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1. Introduction

Wigner-Yanase skew information
1 .
I,(H) = 5 Tr[(ilp"*, H]?]

= Tr{pH?] - Tr[p"2Hp'?H],

was defined in [10]. This quantity can be considered as a kind of the

degree for non-commutativity between a quantum state p and an
observable H. Here we denote the commutator by [X, Y]= XY - YX.

This quantity was generalized by Dyson
1 . b o1—
I o(H) = 5 Tr{(i[p?, HI)(i[p"™*, H])]

= TrlpH? ]~ Tr[p“Hp'“H], o <[0,1],
which i1s known as the Wigner-Yanase-Dyson skew information. It is
famous that the convexity of I p,a(H ) with respect to p was successfully

proven by Lieb in [7]. And also this quantity was generalized by Cai and

Luo
Lo a,p(H) = %Tr[(i[p“, H)) ([pP, H])p' " P]
L ot 1

- Tr{p“Hp' *H] - Tr[pPHp' PH]},

where o, B > 0 and o + B < 1. The convexity of (H) with respect to

p,a,B
p was proven by Cai and Luo in [2] under some restrictive condition. In
this paper, we let M,(C) be the set of all nxn complex matrices,

M, 5,(C) be the set of all nxn self-adjoint matrices, M, ,(C) be the

set of strictly positive elements of M, (C), and M, . 1(C) be the set of
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strictly positive density matrices, that is, M, , 1(C) = {p € M, (C)|Tr[p]
=1, p > 0}. If it is not otherwise specified, from now on, we shall treat

the case of faithful states, that is, p > 0. The relation between the

Wigner-Yanase skew information and the uncertainty relation was
studied in [9]. Moreover, the relation between the Wigner-Yanase-Dyson
skew information and the uncertainty relation was studied in [6, 11]. In
our paper [11] and [13], we defined a generalized skew information and
then derived a kind of an uncertainty relations. And also in [14, 15], we
gave an uncertainty relation of two parameter generalized Wigner-
Yanase-Dyson skew information. In this paper, we consider three
parameter generalized Wigner-Yanase-Dyson skew information and give
a kind of generalized uncertainty relations, which is a generalization of
the result of Ko and Yoo [5].

2. Trace Inequality of Wigner-Yanase-Dyson

Skew Information

We review the relation between the Wigner-Yanase skew information
and the uncertainty relation. In quantum mechanical system, the

expectation value of an observable H in a quantum state p is expressed

by Tr[pH]. It is natural that the variance for a quantum state p and an
observable H is defined by V,(H) = Tr[p(H - TripHI)?] = Tr[pH?] -
TrlpHJ?. Tt is famous that, we have

Vo(AW,(B) = | TrolA, BII, @)

for a quantum state p and two observables A and B. The further strong

results was given by Schrodinger

Vo (AW (B) - [Re{Covy(4, B > X|Tripla, BIJP,
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where the covariance is defined by Cov,(A, B) = Tr[p(A - Tr[pA]l)(B -

Tr[pB]I)]. However, the uncertainty relation for the Wigner-Yanase

skew information failed (see [9, 6, 11]).
1
I,(A),(B) = £ |Tr[plA, B]*.

Recently, Luo introduced the quantity U, (H) representing a quantum

uncertainty excluding the classical mixture

UL (H) =V, (H)? - (V,(H) - I(H)), 2.2)

then he derived the uncertainty relation on U,(H) in [8]

1
Up(4)U,(B) = £ |Tr{plA, BlJ*. (2.3)
Note that we have the following relation:
0<I,(H)<U,(H)< V,(H). (2.4)

The inequality (2.3) is a refinement of the inequality (2.1) in the sense of
(2.4). In [13], we studied one-parameter extended inequality for the
inequality (2.3).

Definition 2.1. For 0 < o < 1, a quantum state p and an observable H,

we define the Wigner-Yanase-Dyson skew information
1 . ro1-
Ip,a(H) = ETT[(l[Pa, Ho])(l[pl 4, Ho])]

= Tr[pH§ ] - Tr[p*Hop' *H, ],
and we also define

Tpu(H) = 2 Tr{{p%, Ho} {p'™%, Ho}l

= Tr[pH§ ]+ Tr{p®Hop' *H, ],
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where Hy = H — Tr[pH]I and we denote the anti-commutator by {X, Y}
= XY + YX.

Note that we have
S Trllp%, HoD)({lp ™, HoD)] = 3 To(Glo%, H]) '™, H)),
but we have
STIp®, Ho}ip'™, Holl# 3 Trllp®, H} '™, HJL

Then, we have the following inequalities:

I, (H)<I,(H)<J,(H)<J, o(H), (2.5)

since we have Tr[p1/2Hp1/2H] < Tr[p®*Hp'"*H] (see [1, 3], for example).

If we define

Up,a(H) = \/Vp(H)2 - (Vp(H) - Ip,a(H))27 (2.6)

as a direct generalization of Equation (2.2), then we have

0 < I o (H) < U, ,(H) < Uy(H), @.7)

due to the first inequality of (2.5). We also have

Up,oc(H) = \/Ip,oc(H)Jp,a(H)-

From the inequalities (2.4), (2.6), and (2.7), our situation is that, we

have

0<1,,(H)<I,(H)<U,(H),

and

0<1I,,(H)<U,q(H)<Uy(H).

We gave the following uncertainty relation with respect to U, ,(H) as a

direct generalization of the inequality (2.3).



6 KENJIRO YANAGI and SATOSHI KAJIHARA

Theorem 2.1 ([13]). For 0 < a. <1, a quantum state p and observables

A, B,

U, (AU, o(B) 2 a(l - o)|Tr[p[A, B]]*. (2.8)

Now, we define the two parameter extensions of Wigner-Yanase skew

information and give an uncertainty relation under some conditions.

Definition 2.2. For a, B > 0, a quantum state p and an observable H,

we define the generalized Wigner-Yanase-Dyson skew information
1, o o(H) = STe[(i[p®, Ho 1) (lpP, Hopt P
p,a,ﬁ( )—5 r[(ilp®, Ho ) (i[p", Ho])p ]
= S ATr{pHE ]+ Trlp* P Hop! P H, )

~ Tr{p*Hop' " *Hy | - Tr[pPHop' PH, ]},

and we define

1 —a—
Tp,0,p(H) = 5 Trl{p®, Ho} {pP, Holp'™*P]
1 —a—
= 5 (TrlpH§ ]+ Trlp® P Hop' ™" PH, ]

+ Tr{p“Hop' *Ho ]+ Tr[pPHop' PHy 1},
where Hy = H — Tr[pH]I and we denote the anti-commutator by {X, Y}
= XY +YX. We remark that o +p =1 implies Ip,a(H) = Ip,(X’l_a(H)
and J, o (H) = J, o 1-(H). We also define

Up,a,B(H) = \/Ip,(x,B(H)Jp,a,B(H)'

In this paper, we assume that o, B = 0 do not necessarily satisfy the

condition o + < 1. We give the following theorem:
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Theorem 2.2 ([14]). For a,B >0 and a+pf =21 or a+p < % and

observables A, B,
Up,a,8(A)Up,o,p(B) = aBTr{p[A, B]]?. 2.9)

And we also define the two parameter extensions of Wigner-Yanase

skew information, which are different from Definition 2.2.

Definition 2.3. For o, B > 0, a quantum state p and an observable H,

we define the generalized Wigner-Yanase-Dyson skew information
= 1 . .
Lo a,p(H) = 5 Trl(i[p®, Ho D(lpP, Ho D)

= Tr[p*PHE] - Tr[p®HopP H, ],

and we define
¥ 1
Tp,ap(H) = 5 Trl{p®, Ho}{p, Ho}]

= Tr[p**PHE ]+ Tr[p*HopP H, ],

where Hy = H — Tr[pH]I and we denote the anti-commutator by {X, Y}

~

= XY +YX. We remark that o+ =1 implies I, ,(H) = I, ; 1-o(H)

and J, o (H) = jp,a’l,a(H). We also define

ﬁp,a,B(H) = \/Tp,(x,B(H)jp,a,B(H)'
Then, we give the following theorem:

Theorem 2.3 ([15]). For o, B = 0(ap # 0) and observables A, B,

Ty p(A)T, o 5(B) 2 —P1r{pP L4, BIJ2.
(o +P)
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Remark 2.1. We remark that (2.8) is derived by putting p =1 - a in

(2.9). Then, Theorem 2.2 is a generalization of Theorem 2.1 given in [13].

3. Trace Inequality of Monotone or Anti-Monotone

Pair Skew Information

Definition 3.1. Let f(x), g(x) be nonnegative continuous functions
defined on the interval [0, 1]. We call the pair (f, g) a compatible in log-

increase, monotone pair (CLI monotone pair, in short), if

@ (f(x) - f(y))(g(x) - 8(y)) 2 0 for all x, y € [0, 1].
() f(x) and g(x) are differentiable on (0, 1) and

.. G'(x) G'(x)
0< Ogalcf;l F'(x) = 0S<I;I<)1 F'(x)

< o0,

where F(x) = log f(x) and G(x) = log g(x).

Definition 3.2. Let f(x), g(x) be nonnegative continuous functions
defined on the interval [0, 1]. We call the pair (f, g) a compatible in log-

increase, anti-monotone pair (CLI anti-monotone pair, in short), if

@ (f(x) - f(¥)(g(x) - g() < 0 forall x, y [0, 1].

() f(x) and g(x) are differentiable on (0, 1) and

_ inf <
© <oy F'(x) = g<x<1 F'(x)

G'(x) _ G'(x) <o,

where F(x) = log f(x) and G(x) = log g(x).

Let f(x), g(x), h(x) be nonnegative continuous functions defined on
[0, 1] and be differentiable on (0,1). We assume that (f, g) is CLI
monotone pair and (f, #) is CLI monotone or anti-monotone pair. We

introduce the correlation functions in the following way:
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Definition 3.3.

Io.(7. 6. m(H) = 3 TrIGIF(), HoD)(ilg(), HoA(p)]
= =5 Trl(f(p), HoD)([8(p), HoDR()]
= 5 TrI(F()Ho — Hof(p)) (8(p)Ho — Hog(p)h(p)]
= 5 T () Hog () Hoh(p) ~ f()HEZ(0Ih(p)]
+ 5 T Hof (p)2 () Hoh(p) — Hof (0)Hog(p)h(p)]
= 5 T OWp)Hog()Hy — F(p)g()(p)H3 ]
+ = TrTF(p)2(p)Hoh(p)Ho — (p)h(p)Hof (0)Ho ]
= S AT RO)HE |+ T () (p)Hoh(p)Ho ]}
- % {Trf(p)Hog(p)h(p)Ho | + Trlg(p)Hof (pYa(p)Ho 1};
To.(f,e.m(H) = 3 Trl{7(p), Ho} {g(p), Ho Wh(p)]
= S T((F(p)Ho + Hof () ((p)Ho + Hog(p))h(p)]
= £ Tl ()Hog () Hoh(p) + F()HE(p)A()]
+ 5 T Hof (p)g(p)Hoh(p) + Hof (2)Hog(p)h(p)]
= S AT () RO)HE |+ T () (p)Hoh(p)Ho ]}

+ TV (p)Hog (oWhlp)Ho ] + Trlg(p)Hof (P)h(p)Ho I
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and

Up,(f,g,h)(H) = \/Ip,(f,g,h)(H)Jp,(f,g,h)(H)'

We are ready to state our main result. For f, g, h, we let

B(f’g’h):min{ m 2’ m 27 M 27 M 2}7
l+m+n)” @+m+N)* Q+M+n)* (1+M+N)
3.1)
where
_ inp ) _ G'(x)
me o Fe M T S TR
_ i Hx) _ H'(x)
L S R Ay P

We consider the following two assumptions:

(D (f, g) and (f, h) are CLI monotone pair satisfying

G(y)-G(x) _ H(y)- H(x)

Fy) - Fx) = Fly) - Fl) T

1+

where F(x) = log f(x), G(x) = log g(x), and H(x) = log h(x).
(IT) (f, g) is CLI monotone pair and (f, ) is CLI anti-monotone pair
satisfying

G(y)- G(x) | H(y)- H(x)
FO) - F) "V F) - Flo) = °

for x < y.

Theorem 3.1. Under the Assumption (I) or (I), the following
inequality holds:

Up (. 2.0/ AU, (1. ¢.10)(B) 2 B(f, & WITr[f(p)e(p)n(p) 4, BI]?,

for A, B e M, 4(C).
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4. Proof of Theorem 3.1

Let p = Zl il di )(0i] € M, 4 1(C), where {|¢; )}, 1s an orthonormal

set in C". Let (f, g) be a CLI monotone pair and (f, ) be a CLI

monotone or anti-monotone pair. By a simple calculation, we have for any
HeM n,sa ((C)

Trlf(p)g(pIhp)HE] = D 5 (F(hi g hi Yals) + £ )2 0. ) iy

i,J

(4.1)

T f(0)(p)Hoh(p)Ho ] = > 2 {F (1)1 a0k + £ ) Wl i
LJ

(4.2)

TG ] = 3y 0D 05 ) G0 )eh o s
L]

(4.3)

| =

Tr{g(p)Hof (p)h(p)Ho ] = Z 5 (8 )f ()R ;) + () (hi YR )} ail,
i, ]

(4.4)

where a;; = (¢;|Ho|p;) and a; = a_ﬂ From (4.1)-(4.4), we get

T, e (H) = & 3 (F0) = £0,)) (80~ 800 (AO) + A )

i<j

To, (1.m(H) 2 5 2 (F0) + F05)) (80hi) + £005)) (h0p) + RO

i<j

To prove Theorem 3.1, we need to control a lower bound of a
functional coming from a CLI monotone or anti-monotone pair. For
f, g, h satisfying Assumption (I) or (II), we define a function L on

[0, 1] x [0, 1] by
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Lx, y) = (f@)* — f*) (g(x)* — g(3)*) (h(x) + h(y))* . (4.5)
(F(x)g(@)h(x) - F(¥)g()h(y))

Proposition 4.1. Under the Assumption (I) or (II),

ml[% ]L(x y) > 16B(f, g, h),

where B(f, g, h) is defined in (3.1).
For the proof of Proposition 4.1, we need the following lemma:
Lemma 4.1. If a, b, ¢ > 0 satisfy 0 <a+b<corifa,b>0,c<0

satisfy a + b +c¢ > 0, then the inequality

(" —1) (™ -1)(e” +1)* _ _ 16ab
(e(a+b+c)r _ 1)2 - (@+b+ 0)2 ’

holds for any real number r.

Proof. We put e¢” = ¢. Then, we may prove the following:

(2% —1)(20 —1)(t€ +1)2 » — 1690 _(ylavbre) 12 (4
(a+b+c)

for ¢ > 0. It is sufficient to prove (4.6) for ¢t >1 and a, b, c > 0,

O<a+b<cora,b>0,c<0,a+b+c>0.

By Lemma 3.3 in [13], we have for 0 < p <1 and s > 1,
(%7 =1)(s**P) 1) = 4p(1 - p)(s - 1)*.
We assume that a, b > 0. Weput p = a/(a +b) and st(@+0) _ ¢ Then

(tZa —1)(t2b _1) > __*ab 4ab ( a+b 1)2.

(a+b)

Then we have

(2% ~1)(¢20 —1)(t¢ +1)% > %( 190 _1)2(¢ 1 1)2.
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In order to show the aimed inequality, we have to prove that

(ta+b _ 1)2(tc " 1)2 > 4((1 + b)22 (ta+b+c _ 1)2‘
(@+b+c)

Since a + b + ¢ > 0, it is sufficient to prove the following inequality:

at+b _ c 2(0, + b) at+bte
(t 1)(¢ +1)z—a+b+c(t 1), 4.7)

for t>1 and a,b,¢c>0,0<a+b<cora b>0,c<0,a+b+c>0.

We put

S(t) = (ta+b ~1)(t° +1) - %(ta%ﬂ Y

Then
S'(t) = t“H(c—a-b)t*" —c+ (a+b)t?0Y,
Here we put
T() = (c—a—-b)t*" — ¢+ (a+b)t2H0c.
Then
T'(t) = (@ + b)(c — a — b)t** 0771 (t¢ —1).

When a+b<¢ T'(¢)>0. Since T(1)=0,7T(¢)>0 for t>1. Then
S'(t) = 0. Since S(1) =0, S(t)>0 for ¢t >1. On the other hand, when
¢<0,T'(t) = 0. Since T(1) =0, T(t) = 0 for ¢ > 1. Then S'(t) > 0. Since
S(1) =0, S(t) > 0 for ¢ > 1. Hence we get (4.7). O

Proof of Proposition 4.1. Let x < y. In the last line of (4.5),

dividing both the numerator and the denominator by (f(x)g(x)h(x))* and
by using F(x) = log f(x), G(x) = log g(x), and H(x) = log h(x), we get



14 KENJIRO YANAGI and SATOSHI KAJIHARA

(2FW)-F(x) _ 1) (e2C0)-G) _ 1) (eH)-H(x) | 1)

Lix 5) = (FOIFe GG +H)-H) _ 12

By the generalized mean value theorem, there exist z(x <z < y),
w(x < w < y) such that

G(y) - G(x) _ G'(2) = k(z) H(y)- H(x) _ H'(w) = U(w)
F(y)-F(x) F'(z) " F(y)-Fx) Fw) '

Thus, we have

(2FW)-F) _ 1) o2k F)-Fx) _ 1) (o @) F)-Fx)) | 1)2
(eWHhEH @) (F()-F(x) _ 12 '

L(x, y) =

It follows from Lemma 4.1 that for any R > 0, the function

R? —1)(R%* —1)(R" +1)?

(k, f) - A(k’ () = ( (R(1+k+/f) _ 1)2

’

defined in ke[m, M], ¢ e[n, N| is bounded from below by

min,, << n<e<N 1A(E, 0)}. It is easy to obtain

min_ 1Ak, 0); 2 16B(f, g, h).

m<k<
We complete the proof. O

Proof of Theorem 3.1. Since

Tr(f(p)g(p)r(p)[A, B]] = Tr[f(p)g(p)h(p)[Ag, Byl

= 2i Im{Tr[f(p)g(p)h(p)Ao By |}

- 2 Tm Z (F(y)g(hp (1))

l<m

- f(km )g(xm )h(xm ))amﬂbﬂm

= 2 )" (fO0 )k ()

l<m

- f(}"m )g(}"m )h(km )) Im(amébfm )7
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forany A, B € M, (,(C), where a,,) = (¢,,|A¢|d,) and byp, = (¢,|Bo|dm )

we have

|Tr(f(p)g(p)h(p)[A, BI]|

< 2" (3 )0 aC0y) = F (o & (e Ve )| | T b )

l<m

< 2Z|f(7\'l )g(xl )h(xf ) - f(xm )g(xm )h(xm )l |amf||bfm|'

l<m

By Proposition 4.1, we have

B(f. g, B)|Trlf(p)g(p)h(p)[A, Bl

< 4B(f, g h) (D 1F(1)g(hp a0y ) = (@0 Vol |t || )

l<m

< 2 (NI = O ) 0 = @ ) (B )+ 5O )P L 1]

l<m

= 4 O A A )T m)ag T (E m)Tg (7 )T (e )b

/<m

where Af(& m):f()"f)_f(}"m%Ag(g’ m):g(}“é)_g(x’m)’ and 1—‘f(f’ m)
:f(kf)"’f()"m)’rg(f’m):g(}"é)'i'g(}\'m)’rh(g’m):h(kf)'f'h(}"m)' By

Schwartz inequality, we have

B(f, g, h)|Tr[f(p)g(p)r(p)[A, B]]P

1
< 5 D A6 m)AG (6 m)y (L m)]ay, [

l<m

1
x5 2 Tp(ts mg (6, T4 (¢, m)|byn [

l<m

<1y, (f,6,m)(A) Iy, (£, ,n)(B)-



16 KENJIRO YANAGI and SATOSHI KAJIHARA

Similarly, we have

B(f, 8, h)|Tr[f(p)g(p)h(p)[A, B]]|2 < Ip, (f,g,h)(B)Jp, (f,g,h)(A)-

Hence by multiplying the above two inequalities, we have

B(f, & M| Trif(P)g(e(P)A, BII* < U, (.0.0) (AW, (. g.1)(B)-

When h(x) = 1, we obtain the result given by Ko and Yoo [5].

Corollary 4.1 ([5]). If (f, g) is CLI monotone pair, then the following
inequality holds:

Uy, (7.0 AU,. (r.0)(B) = B(f, &)|Trlf(p)g(p)[A, B,

for A, B € M, 4(C), where
I, (7.8)(A) = 3 TLGLF(), Ao D) (iLe(p), 40D,

Tp. (1.6)(A) = 3 TI{F(P), Ao} Hg(p), Ao},

Up, (1.0)(A) = VI, (1. 0)Ip. (f.0)

= min m M .
RF. £) = {(m+M)2,(m+M)2}

We also have the following corollary:

Corollary 4.2. Let f(x)=x% (a > 0), g(x) = xP (8> 0), and h(x) = x”
(y>0o0ry<0).

D) If o, B, y = 0 satisfy 0 < o+ B < v, then

g n)=—2
B(f, g, h) aprr]
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@) If a,B =20,y <0 satisfy o +p+7v > 0, then

g h :oc—B‘
B(f, g, h) @pe)

Remark 4.1. When o, B > 0, y < O satisfy a + B+ y > 0, we remark

that h(x) is not continuous function on [0, 1] because

lim A(x) = + .
x—>+0

Then in this case by putting ¢ > 0 such that ¢ is smaller than the

minimal eigenvalue of p, we can assume that h(x) is continuous on

[¢, 1]. Hence we obtain the same result as Corollary 4.2.

Remark 4.2. When y = 0 in (2) of Corollary 4.2, we have the result

in [15] (Theorem 2.3). And when o + B +y =1 in Corollary 4.2, we have
the result in [14] (Theorem 2.2). That is (1) implies o, p > 0, o + B < %

and (2) implies o, B >0, a +p > 1.
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