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Abstract

This paper focuses on the symmetries of the Gardner equation or the combined
Korteweg-de Vries-modified Korteweg-de Vries (KdV-mKdV) equation. The
differential form technique, which is called Harrison method for finding the
point symmetry algebra will be explained for the Gardner equation. This will be
treated in Section 2, obtaining three dimensional Lie point transformations for
the equation. The results obtained from the Harrison approach have been tested
and confirmed with the Lie method, in Section 3. Finally, a generalized form of
solutions to the Gardner equation is exhibited in Section 4, using the symmetry
group of the equation.

1. Introduction

Lie symmetries of differential equations is one of the important

concepts in the theory of differential equations and physics. Among

others methods, Lie method is a firm one for finding symmetries of

differential equations. This method was first applied to determine point

symmetries. In 1969-1970, Kent Harrison and Frank Estabrook devised a

method to calculate symmetries of differential equations
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differential forms and Cartan’s formulation of differential equations [1].
They were simply trying to understand how the symmetries of Maxwell’s
equations could be found from the differential form version of those
equations. Once they realized that the key to symmetries was the use of
the Lie derivative, Kent Harrison applied the method to several others
equations such as the one dimensional heat equation, the short wave gas
dynamic equation, and the nonlinear Poisson equation (see [2]) and [3].
Here we apply this method to the Gardner equation or the combined
KdV-mKdV equation, given as follows:

Uy + (280 — 30t Yuy +uy =0, (1.1)

where u(x, t) is a function of space x and time variable ¢; subscripts

denoted partial derivatives; 8 and o are real constants, with & is no
wanishing. The Gardner equation is widely used in various branches of
physics, such as plasma physics, fluid physics, and quantum field theory.
The equation plays a prominent role in ocean wave. This equation has
been investigated thoroughly in the literature because it is used to model

a variety of nonlinear phenomena [4, 6].

Note that in 2008, Mehdi Nadjafikhah and Seyed-Reza Hejazi applied

the differential form approach to the standard KdV equation, with & = %

and o =0 (see [5]). We refer to that paper. Thus, our tools in this
method are differential forms and Lie derivatives. In the Section 3, a

generalized form of solutions of the KAV-mKdV equation will be given.

2. The Harrison Method Applied to the
Gardner Equation

The method proceeds as follow. We consider a set of partial

differential equations, defined on a differential manifold M of n
independent variables x = (xq, ..., x,) € R" and m dependent variables
u=(u',..,u™)eR™ (n=2and m =1 in our special case). Let X = R?,

be the space representing the independent variables, and let U = R,
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representing the space of dependent variable. We define the partial
derivatives of the dependent variable as new variables (prolongation) in

sufficient number to write the equation as second order equation, thus
prolonging the manifold M to a manifold N = M® of the 2nd Jjet-space

X x U@ of the manifold X x U. The independent variables (x, t) € X;

(2

the dependent variable u € U and u ) = (W, UyyUpy Uy, Uy, Uy ) € U(2),

thus (x, ¢, u(z)) = (2, b, U, Uy, Upy Uyy> Uy, Uy ) € X X U, The space

M) s the corresponding 2nd prolongation of the subspace
M < X xU. Then we can construct a set of differential forms. We speak
of the set of forms, representing the equations, as an ideal I. It is to be
closed. Then for determining the invariance of the differential equations,
we may construct the Lie derivative of the forms in the ideal I. Lie
derivative of geometrical object, like tensors, are associated with
symmetries of those objects. If the Lie derivative vanishes, then the
vector V represents the direction of an infinitesimal symmetry
transformation in the manifold. Here the Lie derivative will be denoted
by £ and the forms are our tensors. It is now simple to treat the
invariance of a set of differential equations. A set of equations is
invariant if a transformation leaves the equations still satisfied, provided
that the original equations are satisfied. In the formalism, we have
introduced, this is easily stated: the Lie derivative of forms in the ideal
must lie in the ideal: £y I < I. Then if the basis forms in the ideal are
annulled, the transformed equations are also annulled. And this should
therefore represent symmetries. In practice, this means simply that the
Lie derivative of each of the (basis) forms in [ is a linear combination of
the forms in I. For further details on the method, see [1, 2, 3, 5].

In the sequel, we utilize this method to find the Lie point symmetries
for the Gardner equation of the form (1.1). First, write the Equation (1.1)

as a second order equation by defining a new variable w = u,. Thus

Equation (1.1) becomes

Wy + (26U — 3ou w + u;, = 0. (2.1)
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Then, we construct a set of 1-forms on the manifold A as follow.

Lemma 2.1. For Equation (1.1), the required 1-forms are
Bt = du — u,dt — u,dx, (2.2)
B2 = du; — uydt — uy,dx, (2.3)
p3 = du, — u, dt — u,,dx.

Proof. We consider the 8-dimensional manifold corresponding to the
Equation (2.1), with the coordinates (¢, x, u, u;, Uy, Usy, Upy, Uy )-

Considering this equation, we have the following contact conditions:
du = wdt + u,dx,
du; = uyudt + uy,dx,
du, = updt + u,,dx,
which lead to the contact 1-forms of Lemma 2.1. O

Then, we have to construct the forms of the ideal I by the following:

Lemma 2.2. The ideal I consists of the following 2-forms:
vh o= (wguyy — uguyy )dx Adt + ugdx A du
—u,dx Aduy + uydt Adu —udt Aduy + du A duy;
Y2 = (Upllyy — Ugligy )dx A dE + Uypdx A du
—uydx Aduy + uydt Adu —u,dt Aduy, + du Aduy;
v = (ud - uyty, Ydx Adt + ugdx A dy,
— U dx ANduy + up dt Aduy — updt Adu, + dug A duy;

v = dx Aduy, + dt Aduy;
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vO = dx A duy, + dt A duy;
v = dx Aduy, + dt Aduy,;
v' = f(u)dt Adu — dx Adu + dt A duy,.

Proof. The proof of this lemma is straightforward. The forms yl, y2,

y3, y4, y5, and yG, are obtained from Lemma 2.1 as follows:
1 1 2 2 1 2 4 1 5 2 6
' =B ABY P =BIABY vP=BP AT, vt =dpl, 0 =dp? 10 =dp’,

where A is the wedge product. And form y7 is obtained from Equation

(1.1) by noting that

du du du
Ugxx = dxx_x o Ux =g W= (2.4)
O
2.1. Lie symmetries of the Gardner equation
Let
_yt 9 yx 0 yu 0
X—Vat+V 8x+V 0 (2.5)

be a symmetry generator of the KAV-mKdV equation (1.1), defined on the

(¢, x, u) space. The second prolongation of X is the vector field

_yt o x 0 w0 w O uy 0
V=V at+V 8x+v au+V aut+V i

+ Yl i + Yl L + YV lax L

2.6
Ouyy Oy, Oy 2.6)

that acts on the manifold A/, with the coordinates (¢, x, u, w;, u,, uy,

U, Uyy ), Where the Vi(i =1,2,...,8) are smooth functions to be

determined in AN. Write the Lie derivatives of forms in I as linear

combinations of themselves as follow:
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7
Lyyt = ijyf, i=1,..1,
J=1

2.7

where the yi are the forms of Lemma 2.2 and the i; are O-forms

(functions), for j =1, 2, ..., 7.

Proposition 2.1. Corresponding to the 2-form yl, the identity
7 .
Lyy' = ijyf, i=1,2 .1,
=1

is equivalent to the following system of partial differential equations:
V% uy + u Vi —u V=0 (g — wyy, )
- 7‘2(uxutx — Ul ey ) - 7‘3(ut2x + uttuxx)
= VU —u, V1 (wpuy — wyy, Wi + (e — uyy )Vi + U Vi

(uxutt — Uplpy )Vtu

+ V,th + uthjCC + uth,Z - uxV,Zt + u’ttV,ic - klutx - }“2uxx + }"7
thf - (uxutt = Ul )Vi

+ uthiC + utth + uttV,Z - utV,Lth - V?t = MUy — holyy — A7du

(wxltyy — wyligy )Vit

u u
-V +u, V

Ut Ug

= (gt — wptyy )Vzt

x us t u _
- uxV,x - uxV - utV,x + V,x + klux - X3uxx -

(2.8)

= 0;

= 0;

_ X u _ U —Uy t _ t _ Uy u _ .
uVy + uttv,ut 14 Vi—-uV; utV,ut + Viku = hauye —hy = 0;
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x u U
= (uguy — wyyy )Vux + uttv,ux - utV,ux + Aoty + hgliyy

X X t t u Uy
- uth,ut - uxV,u - uttv’ut - utV,u + V,u + Vut - 7“1

_ x t U
uth,ux uttvyux +V,ux Ao

t u Ut
(wxtty — wyttyy )V’ult + utxv,un - uxV,un

t u ug
(uxutt — Upliy )V,ux + uthux - uxVux + lqu + 7”3utx - 7‘4

t u Uy
U Uy — Wl )V, +u, Ve —u,VE =
( x“tt t tx) N7 2T LA 5
t u U
(wxlty — wyttyy )Vu tuV, —u V! —ke
sHxx YHXX XX

X u Uy
—(weuy —wu Vo, +uyVy, —wVl = ks

x u 1223

= (wgltyy — wgyy )Vutx + uttV,utx - utV,utx - g
X u Uy

= (gt — ugttyy )Vuxx + utt‘/’uxx - utV,uxx + A7

x t
—u,V, - uttVu

122
+ V7
SUtt Ut Ut

t

u,
—u, VS -y, VEoy v
sUtx Uty Uty

u
—u, VE  —u, Vi o4V
sUx SUx sUxx

X t u
uVo, + utV,ux -V" —As

»x 7ux

u, V¥ +u vt vt
u, u,

Uty Utx SUtx

u,V*

+u, Vo -ve
,utt U

tt Ut

VE eVt v
U

Uy xx sUx
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Proof. First, expand the left-hand-side of (2.8) by using some simple

features of Lie derivatives of differential forms:
Lyx' = V', Ly(o; Aog) = (Lyop) Aoy + o A(Lyoy),
Lydx' = d(Lyx') = dV?, (2.9)

where x' is a coordinate of N and V' is a component of V. Expanding

the dV' in the resulting expression of [,Vyl by the usual chain rule

(since the V! are functions in N ), using all eight variables, some terms
drop out. This is due to the fact that dt Adt = 0, dx A dx = 0, etc., by the

antisymmetry of 1-forms and leads to

Lyv' = (V&uy + ugVi = VU =,V 4 (ugtty — ity Wy + ugttyy )dx A di
- utxuthdx Adt + (u, VY - uxV?t —uyVy + utV;‘ )dx A dt
+ ((uxutt — Uyl )VZ + Vztx )dx ANdu+ (uth;C U Vi —u, Vo )dx Adu
gV =V N A+ (Vi = (gt = gt W3 + i VE )t A du
+ (utth +uy Vi —u, Vit = V" )dt Adu + ((uxutt — Uyl )Vit )dx Nduy
—(V”x A —uleZ‘ ~u,VE+VY )dx/\dut +uxuttV’2x dxNdu,
+(— ututh’;x +uthZZC —uxVZZ )dx/\duJC —((uxutt — Uy Uy )V;‘t )dt/\dut
+(—ufo +uttV;:t -V —u,V; —utV’Z: +V )dt/\dut —uxuttV;jx dtAdu,
+(ututh7zx +uttV7$x —utV,Zi YdtAdu, +<—uth,zt -u,V, —utt\{tut )du/\dut

+ (— w Vi +Vi+ 4% )du Aduy + (— uVy - uttV;x +V )du Adu,

+((uxutt—ututx Wt ohu, V¢ —u, VU )dx/\dutt+uxuttVt dxNduy,
it Hit it Mix
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+(—ututht tu VI —u, Vi )dx/\dutx+((uxutt—ututx)Vt )dx/\duxx
X X i

Ut Ut Mxx

X Uy
+ (utx vy —uV
Moy My

)dx/\duxx +(—(uxutt Uyl )V;jtt +uttVZzt )dt/\dutt

u, X u u,
_ utV’u;t dtNduy + (— (wpltyy — Uyt )Vutx +uyV, = utVu;x )dt Aduy,

XX

X u Uy X
+(—(uxutt Uyl )Vuxx tuyV, —wV, )dt/\duxx “upV, dunduy

— t Ut ) (_ x t Uy )
+( uttV’utt +V’ult duNduy +\-up,V . uttV,ulx +V,utx du Aduy,

Ut

t t
+(—uthxxx —utt‘{uxx +V:Zx )du/\duxx +(uxVix +utV’ux —V”x )dut Adu,

U U

X t _yu ) ( t X _yu )
uxVE sVl VE Ny Ay oV, +u,VE -V N Aduy

XX XX

+ (uxVi +u V!

XX

And the right-hand-side of (2.8) is of the form

7

j 2
ZXjY] = (kl(uxutt - ututx) + }‘2(uxutx - utuxx) + }‘3(utx — UtUyy ))dx Adt

j=1

+ (MU + Aglegy — Ag)dx Adu + (Muyy + Aoy, + A78u)dt A du
+ (= Muy + Mgl )dx Aduy + (“houy, — Mgy, + Ay )dx Adu,

+ (= Aquy — Aguy + Ayg)dt Aduy

+ (= Aoy — Aguy )dt Adu, + Adu Adu; + hodu A du,

+ Asdx A duyy, + hgdx A duy,

+ 7L5 dt /\ dutt + )\,6 dt /\ dutx - 7\,7 dt /\ duxx + >\.3 dUt /\ dux

Equating the coefficients of basis 2-forms (dx Adt, dx A du, dt A du,

du A duy, du; A du,, etc.) in both right and left-hand-side of system (2.8),

we get the system of Proposition (2.1). O
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Now, we define vector fields on the manifold N by the following:

Lemma 2.3. For the Gardner equation, the system of partial

differential equations

7
Lyy =D al, i=12,7, (2.10)
j=1

defines the vector fields of the form

where the yi are forms of Lemma 2.2 and the ) ; are 0-forms (functions).

Proof. Write the Lie derivatives of all forms yi(i =1,...,7) as linear

combinations of themselves, of the form (2.7). After expanding these Lie
derivatives as proceed in Lemma 2.8 and eliminating the multipliers A;

in (2.7), we get a system of PDEs, often called determining equations

(see [7], [8]), of the following form:

—(28u —30u2)X{§C + e _‘/,i _V:'xx =0,

XX

u U X u
wWVy =Vt —uy Vi +uVy| =0,
X U, u, t
— U Vi + utt‘/’ui +oe =V —u, V=0,
U V'oE —uy Vi = = Vi = 0.

Uy
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After integrating this system, one obtains the following general solution:

t_ s _(1,,28 u_(lé_lj
\% —Clt+C2, \% —(3x+96tJC1+C3, V® = 9% 3u Cl’
Ve = = Cruyy,

Ve = —%uxCl,

2
Vi = —[%ut +§%uxJC1,

5 2 5 7 4 5
Vix = _(gutx +§?uxx]cl’ Vi — —[gutt +§?utx]cl’

where Cj, C9, and Cs3 are arbitrary constants. This yields the three

vector fields

= — V = —
Vi ox’ 2 o’

veo[l,, 28 i+ti+(l§_lu)i
3713 3 ox ot \96 37 )ou

3%y, (3T au,
37 T3 6 T Buy, Y Ouy,

of Lemma 2.3.
Theorem 2.1. The KdV-mKdV equation of type (1.1) allows

nontrivial symmetry group with the infinitesimal generators:

0 0
X1—a, X2—§,
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Proof. Theorem 2.1 follows from Lemma 2.3. It is completed when
relations
j-1

Vi, Vil= ) Chv for i < j, 2.11)
k=1

are satisfied, where the Ci]; are structures constants.

That is easily verifiable, since the non-vanishing brackets are

1 2

V1, V3] = §V1, [Va, V5] =

w0
a |

V1 +V2,

for Vi, Vs, V3 of Lemma 2.3. And then, it is easy to see that the third
prolongations of X;, X5, X3 vanish the KdV-mKdV equation (1.1).

The following section consists of testing the method discussed above

with the classical Lie method.
3. Lie Symmetry Approach
The Lie approach is a general and a firm method for finding

symmetries of differential equations.

A partial differential equation (PDE) with n independent variables
x =(x1, X9, ..., ¥, ) € R” and m dependent variables u = (¢!, ..., u™) e R™

has a Lie point transformations
%= x; +ei(x, u)+ O(2),  T% = u® +eng(x, u)+ O(c?),

@ are
de 'c de

The associated infinitesimal generator of these transformations can be

where &; = _0° fori=1,...,n and ny = ezo,forazl,...,m.

written as follows:

X - ;ai(x, u)% ¥ Z;na(x, u) -2 (3.1)

ou*’
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on the space containing independent and dependent variables.

Furthermore, the k-th prolongation of the above vector field is given by

m

, 0
Pr) X = X + n (x, )2, (3.2)
22
where
n . n .
g (x, M) = DJ[”Q - Zi‘u?] + ) g 3.3)
=1 =1
. ou” ouj . ) )
With  uf = ox; and uji = o, ; Dy = Dj ...Dj; the second
summation being over all (unordered) multiindices J = (ji, ..., Jj;), with

1<j;<n, for 1<i<k; Dy ::Djl...Djk; the Djr’s represent the

operators of total derivative.

The consideration that, under the action of a Lie group of
transformations admitted by a differential equation, a solution, which is
not invariant with respect to the group, is mapped into a family of
solutions, suggests a way of generating new solutions from a known
solution. This is especially interesting when one can obtain nontrivial

solution from trivial ones.

Let us consider a one-parameter Lie group of transformations, given

in coordinates by
X =0, ue), o=Y(x,ue) (3.4)
admitted by a system of differential equations S, and let u = f(x) be a

solution of the given system S, which is not invariant with respect to the

group (3.4).
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Theorem 3.1 ([9]). If u = f(x) is not an invariant solution of a

system S of differential equations, admitting the group (3.4), then
u = Y(P(x, u; ), Y(@(x, u; ¢); — <)) (3.5)

implicitly defines a one-parameter family of solutions of the given system.

For specifying the symmetry algebra, we think the algebra generator

as follows:
0 0 0
X =§(x, t, u)a + 7(x, ¢, u)g +n(x, ¢, u)a (3.6)

According to the Equation (1.1), we need to know the third prolongation

0 0 0 0 0
P (3) X=X x ¢ xx xt it
! n ou, *n ou, *n Oy, *n Ouyy n Ouy
0 xxt O ttx O e O
+ +1 +1 3.7
auxxx auacxt auttx auttt

of X. By applying Pr® X on this equation and vanishing, where u is the

solution of the Gardner equation, we find the following equation:
908, = 28%1,, 6, = 0,88, =14, T, = 0, T, = 0, T4 = 0, 9om = (- 3ou + &),

(As usual, subscripts indicate derivatives.) These all have the general

solution

2
R LRt ) SRS -5 P T C

where C;, Cy, Cs are arbitrary constants. We see that this solution (from
(3.8) are exactly the same sets of solutions that the Harrison method

gives and so from here on the calculations are identical.

The aim of the next subsection is to give a generalized form of
solutions to the Gardner equation. The solutions can be generalized by

exponentiating the basis elements V;(i =1, 2, 3) of the algebra of the

symmetry group of this equation.
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3.1. Determination of groups G; associated with generators X;

The determination of the group of transformations corresponding to
each generator is equivalent to solving the following first order system of
differential equations:

dt ~ dx ~ dii ~

e =1(x,t, ), E=§(x,t,u), P =n(%, t, @), (3.9)

with the initial conditions
t(0)=t¢t x(0)==x, #0)=u (3.10)

3.1.1. Application to the generators of the symmetry group of the
Gardner equation

(1) For the generators X; = % and Xy = i, we have to solve the

ot
systems
jfl — (%, T, 7) =0, ddi _yF T E) =1, jfl (% 7. 7) =0,
(3.11)
and
;f; (R T 1) =1, jf; _ Y% 7.7)=0, j:‘; (7 T,7)=0
(3.12)
From the system (3.12), we obtain
(t =0y, X =¢ +09, T =ag), (3.13)
and the system (3.13) yields
(¥ =g +P1, ¥ =Py, & = P3), (3.14)

where aq, a9, a3, By, Ba, B3 are arbitrary constants. By utilizing the

initial conditions (3.10), the solutions (3.13) and (3.14) become
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(XR=e+x,t =t,i=u)and (¥ =x,f =eg +¢, U = 1), (3.15)

which are space and time translations, respectively.

1282 1o .0 (18 1 \o
2) For th tor Xq = | = 20 4L i il (22l 2
(2) For the generator X3 [3x+35tj6x+tat+(9c Su)au,

the system (3.10) reads

=X, t,4)=1, (3.16)
d€3
A _ 7,7 ﬁ)—l§+ﬁ? (3.17)
deg =77 77773 c ’ ‘
du R S

= == - =1 1
des (¥ ¢, @) =g--3d (3.18)

(a) From the Equation (3.17), we get 7 = C; exp(c3) and the initial
condition £(0) = ¢ gives
T =texp(eg).
(b) The homogeneous equation corresponding to the Equation (3.17)
dx 1.

is 7—=3% The solution of the latter is ¥ = Cexp ( % eg ). By variation
3

of the parameter C, we set X = p(e3)exp(%e3), substitute it in (3.17)
and obtain

op 1 252 ~ 282
_ — € = —t = —t €
653 eXp( 3 3) 30_ 30 eXp( 3)’

2 2
26 ~ €
whence p(e3) = Cy +%texp(T3). Therefore, X = C, exp(%’ )+%texp(63).

In accordance with the initial condition %¥(0) = x, we have

~ 62 €3 62 463
x—?texp(63)+xexp(§j—?texp 3
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(c) The homogeneous equation _;iu -1 u associated to the
€
3

Equation (3.18) yields & = k exp ( % ). By variation of the parameter &,
we set & = q(eg)exp( % ), substitute it in Equation (3.18) and

integrating the resulting equation we obtain: g(eg) = C3 + 31 exp(%‘g ).
G

Thus @ = Cg exp ( % )+ %, where Cs is an arbitrary constant. By

considering the initial condition #(0) = u, we have the solution of the

non-homogeneous equation (3.18) as follows

7= uexp| —3 +i
P73 )" 35"

Then, we find that the group of transformations generated by Xj is

given by

2 2
~~ o~ 4 -
(x,¢,u0) = [60 t exp(es) + x exp(%?’) - % t exp(%), t exp(es),u exp(%j + 360]’

which is also the symmetry group of the Gardner equation (1.1).

3.2. Generalized form of solutions to the Gardner equation

In summary, solving the flow equations associated to the basis

elements V;(i =1, 2, 3) of the symmetry algebra of Equation (1.1), we

have found
exp (elvl)(x7 Z u) = (El +x, L, u):

exp (e9Vo) (x, t, u) = (x, g + ¢, u),

2 € 2 €
exp (V) o, 1, 1) = (- texp ) + wexp [ 3] - S rexp( %2, remw ),

3
vexp| =35
P73 )36
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Then, the most general transformation leaving invariant the solution

manifold of the Equation (1.1) depends on three parameters: ¢, ¢g, €3

through the composition
g = exp (V1) exp (3Vy) exp (e3V3) (3.19)

of the flows exp(V;),i=1,2 3, ¢ € R, generated by the basis
elements V; of the symmetry algebra of Equation (1.1). Thus, the most

general transformation g operates according to

62 €3 82 453
glx, t, u) = {g +?texp(e3)+ x exp| - —?texp = ) e +texp(es),

exp (%)u + % } (3.20)

Proposition 3.1. The most general solution of the Gardner equation

(1.1) obtained from a given solution u = f(x, t), is of the form

e e e 2 2 e
u(x, t) = exp (TSJf{x exp (TSJ + [1 — exp [TSD%t + %eQ exp( 33j

52 e )
~ g~ exp (T3)’ t exp(— e3) — eg exp (- e3)} + 3o (3.21)

Proof. The proof of this theorem is provided by utilizing the general
transformation (3.20) and applying the Theorem 3.1.

4. Conclusion

We see that differential forms offer, in some ways, a more natural
way of calculating symmetries of differential equations. With this
technique, we need only calculate prolongation coefficients up to second
order and hence, obtain the prolongation of the generator V. This leads

naturally to the point symmetry algebra in study.
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