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Abstract 

Let L be the infinitesimal generator of an analytic semigroup on ( )nL R2  with 

Gaussian kernel bounds, and 2α−L  be the fractional integrals of L for 
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.0 n<α<  In this paper, we obtain the boundedness of multilinear 

commutators of BMO functions and 2α−L  in Morrey spaces. 

1. Introduction 

Suppose that L is a linear operator on ( ),2 nL R  which generates an 

analytic semigroup tLe−  with kernel ( )yxpt ,  satisfying a Gaussian 

upper bound, that is, 

( ) ,,
2

2
t
yxc

nt e
t

Cyxp
−

−
≤  (1.1) 

for nyx R∈,  and all .0>t  

For ,0 n<α<  the fractional integrals 2α−L  of the operator L is 
defined by 

( ) ( ) ( ) ( ).2
1

120
2 x

t
dtfexfL tL

+α−
−

∞
α− ∫αΓ

=  

Let b be a BMO function on .nR  The commutator of b and 2α−L  is 
defined by 

[ ] ( ) ( ) ( ) ( ) ( ) ( ) ( )., 222 xbfLxfLxbxfLb α−α−α− −=  

Note that if ∆−=L  is the Laplacian on ,nR  then 2α−L  is the classical 

fractional integrals αI  (see, for example, [17, Chapter 5]). It is well-

known that when ( ),BMO nb R∈  the commutator [ ]αI,b  is bounded from 

( )npL R  to ( ) npqnpL nq α−=α<< 11,1,R  ([3]). Duong and 

Yan proved that under condition (1.1), the commutator [ ]2, α−Lb  is still 

bounded from ( )npL R  to ( ) npqnpL nq α−=α<< 11,1,R     

(see [7] and [1]). 

Recently, commutators of the classical fractional integrals αI  in 

Morrey spaces have been studied by many authors, see [9, 14], and the 
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references therein. The classical Morrey spaces were introduced by 
Morrey in [11] to investigate the local behaviour of solutions to second 
order elliptic partial differential equations. The aim of this paper is to 

continue this line to study the multilinear commutator [ ]2, α−Lb
G

 of 

BMO functions and 2α−L  in Morrey spaces. Following [13], we define 

the multilinear commutator [ ]2, α−Lb
G

 by 

[ ] ( ) ( ) ( ( ) ( )) ( ) ( ) ,,,
1

2 dyyfyxKybxbxfLb ii

m

i
n α

=

α− −= ∏∫R
G

 (1.2) 

holds for each continuous function f with compact support, and for almost 

all x not in the support of f, where { },,,1 mbbb "
G
=  ib ’s are BMO 

functions and ( )yxK ,α  is the kernel of .2α−L  

Let ∞<≤ p1  and .10 << κ  The Morrey space is defined by 

( ) { ( ) },:: ,loc
, ∞<∈= κ
κ pL

npnp fLfL RR  (1.3) 

where 

,1sup
1

,

p
p

BBL dxf
B

f p 









= ∫κκ  (1.4) 

and the supremum is taken over all balls B in .nR  The following is the 
main result of this paper: 

Theorem 1.1. Assume condition (1.1) and let { },,,1 mbbb "
G
=  ib ’s 

are BMO functions. Then for ,11,1,0 npq
npn α−=
α

<<<α<  and 

,0 qp<< κ  the multilinear commutator [ ]2, α−Lb
G

 satisfies 

[ ] ( ) ,, ,,

1

2
κκ ppqq Li

m

i
L fbCfLb 













≤ ∗

=

α− ∏
G

 

where ∗ib  denotes the BMO norm of ( ).xbi  
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The paper is organized as follows. In Section 2, we recall some 
important estimates on BMO functions, maximal functions, and 
fractional integrals. In Section 3, we will prove the main result. We 
conclude this paper by giving applications to large classes of differential 
operators. 

Finally, in the sequel, we use C to denote a positive constant, which is 
independent of the main parameters, but it may vary from line to line. 

2. Definitions and Preliminary Results 

Denote the Hardy-Littlewood maximal function Mf and its variant 
fM r,α  by 

( ) ( ) ,1sup dyyfBxMf
BBx ∫∈

=  (2.1) 

and 

( ) ( ) ,1,0,1sup
1

1, ≥<α≤









= ∫α−∈

α rndyyf
B

xfM
r

r
BnrBx

r  (2.2) 

where the sup is taken over all balls B containing x. If ( )xfM r,0,0=α  

will be denoted by ( ).xfMr  For any ( ) ,1, ≥∈ pLf np R  the sharp 

maximal function fM L
�  associated with “generalized approximations to 

the identity” { },0, >− te tL  is given by 

( ) ( ) ( ) ,1sup dyyfeyfBxfM Lt
BBxL

B−

∈
−= ∫�  (2.3) 

where 2
BB rt =  and Br  is the radius of the ball B (see [10]). 

A function ( ) ( )nLyb R1
loc∈  is said to be in ( ),BMO nR  if and only if 

( ) ,1sup ∞<−∫ dybybB B
BB

 



MULTILINEAR COMMUTATORS OF FRACTIONAL … 23

where ( ) .1 dyybBb
BB ∫=  The BMO norm of ( )yb  is defined by 

( ) .1sup dybybBb B
BB

−= ∫∗  

Lemma 2.1. (i) Assume BMOb ∈  and .1>M  Then for every ball B, 
we have 

.log MbCbb MBB ∗≤−  

(ii) (John-Nirenberg lemma) Let .1 ∞<≤ p  Then ,BMOb ∈  if and 

only if 

( ) .1 pp
B

B
bCdybybB ∗≤−∫  

Proof. For the proof of this lemma, see [3]. See, also [5] and [8].   

Lemma 2.2. For ∞<< p1  and ,10 << κ  we have .,, κκ pp LL fCMf ≤   

For the proof of this lemma, see [4]. Using this lemma, it is easy to 

known that for ,1 pr <<  we have ( ) .,,, κκκ
1

prpp L
r

L
r

Lr fCfMfM ≤=   

Lemma 2.3. For all ,0 n<α<  we have ( ) ,,,1, κκ ppqq LL fCfM ≤α  

where ,11,1 npqnp α−=α<<  and .0 qp<< κ  

For the proof of this lemma, see [9, Theorem 3.5]. From this lemma, 

for ,1 pr <<  we have ( ) ( ) ,,,, 1,, κκκ
1

ppqrqpqq L
r

L
r

rLr fCfMfM ≤= αα  

where κand,,, qpα  satisfy conditions in Lemma 2.3. 

Lemma 2.4. For all ,0 n<α<  we have ( ) ,,,2
κκ ppqq LL fCfL ≤α−  

where ,11,1 npqnp α−=α<<  and .0 qp<< κ  
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Proof. Since the semigroup tLe−  has a kernel ( ),, yxpt  which 

satisfies the upper bound (1.1), it is easy to check that ( ) ( ) ≤α− xfL 2  

( ) ( ),xfC αI  where αI  is the classical fractional integral defined by 

( ) ( ) ( ) .0, ndy
yx
yfxf nn <α<

−
=

α−α ∫RI  

Note that αI  is bounded from κ,pL  to pqqL κ,  for ,1 α<< np  

,11 npq α−=  and ,0 qp<< κ  see [9, Theorem 3.6], [4] or [12]. 

Thus, we have ( ) ,,,2
κκ ppqq LL fCfL ≤α−  where ,1 α<< np  

,11 npq α−=  and .0 qp<< κ  This completes the proof of this 

lemma.   

Lemma 2.5. Assume that the semigroup tLe−  has a kernel ( ),, yxpt  

which satisfies an upper bound (1.1), and let { },,,1 mbbb "
G
=  ib ’s are 

BMO functions. Then, for every function ( ) ,,1, nnp xpLf RR ∈>∈  and 

,1 ∞<< r  we have 

( ) ( ) ( ( )) ( ),1sup
1

11
xfMbCdyyfbbeB rB r

i

m

i
iBi

m

i

Lt
BBx ∗

==

−

∈ ∏∏∫ ≤












−  

where .2
BB rt =  

Proof. For the proof of this lemma, see [6, Lemma 2.3] and             
[19, Lemma 2.3].   

We now state the following lemma, which gives an estimate on the 

kernel of the difference operator .22 α−−α− − LeL tL  For its proof, see     
[7, Lemma 3.1]. 

Lemma 2.6. Assume that the semigroup tLe−  has a kernel ( ),, yxpt  

which satisfies an upper bound (1.1). Then for ,10 <α<  the difference 

operator 22 α−−α− − LeL tL  has an associated kernel ( ),,, yxK tα  which 

satisfies 
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( ) ,, 2,
yx

t
yx
CyxK nt

−−
≤

α−α  (2.4) 

for some constant .0>C  

Now, we have the following analogy of the classical Fefferman-Stein 

inequality [18, Chapter IV] for the sharp maximal function .fM L
�  For the 

proof, see [10, Proposition 4.1]. 

Lemma 2.7. Assume that the semigroup tLe−  has a kernel ( ),, yxpt  

which satisfies an upper bound (1.1). Take 1
loc,0 Lf ∈>λ  and a ball 0B  

such that there exists 00 Bx ∈  with ( ) .0 λ<xMf  Then for every 

,10 <η<  there exist 0, >γr  (independent of 00 ,,, xfBλ ) and constant 

0>C  such that 

{ ( ) ( ) } ,,: 00 BCxfMAxMfBx r
L η≤γλ≤λ>∈ �  

where 1>A  is a fixed constant, which depends only on n. 

In order to prove our main result, we need the following lemma: 

Lemma 2.8. Let 10 << κ  and .1 ∞<< p  Then, for every 1
locLf ∈  

with ,,κpLMf ∈  there exists a constant 0>C  such that 

.,, κκ pp LLL fMCMf �≤  (2.5) 

Proof. Let B be a ball in .nR  Set { ( ) }.: λ>∈=λ xMfBxE  Then 

from Whitney decomposition theorem, we know that there exist mutually 
disjoint cubes kQ  such that kk QE ∪=λ  and .\10 ∅≠λEBQk ∩  

Denote kB  be the ball with same center as kQ  and 2
1=Br  diameter 

.kQ  Let .10~
kk BB =  Then there exists a ,\~

λ∈ EBBx kk ∩  that is, 

( ) .λ≤kxMf  Let us use Lemma 2.7. There are 0, >rC  and 1>A  such 

that, if 10 <η<  (to be chosen later), we can find 0>γ  in such a way 

that 
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{ ( ) ( ) } .~,:~
k

r
Lk BCxfMAxMfBx η≤γλ≤λ>∈ �  

Set { ( ) ( ) }γλ≤λ>∈=λ xfMAxMfBxU L
�,:  and so kk QEU ∪=⊂ λλ  

kk B~∪⊂  since .1>A  Then, 

{ ( ) ( ) }γλ≤λ>∈≤ ∑λ xfMAxMfBxU Lk
k

�,:~  

 k
k

r BC ~∑η≤  

 λη=η≤ ∑ ECQC r
k

k

r  

 { ( ) } .: λ>∈η= xMfBxC r  

One can prove that 

{ ( ) } λλ>∈λ= −
∞

∫∫ dAxMfBxpAdxMf ppp
B

:1
0

 

{ ( ) }( ) λγλ>∈+λ≤ λ
−

∞

∫ dxfMBxUpA L
pp �:1

0
 

.dxfMAdxMfCA p
LBp

pp
B

rp �∫∫ γ
+η≤  

Let us choose η  such that .21=ηrpCA  The former inequality turns 

out to be 

.2 dxfMAdxMf p
LBp

pp
B

�∫∫ γ
≤  

This implies that 

.,, κκ pp LLL fMCMf �≤  

The proof of this lemma is completed.   
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3. Proof of Theorem 1.1 

We first prove Theorem 1.1 in the case .10 <α<  For convenience, 
we use the following notation. Given any positive integer m, for any  

{ },,,1 mi "∈  we denote by m
iC  the family of all finite subsets 

{ ( ) ( )}iσσ=σ ,,1 "  of i different elements of { }.,,2,1 m"  For any 

,m
iC∈σ  we associate the complementary sequence { } .\,,2,1 σ=σ′ m"  

For any ,m
iC∈σ  we define 

[ ] ( ) ( ( )( ) ( )( )) ( ) ( ) ,,,
1

2 dyyfyxKybxbxfLb jj

i

j
n ασσ

=

α−
σ −= ∏∫R
G

 

for each continuous function f with compact support, and for almost all x 
not in the support of f. In the case that { },,,2,1 m"=σ  we denote 

[ ]2, α−
σ Lb
G

 simply by [ ]., 2α−Lb
G

 

To prove Theorem 1.1 in the case ,10 <α<  we only need to prove 
the following lemma: 

Lemma 3.1. Assume that the semigroup tLe−  has a kernel ( ),, yxpt  

which satisfies an upper bound (1.1). Let [ ]2, α−Lb
G

 be as in (1.2) and 
.10 <α<  Then for any real numbers r and s greater than 1 such that 
,α< nrs  there exists a constant ,0>C  such that 

([ ] ) ( ) ( ) ( )xfMbCxfLbM rsj

m

j
L ,

1

2, α∗
=

α−













≤ ∏

G�  

([ ] ) ( ),, 2

1
xfLbMbC rj

jC

m

i m
i

α−
σ′∗

σ∈∈σ=













+ ∏∑∑

G
 (3.1) 

for every ( )n
cLf R∞∈  and for every .nx R∈  
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Proof. For ,1=m  Lemma 3.1 was proved in [7]. So, we only need to 
prove the lemma for .1>m  To this end, we make use of induction on m. 

For any ( ) ,,,1
n

m R∈λλ=λ "
G

 we have 

[ ] ( ) ( ( ) ( )) ( ) ( )dyyfyxKybxbxfLb ii

m

i
n ,,

1

2
α

=

α− −= ∏∫R
G

 

(( ( ) ) ( ( ) )) ( ) ( )dyyfyxKybxb iiii

m

i
n ,

1
α

=

λ−−λ−= ∏∫R  

( ) ( ( ) ) ( ( ) ) ( ) ( )dyyfyxKybxb n
m
i

im

C

m

i
,1

0
ασ′σ

−

∈σ=

λ−λ−−= ∫∑∑
GGGG

R
 

( ( ) ) ( ) ( ) ( ) ( )xfbLxfLxb ii

m

i

m
ii

m

i













λ−−+λ−= ∏∏

=

α−α−

= 1

22

1
1  

( ) ( ( ) )σ
−

∈σ

−

=

λ−−+ ∑∑
GG

xbim

C

m

i m
i

1
1

1
 

( ( ) ) ( ) ( ) ,, dyyfyxKybn ασ′λ−× ∫
GG

R
 

where for any ( ) ( ( ) ( ) ).,
1

jj
i

j

m
i bbC σσ

=
σ λ−=λ−∈σ ∏

GG
 By expanding 

( ( ) ) [( ( ) ( )) ( ( ) )] ,σ′σ′ λ−+−=λ−
GGGGGG

xbxbybyb  we obtain 

[ ] ( ) ( ( ) ) ( ) ( ) ( ) ( )xfbLxfLxbxfLb ii

m

i

m
ii

m

i













λ−−+λ−= ∏∏

=

α−α−

=

α−

1

22

1

2 1,
G

 

( ) ( ( ) ) ( ( ) ) ( ) ( )dyyfyxKybxb n
m
i

im

C

m

i
,1

1

1
ασ′σ

−

∈σ

−

=

λ−λ−−+ ∫∑∑
GGGG

R
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( ( ) ) ( ) ( ) ( ) ( )xfbLxfLxb ii

m

i

m
ii

m

i













λ−−+λ−= ∏∏

=

α−α−

= 1

22

1
1  

( ( ) ) [ ] ( ),, 2
,

1

1
xfLbxbC im

C

m

i m
i

α−
σ′σ

∈σ

−

=

λ−+ ∑∑
GGG

 

where imC ,  are constants depending only on m and i. 

For fixed ,nx R∈  B denotes a ball containing x center at 0x  with 

radius ,Br  and 2B denotes the ball concentric with B and radius two 

times the radius of B. Split ,21 fff +=  where .21 Bff χ=  Then we can 

write that 

[ ] ( ) ( ( ) ) ( ) ( ) ( ) ( )yfbLyfLybyfLb ii

m

i

m
ii

m

i













λ−−+λ−= ∏∏

=

α−α−

=

α−
1

1

22

1

2 1,
G

 

( ) ( ) ( )yfbL ii

m

i

m













λ−−+ ∏

=

α−
2

1

21  

( ( ) ) [ ] ( )., 2
,

1

1
yfLbybC im

C

m

i m
i

α−
σ′σ

∈σ

−

=

λ−+ ∑∑
GGG

 

From this, it follows that 

([ ] ) ( ) ( ) ( )yfLbeyfLbe ii

m

i

LtLt BB













λ−= α−

=

−α−− ∏ 2

1

2,
G

 

( ) ( ) ( )yfbLe ii

m

i

Ltm B



























λ−−+ ∏

=

α−−
1

1

21  

( ) ( ) ( )yfbLe ii

m

i

Ltm B



























λ−−+ ∏

=

α−−
2

1

21  
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(( ) [ ] ) ( )., 2
,

1

1
yfLbbeC Lt

im
C

m

i

B

m
i

α−
σ′σ

−

∈σ

−

=

λ−+ ∑∑
GGG

 

Let .By ∈  Now we estimate [ ] ( ) ([ ] ) ( )yfLbeyfLb LtB 22 ,, α−−α− −
GG

 by 

[ ] ( ) ([ ] ) ( )yfLbeyfLb LtB 22 ,, α−−α− −
GG

 

( ( ) ) ( ) ( ) ( )yfbLyfLyb ii

m

i
ii

m

i













λ−+λ−≤ ∏∏

=

α−α−

=
1

1

22

1
 

( ) ( ) ( ) ( )yfbLeyfLbe ii

m

i

Lt
ii

m

i

Lt BB



























λ−+













λ−+ ∏∏

=

α−−α−

=

−
1

1

22

1
 

( ) ( ) ( ) ( )yfbLeyfbL ii

m

i

Lt
ii

m

i

B



























λ−−













λ−+ ∏∏

=

α−−

=

α−
2

1

2
2

1

2  

( ( ) ) [ ] ( )yfLbybC
m
iC

m

i

2
1

1
, α−

σ′σ

∈σ

−

=

λ−+ ∑∑
GGG

 

(( ) [ ] ) ( )yfLbbeC Lt

C

m

i

B

m
i

2
1

1
, α−

σ′σ
−

∈σ

−

=

λ−+ ∑∑
GGG

 

( ) ( ) ( ) ( ) ( ) ( ) ( ),: 7654321 yFyFyFyFyFyFyF ++++++=  

which yields 

[ ] ( ) ([ ] ) ( ) dyyfLbeyfLbB
Lt

B
B 22 ,,1 α−−α− −∫

GG
 

( )dyyFB j
Bj
∫∑

=

≤ 17

1
 

( ).:
7

1
xI j

j
∑
=

=  (3.2) 
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Let r′  be the dual of r such that .111 =′+ rr  We first estimate 

.1I  By the Hölder inequality and Lemma 2.1, 

( ) ( ( ) ) ( ) dyyfLybBxI ii

m

iB
2

1
1

1 α−

=

λ−= ∏∫  

( ) ( )
r

r
B

r
r

ii

m

iB
dyyfLBdyybB

1
2

1

1

11







λ−

≤ α−
′

′

=
∫∏∫  

( ) ( ),2

1
xfLMbC ri

m

i

α−
∗

=
∏≤  

where ( ) .,,1, mib Bii "==λ  For the term ,2I  by Lemmas 2.1 and 2.4 

again, we have 

( ) ( ) ( )

ωω

=

α−






























λ−≤ ∏∫

1

1
1

2
2

1 dyyfbLBxI ii

m

iB
 

( ( ) ) ( )

ss

ii

m

iB
dyyfyb

B
C

1

1
1

1





















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Similarly, we obtain by using Lemmas 2.1, 2.4, and 2.5, 
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Now we turn to estimate the term ( ).5 xI  Using Lemmas 2.1 and 2.6, 

we have 
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to above, we can obtain 
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Combining the estimates for ( )xI1  to ( )xI7  with (3.2) and then 

taking supremum over all balls containing x in (3.2) gives us (3.1), which 
completes the proof of Lemma 3.1.   

Proof of Theorem 1.1. In the case ,10 <α<  we can deduce 

Theorem 1.1 from (3.1) by induction on m. For ,1=m  from (3.1), we 

know that there exist two real numbers r and s greater than 1 satisfying 
prs <  such that 

([ ] ) ( ) ( ) ( ) ( ) ( )., 2
,

2 xfLMbCxfMbCxfLbM rrsL
α−

∗α∗
α− +≤�  

This combining with Lemmas 2.2, 2.4, and 2.8 gives 

[ ] [ ] pqqpqq LLL fLbMCfLb κκ ,, 22 ,, α−α− ≤ �  

 ( ) ( ) pqqpqq LrLrs fLMbCfMbC κκ ,, 2
,

α−
∗α∗ +≤  

 .,κpLfbC ∗≤  

For ,1>m  choose two real numbers r and s greater than 1 such that 

.α<< nprs  From (3.1), Lemmas 2.2, 2.3, and 2.8, we have 



PEIZHU XIE and GUANGFU CAO 34
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where ,1,11 α<<α−= npnpq  and ( )., npLf Rκ∈  

Now we turn to prove Theorem 1.1 in the general case .0 n<α<  For 
any ,1,,1,0 −= nj "  we denote jjj ppp ,3,2,1 ,,  by 
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Then, using Lemma 2.4 and Theorem 1.1 in the case ,10 <α<  we have 
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since for any ppnj j =−= ,3,1,,1,0 "  follows from 

( ) .11111 222
,3 pnqnjnnnjqp j =α+=−−α+α+α+=  

Hence, the proof of Theorem 1.1 is completed.    

4. Applications 

As in Theorem 1.1, the heat kernel upper bound (1.1) implies 

boundedness of the commutator [ ]., 2α−Lb
G

 This property (1.1) is 

satisfied by large classes of differential operators (see [7]). We will list 
some of them: 

(a) The operator A is called the magnetic Schrödinger operator, which 
is given by 

( ) ( ),2 xVaiA +−∇−=
G  

where ( ) ,,,,, 2
loc21 Laaaaa kn ∈= "G  and ( ).0 1

loc
nLV R∈≤  The 

semigroup tAe−  has a kernel ( ),, yxpt  which satisfies the upper bound 

(1.1) (see [15] and [16]). 

(b) Let ( ( )) njiij xaA ≤≤= ,1  be an nn ×  matrix of complex with    

entries ( )n
ij La R∞∈  satisfying 2Re ξλ≥ξξ∑ jiija  for all ,nx R∈  

( ) n
n C∈ξξξ=ξ ,,, 21 "  and some .0>λ  We define divergence form 

operator 
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( ),div fALf ∇−≡  

which we interpret in the usual weak sense via a sesquilinear form. 

It is known that the Gaussian bound (1.1) on the heat kernel tLe−  is 
true when A has real entries, or when 2,1=n  in the case of complex 

entries, see [2, Chapter 1]. 
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