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Abstract 

In this note, we consider the following numbers: { ( )} the, −kmnJ  generalized      

k-Jacobsthal numbers and { ( )} the, −kmnj  generalized k-Jacobsthal-Lucas 

numbers. Also, we introduce the incomplete numbers { ( )}kr
mnJ ,  and { ( )}., kr

mnj  

Next, we introduce and consider the sequences of numbers: { ( )} the, −kl
mnJ  l-th 

convolution of the sequence { ( )}kmnJ ,  and { ( )} the, −ks
mnj  s-th convolution of 

the sequence { ( )}., kmnj  
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1. Introduction and Definitions  

In papers [1], [2], Djordjević considered two classes of polynomials: 
( ) the, −xJ mn  generalized Jacobsthal polynomials and ( ) the, −xj mn  

generalized Jacobsthal-Lucas polynomials. The particular cases of these 
polynomials are so-called Jacobsthal polynomials ( )xJn  and Jacobsthal-

Lucas polynomials ( ),xjn  which were investigated by Horadam [7]. 

If 1=x  in ( )xJ mn,  and ( ),, xj mn  we get the generalized Jacobsthal 

numbers mnJ ,  and the generalized Jacobsthal-Lucas numbers mnj ,      

(see [3]). Namely, in [3], authors defined the incomplete generalized 

Jacobsthal numbers k
mnJ ,  by 
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and the incomplete generalized Jacobsthal-Lucas numbers k mnj ,  by 
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Motivated essentially by the work by Pintér and Srivastava [10] and 
by the recent works [8] and [9], in this note, we define the generalized     
k-Jacobsthal numbers ( )kmnJ ,  and the generalized k-Jacobsthal-Lucas 

numbers ( ),, kmnj  respectively, by the following recurrence relations: 

( ) ( ) ( ),2 ,,1, kkkk mmnmnmn JJJ −− +=   (1.7) 

with 

( ) ( ) ( );,,,1,,1,,0 1
,,0 N∈≥−=== − mnmnmnJJ n
mnm …kkk  

and 

( ) ( ) ( ),2 ,,1, kkkk mmnmnmn jjj −− +=   (1.8) 

with 

( ) ( ) ( ).,,,1,,1,,2 ,,0 N∈≥−=== mnmnmnjj n
mnm …kkk  

From the recurrence relations (1.7) and (1.8), we get the following 
explicit formulas: 
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Let ( )kmnJ ,  be the coefficients of a power series, and let’s consider 

the corresponding analytic function ( ),tFm  defined by 

( ) ( ) ( ) ( ) ⋅+⋅+⋅+= "2
,2,1,0 tJtJJtF mmmm kkk   (1.11) 

The function (1.11) is called the generating function of the k-Jacobsthal 
numbers (see [8], [9]). 
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Using the relation (1.11) and the initial conditions in the relation 
(1.7), we get 

( ) ( ) ( ) .21 1
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Also, in the similar manner, we find that 
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is the generating function of the sequence { ( )}., kmnj  

2. Incomplete Generalized k-Jacobsthal Numbers 

Firstly, we define the incomplete generalized k-Jacobsthal numbers 

( )kr
mnJ ,  by 
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Also, we define the incomplete generalized k-Jacobsthal-Lucas 

numbers ( )kr
mnj ,  by 
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( ) ( ) ( ).,,1,1, mljj mlmr
r

mlmr …== −++ kk  (2.6) 

In this paper, we find the generating functions of the incomplete 

numbers ( )kr
mnJ ,  and ( )., kr

mnj  

The following known results ([10], [3]) will be required in our 
investigation of the generating function of the incomplete generalized     

k-Jacobsthal numbers ( ),, kr
mnJ  defined by (2.1). For the theory and 

applications of the various methods and techniques for deriving 
generating functions of special functions and polynomials, we may refer 
the interested reader to a recent treatise on the subject of generating 
functions by Srivastava and Manocha [11]. It is not difficult to prove the 
following result (see [3]). 

Lemma 2.1. Let { }∞=0nns  be a complex sequence satisfying the 

following nonhomogeneous recurrence relation: 

( ),,,21 N∈≥++= −− mnmnrsss nmnnn k   (2.7) 

where { }nr  is a given complex sequence. Then the generating function ( )tS  

of the sequence { }ns  is 
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where ( )tG  is the generating function of the sequence { }.nr  

Our first result on generating function is contained in Theorem 2.1 
below. 

Theorem 2.1. The generating function of the incomplete generalized 

k-Jacobsthal numbers ( )kr
mnJ ,  is given by 
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m
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where 
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Proof. Using the explicit formula (2.1) and the recurrence relation 
(1.7), we get 
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Suppose also that 
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Then, for the generating function ( )tG  of the sequence { },nr  we can 
show that 
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Thus, in view of the above lemma, the generating function ( )tSr
m  of 

the sequence { }ns  satisfies the following relation: 
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3. Incomplete Generalized k-Jacobsthal-Lucas Numbers 

For the incomplete generalized k-Jacobsthal-Lucas numbers ( ),, kr
mnj  

defined by (2.4), we can prove the following generating function. 

Theorem 3.1. The generating function of the incomplete generalized 

k-Jacobsthal-Lucas numbers ( ) ( )0, N∈rjr
mn k  is given by 
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Proof. Similarly to the proof of Theorem 2.1, from the explicit 
formula (2.4), it follows that 
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Then, using the known method based upon the above lemma, we find 
that 
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is the generating function of the sequence { }.nr  Now, we can easily get 

(3.1).  

Remark 1. Specially, for ,2=m  Theorem 3.1 yields the generating 

function for the incomplete numbers ( ) :knj  
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4. Convolutions of the Generalized k-Jacobsthal 
and k-Jacobsthal-Lucas Numbers 

Here we define the sequences of numbers { } the, −l
mnJ  l-th convolution 

of the generalized -k Jacobsthal numbers, and { } the, −s
mnj  s-th convolution 

of the generalized -k Jacobsthal-Lucas numbers, where l and s are some 

nonnegative integers. 

The l-th convolution of the generalized -k Jacobsthal numbers 

{ ( )}kl
mnJ ,  is given by the following generating function: 
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The s-th convolution of the generalized k-Jacobsthal-Lucas numbers 
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mnJ ,  is defined by 
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Next, from (4.1), using the known method, we find the following 

explicit formula for the sequence { ( )} :, kl
mnJ  
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is the generalized hypergeometric function (see [11]). 

5. Partial Derivatives and Convolution Numbers 

In this section, we consider again the numbers ( ),, kl
mnJ  on the other 

manner. Namely, we find the connection of the l-th convolution and the 
partial derivative with respect to k  of the sequence ( )., kmnJ  

Let 
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Differentiating the relation (1.12) one by one, l-times, with respect to ,k  

we get the following relation: 
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One result is given by the following statement. 

Theorem 5.1. For 1≥m  it holds 
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The result, more general than the previous one, is given by the next 
theorem. 

Theorem 5.2. For some ,1≥r  the following relation holds: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ).1!112 1
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r
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r
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Proof. The proof is similar to the proof of Theorem 5.1.  

Remark 2. If ,2=m  the formula (5.3) becomes 
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Applying the formula (5.4) for ,3,2,1=r  we get some members of 

the sequence { ( )},, kr
mnJ  which are given in Tables 1 and 2. 
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Table 1. Numbers ( )kr
nJ 2,  

n 0=r  1=r  
0 0  

1 1 1 

2 k  k2  
3 22 +k  43 2 +k  

4 kk 43 +  kk 124 3 +  
5 46 24 ++ kk  12245 24 ++ kk  

6 kkk 126 35 ++  kkk 48406 35 ++  

7 82410 246 +++ kkk  32120607 246 +++ kkk  

8 kkkk 324012 357 +++  kkkk 160240848 357 +++  

9 16806014 2468 ++++ kkkk  804804201129 2468 ++++ kkkk  

Table 2. Numbers ( )kr
nJ 2,  

n 2=r  3=r  

0 0  

1 1 0 

2 k3  0 

3 66 2 +k  1 

4 kk 2410 3 +  k4  

5 246015 24 ++ kk  8105 2 +k  

6 kkk 12012021 35 ++  4020 3 +k  

7 8036021028 246 +++ kkk  4012035 24 ++ kk  

8 kkkk 48084033636 357 +++  kkk 24028056 35 ++  

9 2401680168050445 2468 ++++ kkkk  16084056084 246 +++ kkk  
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Remark 3. For ,3=m  the formula (5.3) becomes 

( ) ( ) ( ) ( ) ( ) ( ) ( ).2!14 1
3,33,3,3 kkk −

−++ +−=+ r
rn

r
n

r
n JnrJJ   (5.5) 

Hence, for ,3,2,1,0=r  from (5.5), we get the some initial members of 

the sequence { ( )},3, k
r
nJ  which are given in Tables 3 and 4. 

Table 3. Numbers ( )kr
nJ 3,  

n 0=r  1=r  
0 0  

1 1 1 

2 k  k2  
3 22 +k  23k  

4 23 +k  44 3 +k  
5 kk 44 +  kk 125 4 +  

6 25 6kk +  25 246 kk +  

7 48 36 ++ kk  12407 36 ++ kk  

8 kkk 1210 47 ++  kkk 48608 47 ++  

9 258 2412 kkk ++  258 120849 kkk ++  
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Table 4. Numbers ( )kr
nJ 3,  

n 2=r  3=r  

0 0  

1 1 1 

2 k3  k4  
3 26k  210k  

4 610 3 +k  820 3 +k  

5 kk 2415 4 +  kk 4035 4 +  

6 25 6021 kk +  25 12056 kk +  

7 2412028 36 ++ kk  4028084 36 ++ kk  

8 kkk 12021036 47 ++  kkk 240560120 47 ++  

9 258 36033645 kkk ++  258 8401008165 kkk ++  
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