 0<i<I, (5)
where
52U, (t) = Ui (t) - 2U;(¢) + Ui—l(t), l<i<I-1

h2
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2U, (t) - 2U,(2)

2U;_4(t) - 2U;(t)
X '

h2

52U, (t) = . 8%UL() =

Here (0, th) is the maximal time interval on which |U(#)],,s > O,

where

1UnOlling = oin, U; (¢).

When the time T(;l is finite, we say that the solution Uj(¢) of (4)-(5)
quenches in a finite time and the time th is called the quenching time of

the solution Uy (t).

The following lemma is a semidiscrete form of the maximum

principle:
Lemma 2.1. Let a(t) € C°([0, T), RT*Y) and V), € CY([0, T'), RT*1)
be such that

dV;(t)
dt

~82Vi(t) + o;(1)WVi(6) 20, O0<i<I, tel(0,T), (6)
V:(0)>0, 0<i<I (7
Then V;(t)>0,0<i<I,te(0,T).
Proof. Let T, be any quantity satisfying the inequality T < 7' and
define the vector Z,(t) = eV}, (t), where A is such that

a;(t)-A>0 for 0<i<I, tel0,Ty]

Set m = ming <, [Z5 @) Since Zj(t) is a continuous vector on

inf*

the compact [0, T;], there exist iy € {0, ..., I} and ¢, € [0, Ty] such
that m = Z; (tp). We observe that
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dzZ; (t Zi (tg)—Z; (tg — k
lo(O)ZHm 10(0) 10(0 )SO

dt k>0 % ; 8)
62Zi0 (tO) = 0. (9)
From (6), we obtain the following inequality:
dZ; (to)
lfit - 62Zio (to) + (aio (to) - X)Zio (tg) = 0. (10)

We deduce from (8)-(10) that (a;,(¢9) - 2)Z;, (o) > 0, which implies that
Zi,(tp) = 0. Therefore, V,(¢)>0 for te[0, Tp] and the proof is
complete. O

Another form of the maximum principle for semidiscrete equations is

the following comparison lemma:
Lemma 2.2. Let f « C°(Rx R, R). If V},, W, € C*([0, T), R"*') are
such that

WO 52,00+ 101, 1) < D5 52wy (i), o),

0<i<I, te(0,7),
Vi(0) < W;(0), 0<i<I,
then Vi(t) < W;(t), 0<i<I, te(0,T).

Proof. Let Z,(t) = Wj,(¢) — V,,(t) and let ¢ty be the first ¢t € (0, T)
such that Z,(t) >0 for ¢te[0,¢), but Z;(tp)=0 for a certain

iy €10, ..., I'}. We see that

dZ;(ty) L Zi (to) = Z;y (to — k) <o
dt k50 k -

5°Z; (tg) 2 0.



FULL DISCRETIZATIONS OF SOLUTION FOR A ... 59
Therefore, we have

dZ;,(ty)

I E3ZZL'0('50)Jr (Wi, (o), to) = (Vi (t0), to) < O,

which contradicts the first strict inequality of the lemma and this ends
the proof. O

3. Quenching Solution

In this section, under some assumptions, we show that the solution

U;, of (4)-(5) quenches in a finite time and estimate its semidiscrete

quenching time. We need the following result about the operator 82
Lemma 3.1. Let Uy, € R be such that U;, > 0. Then, we have
SE(fU)); = f(U;)8%U;, 0<i<I
Proof. Applying Taylor’s expansion, we find that

. — . 2
V) = (UeU; + O )

L Ui Uy’

3 f'm;), 0<i<I,

where 0; is an intermediate value between U; and U;,q, n; is the one
between U; ; and U;,U_ =U;,U;,y =Uj_1,ng =09, N7 = 07. Use
the fact that Uy, > 0 to complete the rest of the proof. O

The statement of the result about solutions, which quench in a finite

time is the following:

Theorem 3.1. Let Uy, be the solution of (4)-(5) and assume that there

exists a positive constant A € (0, 1] and the initial data at (5) satisfies

5%¢; — Bif(0;) < —Af(e;), 0<i<I (11)
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Then, the solution U; quenches in a finite time th and we have the

following estimate:
j“thf do
Ty < A flo)”

Proof. Since (0, 7)) is the maximal time interval on which

[Up(@®)];,e > 0, our aim is to show that th is finite and satisfies the

above inequality. Introduce the vector J;(¢) defined as follows

J.(t) = dU (t) FAfULE), O0<i<T.

A straightforward calculation gives

dJ 2, _d AU o , du; 9 .

From Lemma 3.1, we have delta®(f(U)); > f(U;)8*U;, 0 < i < I, which

implies that

i g2y o d (AU sy 38U g2y
Zi- 80, < (-8, + Af(U) (- 8,

0<i< I

Using (4), we arrive at

ddJ; .
= 2J; < -Bif'(U))d;, 0<i<I, te(0,TM).

From (11), we observe that J,(0) < 0. We deduce from Lemma 2.1 that

Jp(t) <0 for ¢t € (0, th), which implies that

dUt(t) ~Af(U;t)), 0<i<I, te(0,TP). (12)

d
These estimates may be rewritten in the following form 7 ( ) < — Adt,

0 <i < I. Integrating the above inequalities over the interval (¢, T,})

we get
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—t_Aj (G) 0O<i<I

Using the fact that |@p|;

inf =

taking ¢ = 0 in (13), we obtain the desired result.

Remark 3.1. The inequalities (13) imply that
1UR(20) line

Th do

h
_ < - bl
q t() hS 0 f(o‘) for t() € (0, Tq ),

and
UL @) = HIATE — 1)) for ¢ e (0, T,

s do

where H(s) is the inverse of the function F(s) = -[O 7o)

U;,(0) for a certain iy € {0, ...

61
(13)

, It and

Remark 3.2. Let Uj, be the solution of (4)-(5). Then, we have

Th

1 J“Ph do
By,

fo)’

and

1ULOlline < 1Bl H(AT ) for te (0, 7).

To prove these estimates, we proceed as follows. Introduce the function v(¢)

defined as follows v(t) = |Up(2)

inf

for ¢ € [0, T/). Let ¢, ty € [0, T/").

Then, there exist 1,4y €{0,..., I} such that u(t;)="U; () and

u(tg) = Uy, (t3). We observe that

U(tz)—v(t1)>Ulz(t2) Uzz(tl)—(tz— t) z2t(2)

O(tz

u(tg) —u(ty) < Ull (tg) — Uzl (t,) = (tg —t;) zlt( 1)

+o(ty — 1

),

-11),

which implies that v(¢) is Lipschitz continuous. Further, if ¢5 > ¢, then
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oty) —v(ty)  4Us (t2)
tg —t  dt

+0(1) = 82U, (t2) - By F(Uy, (£2)) + 0(1).

Obviously, 82Ui2 (t9) = 0. Letting ¢ — t9, and using the fact that

By < Byl we obtain s B pe@) for te(0.7)) o

equivalently, f(f)lvt)) > —||By|dt for t e (0, th). Integrate the above
. . h . h 1 u(t) do .
inequality over (¢, 7T,') to obtain T, —t > . Since
I a 1B 1., Jo f(s)
. 1 1Un@line do

o) = U, @)...,, we arrive at Th —¢> = and the

6 = U Ol L T [
second estimate follows. To obtain the first one, it suffices to replace ¢ by
0 in the above inequality and use the fact that |lop ;¢ = [Up(0)];s-

Remark 3.3. If ¢; = a,0<i <1, where a is a positive constant,

then one may take A = 1. It may imply that the potential equals to 1. In

this case,
h o _1 h _1 h
Ty = FES] and  |Up(t)],s = (p +1)p+1 (Tq —t)pa  for te(0, T, ).

4. Convergence of the Quenching Time

In this section, under some assumptions, we show that the solution of
the semidiscrete problem quenches in a finite time and its semidiscrete
quenching time converges to the real one, when the mesh size goes to

Zero.

We denote
un(®) = (ulxo, 1), -, ulep, O and UL O], = maxUs0)].

In order to obtain the convergence of the semidiscrete quenching time, we
firstly prove the following theorem about the convergence of the
semidiscrete scheme:
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Theorem 4.1. Assume that the problem (1)-(3) has a solution
ue CHY([0,1]x[0, T]) such that min (o, 7] Umin(¢) = ¢ > 0. Suppose
that the potential at (4) and the initial data at (5) satisfy

lon —up(0)|, =01) as h —0, (14)
IBn —bnl, =01) as h—O0. (15)

Then, for h sufficiently small, the problem (4)-(5) has a unique solution
U, e CX([0, T], RT*Y) such that the following relation holds:

_ - _ h? h )
Olgg;llﬁh bpl, = Olon —urn(0)],, +2%) as -0

Proof. Let K > 0 and L > 0 be such that

u
I x-?f;C"oo <K, f(%)ﬁ K, and - (|bu|l, +1)f’(%)g L. (16)

The problem (4)-(5) has for each A, a unique solution Uj, € Cl([O, T(;l ),

R, Let ¢(h) < min {T, th} be the greatest value of ¢ > 0 such that

U @) - ur @), <g for t e (0, t(h)). (17)

The relation (14) implies that ¢(h) > 0 for A sufficiently small. By the

triangle inequality, we obtain
U @ing = 4 @line — U @) = un @), for ¢ e (0, t(h)),

which implies that
UL @)]ins = 0 —% - % for ¢t e (0, t(h)). (18)
Since u € C*1, taking the derivative in x on both sides of (1) and due
to the fact that u,, u,; vanish at x = 0 and x =1, we observe that u,,,

also vanishes at x =0 and x =1. Applying Taylor's expansion, we

discover that

h? ~ .
Uy (2, ) = 62u(xi, t)—ﬁuxxxx(xi, t), 0<i<I, tel(0,th)).
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To establish the above equalities for i = 0 and ¢ = I, we have used the
fact that u, and u,,, vanish at x =0 and x = 1. A direct calculation
yields

u(xi’ t)_ 6zu(xi’ t) = _Bif(u(xi’ t))_%uxxxx("?i’ t)

+ (B = b(x; f(w(x;,t)), 1<i<TI-1.

Let ep(t) = Up(t) — up(t) be the error of discretization. From the

mean value theorem, we have

‘ 2
dzt(t) _ 52ei(t) = —B;f'(0;¢; + %uxxxx(fi, t)—(B; — b(x; )f (w(x;, t)),
0<i<I, tel(0,th)),

where 0; is an intermediate value between U;(¢) and u(x;, t). Using

(16) and (18), we arrive at
d%t(t) — 8%;(t) < Lle;(t)| + Kh® + KB, — by ...
0<i<I, tel(0,th)). (19)
Introduce the vector z,(¢) defined as follows:
21(t) = e“ (o, — 1y 0], + Kh? + K[By, — byll,.),
0<i<I, tel(0,th)). (20)

A straightforward computation reveals that

@i

s 8%2; > L|z;| + Kh® + K|By — by, 0<i<I, tel(0,th)),

Zi(O) > ei(O), 0<i<lI.
It follows from comparison Lemma 2.2 that

z;(t) > e;(t) for te(0,th), 0<i<lI
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In the same way, we also prove that
z;(t) > —e;(t) for ¢e(0,¢th), 0<ic<I,
which implies that
[U® - wn©),, < **(lon ~ un O, + KR* + KlBy - by .,).

for t € (0, t(h)).

Let us show that ¢(h) = min {7, th }. Suppose that t(h) < min {7, th ).

From (17), we obtain
5 <[4 @R - u €@, < = (lon ~un(O)],, + ER* + K[y, ~ by, ).

Let us notice that both last formulas for (k) are valid for sufficiently

small h. Since the term on the right hand side of the above inequality

goes to zero as h goes to zero, we deduce that % < 0, which is impossible.
Consequently, ¢(h) = min {7, th 3

Now, let us show that ¢(h)=T. Suppose that t(h)quh <T.

Reasoning as above, we prove that we have a contradiction and the proof

is complete. O
Now, we are in a position to prove the main theorem of this section.
Theorem 4.2. Suppose that the problem (1)-(3) has a solution u,

which quenches in a finite time T, such that u € c*1([o, 1] x [0, T,)).

Assume that the potential at (4) and the initial data at (5) satisfy the
conditions (14) and (15), respectively. Under the hypothesis of Theorem
3.1, the problem (4)-(5) has a solution Uy, which quenches in a finite time

th and we have

lim T! =T .
h0 a
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Proof. Let 0 < ¢ < T, /2. There exists ¢ € (0,1) such that

¢ do s
IO <% 1)

Since u quenches in a finite time 7, there exist hy(¢) > 0 and a time

T, e (T, —g, T,) such that 0 < wp, (t) < % for t € [Ty, Ty), b < Iy (&).

It is not hard to see that u,,;,(t) >0 for ¢t e[0,Ty], A < ho(e). From

Theorem 4.1, the problem (4)-(5) has a solution Up(f) and we get

[UR () — up @), % for te[0,Ty], h < hy(e), which implies that

[Un(To ) — up(To)|., % for h < hy(e). Applying the triangle inequality,

we find that

1UR(To e < NUR(To) = up(To)., + e (To )]s < % +2 = g for b < hy(e).

o]

From Theorem 3.1, Uj(t) quenches at the time th. We deduce from
Remark 3.1 and (21) that for h < hg(e),

WE

(AR AT ¥ <s

which leads us to the desired result. O
5. Full Discretizations of Solution

In this section, we study the phenomenon of quenching by using a full
discrete explicit scheme of (1)-(3). Approximate the solution u(x, ¢) of the
problem (1)-(3) by the solution U™ = @M, o), .. U of the

following explicit scheme:

StUz(n) = 62Ui(n) - Bif(Ui(n)), 0<i<1, (22)
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U -6, >0, 0<i<I, ©3)

i
where n > 0,

U(n+1) _ U(n)

sUf =

or s> 0.

(O Ehofe) o

S
(n) ()
It U™ > 0, then - ACHOR I/ ™))

- ,0<i<1I, and a “straight”

v o)

inf

forward computation reveals that

oAt At FAT 1)
U(()n+1) > _nUl(n) +(1-222 — |8l Aty —’:L 10 )U(()”),
12 h? 1O g
FITS ie)
pn) s A ) (g Aln T LA
R U R I T 0

inf

, 1<i1<1T-1,
h2 -1

(n)
n+l 2At (n) At f("Uh ” f) n
U > S5 U (-2 = Bl At SR U,
"Uh "inf
In order to permit the discrete solution to reproduce the properties of
the continuous one when the time ¢ approaches the quenching time 7,

we need to adapt the size of the time step, so that we choose

_ 2 U(n) .
At,, = min { a ;)h , T il (};) line) } with 0 < 7 <1. We observe that
”Uh "inf
A AU line)
1 _ 2 h inf

htzn = Bn . AL, > 0, which implies that U}(l””) > 0.

1O e
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Thus, since by hypothesis U}(lo) =@z > 0, if we take Af, as defined

above, then using a recursion argument, we see that the positivity of the

discrete solution is guaranteed. Here 7 1s a parameter, which will be

chosen later to allow the discrete solution U;ln) to satisfy certain

properties useful to get the convergence of the numerical quenching time

defined below.

~oh? T )

9y n }
K U]

If necessary, we may take At, = min { t
inf

with K > 2 because in this case, the positivity of the discrete solution is
also guaranteed. The following lemma is a discrete form of the maximum

principle:

Lemma 5.1. Let agln) and V}E”) be two sequences such that a}(l") is

bounded and

h2

ThenV.(n)ZOfornZ0,0SiSI if At, £ ————M———.
L " 24 ]a)),h

Proof. If Vfgn) > 0, then a routine computation yields

2t At
v 2 2 vl s -2 S - at ), Vi,

ALZ"V.(”) 1<i<I-1,

i i+1 -1’

1 At At
v s Svin) -2 At a, v +

2At At
v e SVt - -2 - Al Vi



FULL DISCRETIZATIONS OF SOLUTION FOR A ... 69

2
Since At, < %, we see that 1-2 AL; - Atn||a§ln)||OO is
2+ [lay"]l.. 7 h

nonnegative. From (25), we deduce by induction that V}En) >0, which
ends the proof. O

A direct consequence of the above result is the following comparison

lemma. Its proof is straightforward.
Lemma 5.2. Let V}E”), W,En), and agL”) be three sequences such that

agn) is bounded and

5,V = 52V 4 My ) < 5w _ 52w 4 o),

i i

h2

Then VD) < W™ for n>0,0<i<Iifat, < — 2
o " 2+ ]a,

Now, let us give a property of the operator &; stated in the following

lemma. Its proof is quite similar to that of Lemma 3.1, so we omit it here.

Lemma 5.3. Let U™ ¢ R be such that U™ > 0 for n > 0. Then, we

have
5,0 > W™y, U™, n>o.

Lemma 5.4. Let a, b be two positive numbers such that b <1, then

following estimate holds:

abn < a _ 1 @ do
nzz(:)f(abn)_f(a) ln(b).“of(cs)'
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X X
Proof. We have j ab = Z I nH ab dx . We observe that
0 f(ab*) “m=00n f(ab¥)

n+l ab*dux 5 ab™t!

f(ab®) ~ flab™1)

n+l abxdx n+l gb*dx a
n—Oj

ab® > ab™! for n<x <n+1, which that _[

Consequently, we get I

" fab®) fa) @
o0 b b* a d
Zmo f(a o ) . Use the fact that .[0 Hab) = - () Io f(z) to complete

the rest of the proof. O
The theorem below is the discrete version of Theorem 4.1:

Theorem 5.1. Suppose that the problem (1)-(3) has a solution
ue C¥2([0,1]x[0, T]) such that min,[o, 7] Umin(t) = p > 0. Assume
that the initial data at (23) satisfies the condition (14). Then, the problem
(22)-(23) has a solution U}(Ln) for h sufficiently small, 0 < n < J and the

following relation holds:

jnax 1S = (t)l,, = Ollon = up O, + 1165 = Brl, +5) as h -0,

<T and

n_

where J is any quantity satisfying the inequality ZZ;
_ n-1 A
t, = Z}.zo ;.

Proof. For each h, the problem (22)-(23) has a solution U;l”). Let

N < J be the greatest value of n such that
"U}(zn) = up(ty )], < % for n<N. (26)

We know that N >1 because of (14). Applying the triangle inequality,

we have



FULL DISCRETIZATIONS OF SOLUTION FOR A ... 71
[0 ing 2 luen(tn i = MU = wn(@)l, 2§ for n<N. @D

As in the proof of Theorem 4.1, using Taylor’s expansion, we find that for
n<N,0<i<]I,

Sy, ty) = 8%ulay, t) + Bif (u(oxy, t,)) + (bloe; — By ))f (wlaxy, £))

h? - At -
= _Euxxxx(xi’ tn)+ Tnutt(xi’ tn)'

Let eg") = U,(l") —uy(t,) be the error of discretization. From the

mean value theorem, we get for n < N, 0 <i < I,

2
Stegn) - Szez(n) = _Bzf'(égn))e;(n) + il_zuxxxx(fi’ tn ) - A%utt(xi’ th)

+ (0(o; = B )f (ul;, £, ),

where ign) is an intermediate value between u(x;, t,) and Ui("). Since

Upper (%, 1), 1y (x, t) are bounded, u(x,t)>p and At, = O(h?), then

there exists a positive constant M such that
5,0l — 52e(™ < —p;f(el™)e™ + Mlby, - By, + MR,

i

0<i<I, n<N. (28)

Set L = —(||b],, +1)f'( % ) and introduce the vector V}En) defined as

follows:
v = oL (1o~ (0)],, + MA? + M, =By, ), O<i<I, n<N.
A straightforward computation gives

5, V") — 8"V > B, (& W, + Mh* + M[by — B,

0<i<I,n<N, (29)
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VO 50 o0<is<r (30)

l
We observe from (27) that - B;f'(&() is bounded from above by L. It
follows from comparison Lemma 5.2 that V,En ) > egn). By the same way,

we also prove that V,gn) > - e%” ), which implies that

10 —wp (@), < LD (lop - up 0N, + MR2 + M|l = Bpl,.), » < N.

(31)
Let us show that N = J. Suppose that N < J. If we replace n by N
in (31) and use (26), we find that

LU —wn (el < e (lop = un (O, + MA® + My, Bl )-

Since the term on the right hand side of the second inequality goes to
zero as h goes to zero, we deduce that % < 0, which is a contradiction and
the proof is complete. O

To handle the phenomenon of quenching for discrete equations, we

need the following definition:
Definition 5.1. We say that the solution U,(zn) of (22)-(23) quenches

in a finite time, if "Ul(zn)"inf > 0 for n > 0, but

n-1

- () _ At _ .
nllgrlw"Uh ling =0 and T} = r}l_l)r;) OAtL < o,
1=

The number ThAt is called the numerical quenching time of U}(Ln ),

The following theorem reveals that the discrete solution U,(zn) of

(22)-(23) quenches in a finite time under some hypotheses.



FULL DISCRETIZATIONS OF SOLUTION FOR A ... 73
Theorem 5.2. Let U}(Ln) be the solution of (22)-(23). Suppose that there

exists a constant A € (0, 1] such that the initial data at (23) satisfies

8%; —Bif(p;) < — Af(¢;), 0s<isI. (32)
Then U;l”) is nonincreasing and quenches in a finite time TAY which
satisfies the following estimate:

At < T"‘Ph "inf lenlint do

B flonlle) @1 Jo (o)’

(L = 1R F( 0 ing )

where ' = Amin { Tonlh
m

T}
Proof. Introduce the vector J }(ln) defined as follows:

JM = 5,0 L AfUM), 0<i<I, n=xo0.
A straightforward computation yields for 0 <i < I, n >0,

5™ — 527 = 5, (5,0 — 82U )+ as,F(UM) - AS2F(UM).

i
Using (22), we arrive at
8, — 82JM) = —(B; - AW, F(UM) - A8} (UM), 0<i<I, n>o0.
It follows from Lemmas 5.3 and 3.1 thatfor 0 <i < I, n > 0,
8™ — 820 < —(p; - Ay (UM U™ - ApU)sTU™.
We deduce from (22) that
8™ —82JM < g UMM, 0<i<I, nzo.
Obviously, the inequalities (32) ensure that </ }(lo) < 0. Applying Lemma 5.1,

we get J }(Ln) < 0 for n > 0, which implies that
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(n)
U+l < Ul(”)(l — AAt, M,

1

0<i<I, n=>0. (33)

These estimates reveal that the sequence U}(ln) 1s nonincreasing. By

induction, we obtain U}(L”) < U;LO) = ¢p,. Thus, the following holds:

(L= A2 F( 0 ing )

f("L }(Ln)"inf )
¢ 20 "h Tt/
2| 0p g

n . > A min {
o)

,TH=T. (34)

inf
Let iy be such that ||U§Ln)||inf = Ui((?). Replacing i by ig in (33), we obtain

1T < IO 0=, nzo, (35)

inf
and by iteration, we arrive at
[U5 ling < 10 i@ = 70" = lon i@ = 7Y% m 2 0. (36)

Since the term on the right hand side of the above equality goes to zero as
n approaches infinity, we conclude that ||U}(ln) |;,¢ tends to zero as n
approaches infinity. Now, let us estimate the numerical quenching time.
U ;zn) ling
AU ling)

Due to (36) and the restriction At,, < it 1s not hard to see

that

Zm At, < TZ”’ o e (- — T')nn ,
n=0 "0 flon e @ = 7))
because —— is nondecreasing for s > 0. It follows from Lemma 5.4 that

f(s)
+00 ’r||(ph "inf B T H‘PhHinfﬁ
Zn:OAtn = f(lonlie) In(—1") J.o f(o)”

Use the fact that the quantity on the right hand side of the above
inequality converges towards is finite to complete the rest of the proof. [
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Remark 5.1. From (35), we deduce by induction that
U e < 103 ling 0 =77 for n =g,
and we see that

IR VI S U 4 iUkl
n "lg = _ Al < _ o
n=a n=e f("U}(zq)"inf(l -7)"9)

because —o— is nondecreasing for s > 0. It follows from Lemma 5.4 that

7()
V. 14 | I Ivﬁf)mf do
BT U9y ) mG-1)o 7o)

(L= A2 F(l 0 ing )

Since 1" = Amin { , T}, if we take T = hZ, we get

2on g
’ 1-h? . .
T amin g L onlioe) (o g TUonline)
T 20 ing o i

Therefore, there exist constants ¢, ¢; such that 0 <cy < 7/7 <¢; and

-t . o
=) ~ O(1), for the choice T = h”.
In the sequel, we take T = K2

Now, we are in a position to state the main theorem of this section.

Theorem 5.3. Suppose that the problem (1)-(3) has a solution u,
which quenches in a finite time T, and u € c*2([o, 1] x [0, T,)). Assume
that the initial data at (23) satisfies the condition (14). Under the
assumption of Theorem 5.2, the problem (22)-(23) has a solution U}(l”),

which quenches in a finite time ThAt and the following relation holds:

lim T2 =T .
h—0 h q
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Proof. We know from Remark 5.1 that 1s bounded. Letting

T
In(1 - 1)
0 <& < T, /2, there exists a constant R € (0, 1) such that

TR T J‘R do <&
f(R) Inl-1)Jo flo) 2’

(37)

Since u quenches at the time 7,, there exist T e (Tq —%, Tq) and
ho(e) > 0 such that 0 < . (¢) < % for t € [Ty, T,), h < ho(e). Let q be

a positive integer such that ¢, = ZZ;IOAtn €[Ny, T,) for h < hy(e). Tt
follows from Theorem 5.1 that the problem (22)-(23) has a solution U(n),

which obeys ||U](1n) —up(ty)ll, < % for n < q, h < hy(e), which implies

that

R R
§+§:R, hgho(g)

10D s < [0 =y (6, + (2 Vg <

From Theorem 5.2, U}(Ln) quenches at the time ThAt. It follows from

LS Dling

< T J'HU
q f("Ui(ZQ)”inf) In(1-7")Jo

Remark 5.1 and (37) that |ThAt -t

% < %, because ||U}(lq)||inf <R for h < hy(e). We deduce that for
h < ho(e),

IN

Ty =Ty < 1Ty ~tg] +ltg ~ T3 | < g +5 <,

£
2

which leads us to the result. O
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6. Numerical Results

In this section, we present some numerical approximations to the
quenching time for the solution of the problem (1)-(3) in the case, where

2 + g cos(nx)
4

explicit scheme in (22)-(23). Secondly, we use the following implicit

p=1 and ug(x)= with 0 <¢ <1. Firstly, we take the

scheme:

(n+1) _ (n,)
% _ 62Ul(n+1) _ bi(Ul(n) )—p—l Ui(nﬂ)’ 0<i<I,
n

U =g, >0, 0<i<I,

i

where n > 0, At,, = K||U}(l”)||PJr1 with K =1073,

inf

In both cases, o; = %%os(mh), 0 <1 < I. For the above implicit

scheme, the existence and positivity of the discrete solution U,(ln) is

guaranteed by using standard methods (see [3]). In the Tables 1-8, in
rows, we present the numerical quenching times, the numbers of

iterations, and the CPU times corresponding to meshes of 16, 32, 64, 128.
We take for the numerical quenching time ¢, = Z’;é At;, which is

computed at the first time when

Aty = |tpsy —t,| < 10716,

Table 1. Numerical quenching times, numbers of iterations, and CPU

times (seconds) obtained with the explicit Euler method for ¢ = 1

I th n CPU time
16 0.062132 4102 1
32 0.062253 15883 3
64 0.062312 61257 60
128 | 0.062322 235525 1245
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Table 2. Numerical quenching times, numbers of iterations, and CPU
times (seconds) obtained with the implicit Euler method for ¢ =1

I th n CPU time
16 0.062302 4017 1
32 0.062317 15499 6
64 0.062323 59679 138
128 | 0.062324 229179 4260

Table 3. Numerical quenching times, numbers of iterations, and CPU
times (seconds) obtained with the explicit Euler method for ¢ =1/10

I th n CPU time
16 0.121368 2389 4
32 0.121210 8882 16
64 0.121170 32769 222
128 | 0.121157 119887 3887

Table 4. Numerical quenching times, numbers of iterations, and CPU

times (seconds) obtained with the implicit Euler method for € =1/10

I t, n CPU time
16 0.121316 14047 25
32 0.121326 14071 45
64 0.121328 14091 168
128 | 0.121329 14098 795

Table 5. Numerical quenching times, numbers of iterations, and CPU
times (seconds) obtained with the explicit Euler method for ¢ = 1/100

I t, n CPU time
16 0.124875 2356 3
32 0.124694 8728 17
64 0.124649 32091 236
128 | 0.124638 112964 3974
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Table 6. Numerical quenching times, numbers of iterations, and CPU
times (seconds) obtained with the implicit Euler method for € = 1 /100

I t n CPU time
16 0.124822 13915 24
32 0.1248195 | 13920 44
64 0.1248193 | 13923 168
128 | 0.1248191 | 13925 793

Table 7. Numerical quenching times, numbers of iterations, and CPU
times (seconds) obtained with the explicit Euler method for & = 1/1000

I ty n CPU time
16 0.125208 2351 3
32 0.125024 8708 17
64 0.124979 | 32006 191
128 | 0.124957 | 112873 3852

Table 8. Numerical quenching times, numbers of iterations, and CPU
times (seconds) obtained with the implicit Euler method for £ = 1/1000

I t, n CPU time
16 0.125155 13914 26
32 0.12515090 | 13917 52
64 0.12515091 | 13918 154
128 | 0.12515093 | 13919 781

Table 9. Numerical quenching times, numbers of iterations, and CPU
times (seconds) obtained with the explicit Euler method for ¢ = 1/10000

I ty n CPU time
16 0.125200 | 3729 3
32 0.125100 | 14220 17
64 0.125000 | 54072 192
128 0.124997 | 100112 3950
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Table 10. Numerical quenching times, numbers of iterations, and CPU
times (seconds) obtained with the implicit Euler method for &€ = 1/10000

1 t, n CPU time
16 0.125190 | 13129 13
32 0.125180 | 13220 27
64 0.125090 | 14072 292
128 0.125001 | 16112 5950

Table 11. Numerical quenching times, numbers of iterations, and CPU

times (seconds) obtained with the explicit Euler method for ¢ = 0

I th n CPU time
16 0.125191 | 8520 8
32 0.125187 | 8523 9
64 0.125157 | 8689 44
128 | 0.125071 | 11069 408

Table 12. Numerical quenching times, numbers of iterations, and CPU

times (seconds) obtained with the implicit Euler method for ¢ = 0

1 t, n CPU time
16 0.125193 8588 8
32 0.125188 8598 11
64 0.125160 8789 54
128 0.125072 11168 418

Remark 6.1. When ¢ =0 and p =1, we know that the quenching
time of the continuous solution of (1)-(3) is equal 0.125. We have also seen
in Remark 3.3 that the quenching time of the semidiscrete solution is
equal 0.125. We observe from Tables 1-10 that when e decays to zero,

then the numerical quenching time of the discrete solution goes to 0.125.

In the following, we also give some plots to illustrate our analysis.
For the different plots, we have used both implicit and explicit schemes
in the case where I =1/16, ¢ = 1.
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In Figures 1 and 2, we can appreciate that the discrete solution is
nonincreasing and reaches the value zero at the last node.
In Figure 3, we see that the approximation of wy;,(¢) is

nonincreasing and reaches the value zero at the time ¢ ~0.062.

In Figure 4, we observe that the approximation of wu(x,T) is

nonincreasing and reaches the value zero at the last node. Here, T is the
quenching time of the solution u. We have also used both implicit and
explicit schemes in the case where I =1/16, ¢ = 1.

In Figures 5 and 6, we can appreciate that the discrete solution is
nonincreasing and reaches the value 0.125.

Figure 1. Evolution of the discrete solution, ¢ =1 (explicit scheme).
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Figure 2.
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Figure 3. Approximation of the discrete solution, ¢ =1 (explicit scheme).
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Figure 4. Approximation of the discrete solution, ¢ =1/1000 (explicit

scheme).

Ui,n)

Figure 5. Evolution of the discrete solution, ¢ = 0 (explicit scheme).
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Figure 6. Evolution of the discrete solution, ¢ = 0 (implicit scheme).
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