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Gaussian kernel bounds, and L_“/ 2 be the fractional integrals of L for
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0<a<n In this paper, we obtain the boundedness of multilinear

commutators of BMO functions and Lfa/ 2 in Morrey spaces.

1. Introduction

Suppose that L is a linear operator on L2(Rn ), which generates an

tL

analytic semigroup e with kernel p;(x, y) satisfying a Gaussian

upper bound, that is,

_ 2
_elxl

e LA (1.1)

|pt(x> y)l < tn/2

for x, y € R” and all ¢ > 0.

For 0 < a < n, the fractional integrals Lo/

defined by

of the operator L is

L1 = oy [ ) g )

Let b be a BMO function on R”. The commutator of b and L */2 is
defined by

(6, L*/1(F) (&) = bGL/2(F) (x) = L*2(bf ) (x).
Note that if L = — A is the Laplacian on R”, then L7%/2 is the classical
fractional integrals Z, (see, for example, [17, Chapter 5]). It is well-
known that when b € BMO(R"), the commutator [b, Z, | is bounded from
IP(R™) to LY (R"),1<p<n/a,1/q=1/p—-a/n ([3]). Duong and
Yan proved that under condition (1.1), the commutator [b, o/ 2] is still

bounded from IP(R") to LiI(R"),1<p<n/a,1/q=1/p-a/n
(see [7] and [1]).

Recently, commutators of the classical fractional integrals Z, in

Morrey spaces have been studied by many authors, see [9, 14], and the
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references therein. The classical Morrey spaces were introduced by
Morrey in [11] to investigate the local behaviour of solutions to second
order elliptic partial differential equations. The aim of this paper is to

continue this line to study the multilinear commutator [b, L™%/2] of
BMO functions and L*/2 in Morrey spaces. Following [13], we define

the multilinear commutator [b, L/ 2] by

6. L2100 @) = [ [0 - bo)K e ) G)dy, 1.2)
i=1

holds for each continuous function f with compact support, and for almost
all x not in the support of f, where b = {b, -, b, }, b;’s are BMO

functions and K (x, y) is the kernel of /2

Let 1 < p <o and 0 < k < 1. The Morrey space is defined by

LPRRY) = {f € TP (R™) : [flpw < o), 1.3)
where
1 1/p
Il o = S%p{IBIN JBIflpdx] , (1.4)

and the supremum is taken over all balls B in R". The following is the

main result of this paper:

Theorem 1.1. Assume condition (1.1) and let b = {by, -, b, }, b;’s

are BMO functions. Then for 0 <a <n,1 <p<£,l=l—g, and

a q P n

0 < k < p/q, the multilinear commutator [b, L_a/z] satisfies

116, L*/21(f)| gamalp < C {H b II*] Il zps
1=1

where ||b; |, denotes the BMO norm of b;(x).
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The paper is organized as follows. In Section 2, we recall some
important estimates on BMO functions, maximal functions, and
fractional integrals. In Section 3, we will prove the main result. We
conclude this paper by giving applications to large classes of differential

operators.

Finally, in the sequel, we use C to denote a positive constant, which is

independent of the main parameters, but it may vary from line to line.
2. Definitions and Preliminary Results

Denote the Hardy-Littlewood maximal function Mf and its variant
Ma, +f by

1
M) = sup g [ I1()]ay. @1

and

1/r
M, f(x)= sup[ J. lf)I" dyJ , 0<a<n,r=1, (2.2

| |1 ar/n

where the sup is taken over all balls B containing x. If a = 0, M .f(x)
will be denoted by M,f(x). For any f e LP(R"), p>1, the sharp
maximal function M i f associated with “generalized approximations to

the identity” {e_tL ,t > 0}, is given by
1 _
M3 f(x) = sup e [ [7(5) = e BH 1) dy. 23)
xeBllﬂ B

where tg = rg and rg 1is the radius of the ball B (see [10]).

A function b(y) e I},.(R™) is said to be in BMO(R"), if and only if

1.[
sup — b(y) —bpl|dy < o,
Bpllﬂ Bl (y) Bl y



MULTILINEAR COMMUTATORS OF FRACTIONAL ... 23

where bg = L b(y)dy. The BMO norm of b(y) is defined by
BB s

1
bl = —J b(y) - by |dy.
Bl = sup 5 | [60) = by

Lemma 2.1. (i) Assume b € BMO and M > 1. Then for every ball B,

we have

|bB - bMBl < C"b”* log M.

(11) (John-Nirenberg lemma) Let 1 < p < w. Then b € BMO, if and

only if

1 .[
— | |b(y)-bg|Pdy < C|p|P.
|B] Bl () Bl Yy " "*
Proof. For the proof of this lemma, see [3]. See, also [5] and [8]. O

Lemma 2.2. For 1< p <o and 0 <k <1, we have |Mf|;p.x <C||f|p.x.

For the proof of this lemma, see [4]. Using this lemma, it is easy to

known that for 1 < r < p, we have |M,f||p.x =|M(f|" )||2/pr/m < C|f|lzp.x-

Lemma 2.3. For all 0 < o < n, we have |M 1(f)|;a.xa/p < C|f|p.%,
wherel<p<nj/a,1/q=1/p-a/n,and 0 <k < p/q.

For the proof of this lemma, see [9, Theorem 3.5]. From this lemma,

for 1< r < p, we have | M (lgnate =[Mor 1 UL, 0y, < Clflgps,

where a, p, ¢, and k satisfy conditions in Lemma 2.3.

Lemma 2.4. For all 0 < o < n, we have ||L_°‘/2(f)||Lq,Rq/p < C|fl o »

wherel<p<n/a,1/q=1/p-a/n,and 0 <k < p/q.
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Proof. Since the semigroup e has a kernel pi(x, y), which

satisfies the upper bound (1.1), it is easy to check that |L_°‘/2(f) (x) <

CZ o (|f])(x), where T is the classical fractional integral defined by

To(f)(x) :J nﬂdy, 0<a<n.

|x _ yln*(x

Note that 7, is bounded from LP" to L&"/P for 1<p<n/a,
1/g=1/p-a/n, and 0 <k < p/q, see [9, Theorem 3.6], [4] or [12].
Thus, we have ||L_°‘/2(f)||Lq,Hq/p < C|f|zpv, where 1<p<n/a,
1/¢g=1/p-a/n, and 0 <k < p/q. This completes the proof of this
lemma. O

Lemma 2.5. Assume that the semigroup e has a kernel p(x, ¥),
which satisfies an upper bound (1.1), and let b = {b, -, by}, bj’s are

BMO functions. Then, for every function f € LP(R"), p >1, x € R", and

1 <r < o, we have

e—tBL(Hwi ~bip >fJ )] a < I e (T ) ),

2]l
Sup =1
we8 Bz ]

where tg = rg.
Proof. For the proof of this lemma, see [6, Lemma 2.3] and

[19, Lemma 2.3]. O

We now state the following lemma, which gives an estimate on the

kernel of the difference operator [/2 _ethpo/2 por its proof, see
[7, Lemma 3.1].

Lemma 2.6. Assume that the semigroup el has a kernel p(x, ¥),

which satisfies an upper bound (1.1). Then for 0 < a < 1, the difference
operator L2 — e [7%/2 has an associated kernel K, (x, y), which

satisfies
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C t

n—a

(2.4)

|Koc,t(x’ y)l = 2
e = A" | - o
for some constant C > 0.

Now, we have the following analogy of the classical Fefferman-Stein
inequality [18, Chapter IV] for the sharp maximal function M uL f. For the
proof, see [10, Proposition 4.1].

Lemma 2.7. Assume that the semigroup e has a kernel i (x, ),
which satisfies an upper bound (1.1). Take L > 0, f € L%OC and a ball By
such that there exists xo € By with Mf(xy) < A Then for every
0 <1 <1, there exist r, y > 0 (independent of A, By, [, xo) and constant
C > 0 such that

lix € By : Mf(x) > A%, M?%f(x) < yA}| < C'| By,
where A > 1 is a fixed constant, which depends only on n.

In order to prove our main result, we need the following lemma:

Lemma 2.8. Let 0 <k <1 and 1 < p < w. Then, for every [ € L%OC
with Mf e LP", there exists a constant C > 0 such that
[Mfl p.s < UMl p.x (2.5)

Proof. Let B be a ball in R". Set E; = {x € B: Mf(x) > 1}. Then
from Whitney decomposition theorem, we know that there exist mutually
disjoint cubes € such that E, =U,Q, and 10Q, NB\ E; = &.

Denote Bj, be the ball with same center as @, and rg :% diameter

Q. Let Ek = 10Bj,. Then there exists a x; € Ek NB\ E,, that is,
Mf(xp) < L. Let us use Lemma 2.7. There are C, r > 0 and A > 1 such
that, if 0 < <1 (to be chosen later), we can find y > 0 in such a way

that
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lx e By : Mf(x) > A, M} f(x) < yA}| < Cn'|By|.

Set U, ={x € B: Mf(x) > A, M%f(x)ﬁ yA} andso U, c E; =U, @y

< Up By since A > 1. Then,

U] < > € By - Mf(x) > A, M f(x) < 1|
k
< ") | Byl
k

<o) |@y
T

= Cn'|E,|

= Cn'|{x € B : Mf(x) > A}|.

One can prove that

IB|Mf|de = Apj:pkp_1|{x e B : Mf(x) > AL}|dA

IA

Apj':pxp—l(w“ +{x e B: Mif(x) > 1)) Jan

p
< CApnrj |Mf|P dx + A—J |MEFIPdx.
B Y
Let us choose n such that CAPn" =1/2. The former inequality turns
out to be
AP 4
I \MFIP dx < 2—j | M £|P dx.
B 'yp B
This implies that

|Mfl oo < CIMEF]lpu.

The proof of this lemma is completed. O
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3. Proof of Theorem 1.1

We first prove Theorem 1.1 in the case 0 < o < 1. For convenience,

we use the following notation. Given any positive integer m, for any
iefl,--,m}, we denote by C the family of all finite subsets
c = {o(1), -, o(i)} of i different elements of {1, 2, .-, m}. For any

c e Cim, we associate the complementary sequence ¢’ = {1, 2, ---, m} \ o.

For any ¢ € C", we define

(B, L2 f(x) = IRnH(bc(j)(X) = bo(j)(V)K o (x, ¥)f(¥)dy,
=1

for each continuous function f with compact support, and for almost all x
not in the support of f. In the case that o = {1, 2, ---, m}, we denote

[l;c, L_O‘/Q] simply by [l;, L_a/‘?].

To prove Theorem 1.1 in the case 0 < o < 1, we only need to prove

the following lemma:

Lemma 3.1. Assume that the semigroup e has a kernel p(x, ¥),

which satisfies an upper bound (1.1). Let [b, L_a/z] be as in (1.2) and

0 < a < 1. Then for any real numbers r and s greater than 1 such that

rs < n/ a, there exists a constant C > 0, such that

M ([6, L*/?1f) () < C{Hnbj ||*]Ma,rs<f)<x)
J=1

+Ci > {Hllbjll*JMr([Eor, L2 f)(x), (3.1

=1 cseCim jeo

for every f e L7 (R™) and for every x € R".
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Proof. For m =1, Lemma 3.1 was proved in [7]. So, we only need to

prove the lemma for m > 1. To this end, we make use of induction on m.

For any A = (A, -+, A, ) € R™, we have

b, L2 ]f(x) = - (x)—b; x
[6, L) f(x) jRnL‘l[wL() b (K (x, V)f(¥)dy

[

1

s

((bi(x) = ;) = (b;(y) = % ))K o (%, ¥)f (y)dy

I
[

=20 D ) R, [ (B) -y Kl ) ()

=0 ¢ lm

=it -2 )La/2f<x>+<—1>mw/2[1‘[<bi —xi)f]oc)
i=1 i=1

m-1
YT B - b,

i=1 GECim

<[ B0) - D)y Ko, 9F()dy.

i
where for any o e C/", (b - Mg = H(bc(j) - Ag(j))- By expanding
j=1

(b(y) = %)y = [(b(y) - b(x)) + (b(x) - )] & we obtain

[6, L*1f() = | [(outer) = 2 )L () + (- 1y 2 2[]‘[(@ -2 )f} (x)
=1 i=1

m—1
e D ETHEE) R, [ (B0)- )y Ka e ) ()dy

i=1 GECim
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= [ J0itw) -2 )L () + (- 1)%““{1‘[(@ —w] (x)
i=1 i=1

3

F3 S b))l T2,

l GECim

I
—

where C,, ; are constants depending only on m and .

For fixed x € R", B denotes a ball containing x center at x,; with
radius rg, and 2B denotes the ball concentric with B and radius two
times the radius of B. Split f = f; + f5, where fi = fyog. Then we can

write that

i=1

6, L1 () = [ [ 0i») = 1)L () + ()" L“”[H(bi 2 )fl] ()
i=1

+(=1)" L_Q/Q{H(bi - )fz} )

i=1

m-1
£ 2 Cnilb() = Dglbg. L211().

1= GECim

From this, it follows that

e P[5, L*1f)(y) = e‘BL{H(bi -2 2f} ()
i=1

=1

+(-1)metBL] [o/? ﬁ(bi - )}[1} ()

+(-1)metBL] [o/? H(bi - M)fz] ()

i=1
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m-1
£ )Y e BE(b = D) lbers L211) ().

i=1 ceCim
Let y € B. Now we estimate |[5, L_“/Q]f(y)— e_tBL([l;, L_“/Q]f)(y)| by

\[6, L21f(y) - e BE([6, L*/21£) ()|

L 2{]‘[(@ i m] ()
1=1

< +

[ @) -2r )
=1

+ +

e_tBL[L_“/Q(ﬁ(bi i D(y)
i-1

el [ﬁ(bz‘ - )L_O‘/2f}(y)
i-1

+

L 2{1‘[(&- -2 )fgj () - e—tBL(L-a/ Z{H(bi - 2)fy B(y)
i 1=1

=1

£33 A|6) - D)lbys 110

i=1 ceCim

DI I (RN e A e

i=1 ceCim

= F () + Fa(y) + F5(y) + Fy(y) + F5(y) + Fo(y) + Fz (),

which yields

5 )8 L1100 - e B @6, LR 1) )] dy
B!
< ;EJ.BFJ.(y)dy

7
= le(x). (3.2)
i
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Let r' be the dual of r such that 1/r +1/r' = 1. We first estimate
1;. By the Hélder inequality and Lemma 2.1,

[T -2 21()

1

L) =], dy

m
1=

/r

1 = . ar' 1 1 -a/2 r !
<[l Ll nra] g [y ora

< [ [leill. M (L7472F) (),
i=1

where A; = (b;)p, 1 =1, ---, m. For the term I, by Lemmas 2.1 and 2.4

again, we have

o 1/o

L@ 5], L-“/{H(bi—xi)fl}y) dy
- . s 1/s

<c |Bl|i [ u;[wxy) -7 )f(y)] dy

m 1/sr' 1/sr
1 , )
<Clgr b; -A1d ST g
5 bBl jBD () = y} LBP—“Z’ [ I y]

< ] [bil. M s () ).
=1

®» | =

1 (o}
where — = = - =,
[0} n

Similarly, we obtain by using Lemmas 2.1, 2.4, and 2.5,

Iy(x) + 1 (x) < C JUb LM (L2 ) (x) + Moy (F) ()],
=1
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Now we turn to estimate the term I5(x). Using Lemmas 2.1 and 2.6,

we have

1 m
156) = 151 [ ] 10 0 ] [12) = 41110

o0
1 r
SCEJ 4
=)ok —z|<2k+ n-a |xg - 2|

rg<lag-2|<2* i rg lxg — 2]

< [ 118:@) - 2l £ (=)l d2
i=1

< CZZ‘k

) |2k+1B|

J.2k+13H|b () -, i,2"1B

+ b ;ohtlp ~ il f(2)|dz

00 m
- 1
<Ccy ot —I
; |2k gl 2’”13;;
XD (B(2) = byst o byt y = R f(2)|d2

GECL-m

< Ci z iTk ;al(i’ékﬂB - Nyl
12

Dgecmh 2B

X J.ngBl(E(Z) - 52k+1B )s||f(2)|dz

<cy Y 22 HCEEVA | L1 Tll"’

1=0 ceCm k=1 jeo'

<[ oo ) B ) 17(2) 2
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<SS S ot ey T M af )
. ]

i=0 geom k=1

< CH”bL "*M(x,rs(f) (x)’
i=1

where b. 1

i oktlp = m .[zk”Bbi (2)dz. Finally, by an argument similar

to above, we can obtain
m-1 -
Io(x) + Ir(x) < € " [ o0, (6o, 2 1) ().
1=1 GECLm jeo

Combining the estimates for I;(x) to I;(x) with (3.2) and then

taking supremum over all balls containing x in (3.2) gives us (3.1), which

completes the proof of Lemma 3.1. O

Proof of Theorem 1.1. In the case 0 <o <1, we can deduce
Theorem 1.1 from (3.1) by induction on m. For m =1, from (3.1), we

know that there exist two real numbers r and s greater than 1 satisfying

rs < p such that
M ([b, L?11) (%) < bl Mo 1) (5) + Clol. M, (L) (x).
This combining with Lemmas 2.2, 2.4, and 2.8 gives
(6. L2 Ylyararo < CIME (b, L2 1 fllya0as
< Ol [ M, rs (P paaro + CLoNIM (L2 )] sguvat v

< ClelL I zex-

For m > 1, choose two real numbers r and s greater than 1 such that

rs < p < n/a. From (3.1), Lemmas 2.2, 2.3, and 2.8, we have
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I [b, L_a/z]f"Lq,r»q/p < C||MﬁL[5, L_a/z]f"Lq,r»q/p

m
< C[ JUoi LI Mo, rs (Pl a0 v
i=1

£ TT103112, (1B, L7217 pgvare

i=1 GECim jeo

m
< [ [1s:b Il
i=1

where 1 /g =1/p-a/n,1<p<n/a, and f e LP*(R").

Now we turn to prove Theorem 1.1 in the general case 0 < o < n. For

any j =0,1,--, n -1, we denote py j, py j, P3,j by

1 1 o 1 1 o}
—— =t =+,
PLj 4 p? Pgj PiLj n
and
1 1 on-1-)
P3,j P2, n”
Note that

n—-1
[5, L—a/Q]f _ [5, (L—(x/2n )n]f _ ZL‘“j/Z”[E, L—a/2n ]L—a(n—l—j)/an'
Jj=0

Then, using Lemma 2.4 and Theorem 1.1 in the case 0 < a < 1, we have

n-1
108, L2 flyasarn < Y L9120 [B, L7/ L0120 g o
j=0

n-1
< CZ"[E’ 7-o/2n ]L_a(n_l_j)/an"LPl,jyﬂpl,j/P
720
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m n-—1
< C[ [leill, Y NL e 0/2m g oo josen /o
i=1 j=0

m n-1
< CH"bi ||*Z||f||LP3,j’HP3,j/p
i=1 j=0

m
< [ [1s:b Il
i=1

since for any j =0, 1, -, n -1, pg ; = p follows from

1/p37j =1/q+aj/n2 +0L/n2 +0L(n—1—j)/n2 =1/q+a/n=1/p.
Hence, the proof of Theorem 1.1 is completed. O
4. Applications

As in Theorem 1.1, the heat kernel upper bound (1.1) implies
boundedness of the commutator [l;, o/ 2]. This property (1.1) is
satisfied by large classes of differential operators (see [7]). We will list

some of them:

(a) The operator A is called the magnetic Schrodinger operator, which

is given by
A=—(V-id) +V(x),
where @ = (a1, ag, -+, a,), ap € I&., and 0<V e L} .(R"). The

semigroup e has a kernel p;(x, y), which satisfies the upper bound

(1.1) (see [15] and [16]).
(b) Let A= (aij(x))lsi,an be an nxn matrix of complex with
entries a; € L”(R") satisfying Re ) a;&;&; > X|§|2 for all x e R",

E=1(&, &y ", &,)eC" and some A > 0. We define divergence form

operator
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Lf = —div(AVY),

which we interpret in the usual weak sense via a sesquilinear form.

It is known that the Gaussian bound (1.1) on the heat kernel et s

true when A has real entries, or when n =1, 2 in the case of complex

entries, see [2, Chapter 1].
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