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Abstract 

In this paper, we investigate the p-nilpotency of a group for which every 
maximal subgroup of its Sylow p-subgroups is weakly s-semipermutable for 
some prime p. We get some results by new method and generalize some earlier 
results. 
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1. Introduction 

In this paper, all groups are finite and G stands for a finite group. Let 
( )Gπ  denote the set of all prime divisors of .G  Let F  denote a 

formation, pN  the class of all p-nilpotent groups and let us denote by 

{ }FF ∈= NGGNG ∩  the residual-F  of G. “H Char G” means that 

H is a characteristic subgroup of G. The other notation and terminology 
are standard (see [6]). 

Many authors have investigated the structure of a finite group when 
maximal subgroups of Sylow subgroups of the group are well situated in 
the group. Srinivasan [12] showed that a group G is supersolvable if all 
maximal subgroups of every Sylow subgroup of G are normal. Later, 
several authors obtain the same conclusion if normality is replaced by 
some weaker normality (see Chen [1]; Ramadan [8]; Skiba [11]); Wang 
[14]; Zhang [17]. Guo and Shum [5] proved the following result. Let p be 
an odd prime dividing G  and P be a Sylow p-subgroup of G. If ( )PNG  is 

p-nilpotent and every maximal subgroup of P is c-normal in G, then G is 
p-nilpotent. Later on, Wang and Wang [13] get the same result by 
replacing the normality condition of maximal subgroups of Sylow 
subgroups by s-semipermutability. Moreover, if p is the smallest prime 
dividing ,G  then the assumption that ( )PNG  is p-nilpotent can be 

removed. These results have been particularly observed that the property 
of “normality” for some maximal subgroups of Sylow subgroups give a lot 
of useful information on the structure of groups. 

In this paper, we investigate the p-nilpotency of a group for which 
every maximal subgroup of its Sylow p-subgroups is weakly                      
s-semipermutable for some prime p. Some interesting results are 
obtained and many known results on this topic are generalized. 
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2. Basic Definitions and Preliminary Results 

For two subgroups H and K of G, we say H permutes with K if    
=HK .KH  We say, following Chen [1], a subgroup H of a group G is said 

to be s-semipermutable, or s-seminormal in G if it permutes with all 
Sylow p-subgroups P of G with ( ) .1, =Hp  Recently, Xu and Li [15] 

introduced a new embedding property, namely, the weakly                        
s-semipermutability of subgroups of a group. 

Definition. A subgroup H of a group G is said to be weakly                
s-semipermutable in G if G has a subnormal subgroup T such that 

GHT =  and ,GsHTH ≤∩  where GsH  is the subgroup of H generated 

by all subgroups of H which are s-semipermutable in G. 

For the sake of convenience, we list here some known results which 
will be useful in the sequel. 

Lemma 2.1 ([17, Properties 1 and 2]). Let G be a group and 
.GHA ≤≤  Then: 

(1) If A is s-semipermutable in G, then A is s-semipermutable in H. 

(2) Suppose that N is normal in G and A is a p-group. If A is                
s-semipermutable in G, then NAN  is s-semipermutable in .NG  

Lemma 2.2 ([15, Lemma 2.3]). Let G be a group and .GEA ≤≤  
Then: 

(1) If A is weakly s-semipermutable in G, then A is weakly                       
s-semipermutable in E. 

(2) Suppose that K is normal in G, and A is a p-group, ( ) .1, =pK     

If A is weakly s-semipermutable in G, then KAK  is weakly                      

s-semipermutable in .KG  

Lemma 2.3 ([7, Lemma 6]). Suppose that G is a non-abelian simple 
group. Then there exists an odd prime ( )Gr π∈  such that G has no Hall 

{ } .-,2 subgroupr  
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Lemma 2.4 ([10, Lemma 1.6]). Let P be a nilpotent normal subgroup 
of a group G. If ( ) ,1=Φ GP ∩  then P is the direct product of some 

minimal normal subgroups of G. 

3. Main Results and their Proofs 

Theorem 3.1. Suppose that N is a normal subgroup of a group G 
such that NG  is p-nilpotent and P is a Sylow p-subgroup of N, where 

( )Gp π∈  with ( ) .11, =−pG  If all maximal subgroup of P are weakly     

s-semipermutable subgroups of G, then G is p-nilpotent. 

Proof. Assume that the result is false. Let G be a minimal 
counterexample with least .GN +  

(1) G has a unique minimal normal subgroup L contained in LGN ,  

is p-nilpotent and ( ).GL Φ≤/  

Let L be a minimal normal subgroup of G contained in N. Consider 

the factor group .NGG =  Clearly NGNG ≅  is p-nilpotent and 

LPLP =  is a Sylow p-subgroup of ,N  where .LNN =  Now let 

LLPP 11 =  be a maximal subgroup of .P  We may assume that 1P  is a 

maximal subgroup of P. Then LPLP ∩∩ =1  is a Sylow p-subgroup of 

L. By the hypothesis, there is a subnormal subgroup B of G such that 
BPG 1=  and ( ) .11 GsPBP ≤∩  We have ( ) .11 LBLPBLLP ∩∩ =  Now 

we let ( ) { },,,, 21 npppG "=π  where ,1 pp =  and ipB  be a Sylow 

subgroup-ip  of ( ).,,2 niB "=  Then ipB  is also a Sylow subgroup-ip  

of G, hence NB ip ∩  is a Sylow subgroup-ip  of ( ).,,2 niN "=  Write 

,,,2 npp BLBLV ∩"∩=  then .BV ≤  Note that ( ) ,1:,: 1 =VLLPL ∩  

( ) ,1 VLPL ∩=  thus ( ) ( ) ( )VLBPLBVPLBLPBLLP ∩∩∩∩ 1111 ===  

( ) .1 LBP ∩=  It follows from Lemma 2.1 (2) that ( ) ( )LBLLLP ∩1  
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( ) ( ) ( ) ( ).111 LGsGs LLPLLPLLBP ≤≤= ∩  Therefore 1P  is weakly 

s-semipermutable in .G  The choice of G implies that G  is p-nilpotent. 
Since the class of p-nilpotent groups is a saturated formation, L is a 
unique minimal normal subgroup of G contained in N and ( ).GL Φ≤/  

(2) ( ) .1=NOp  

If not, then by (1), ( )NOL p≤  and, there is a maximal subgroup           

M of G such that LMG =  and .1=ML ∩  Since ,PM p <  where 

( ),MSylM pp ∈  we may let 1P  be a maximal subgroup of P containing 

.pM  Because 1P  is a weakly s-semipermutable subgroup of G, there exists 

a subnormal subgroup T of G such that TPG 1=  and ( ) .11 GsPTP ≤∩  Since 

GTG  is a p-group, we have GTNG ∩  is p-nilpotent. So 1≠GTN ∩  

by the choice of G. Thus .GTNL ∩≤  Furthermore, ( ) GsP1  permutes 

with ( ) ( )GSylTSylT qqq ⊆∈  for ,qp ≠  so ( ) ( ) ,11 GsqqGs PTTP =         

thus ( ) ( ) ( ) ,11111 qGsqGsGs TPTPLPLTPLPL �∩∩∩∩∩ ===  hence 

( )1PLNT Gq ∩≤  for any .pq ≠  Since ( ),1PLNP G ∩≤  we have 

.1 GPL �∩  Thus LPL =1∩  or 11 =PL ∩  by the minimal normality 

of L in G. If the former case is true, then ,1PL ≤  so ,1PLMP p ==  a 

contradiction. Hence .11 =PL ∩  This means that L is cyclic of prime 

order. Hence G is p-nilpotent, a contradiction. 

(3) End of the proof. 

By (1) and (2), we get L is not solvable, then ,SSSL ×××= "  

where S is a non-abelian simple group. Now, we claim that there exists a 
maximal subgroup 1P  of P such that ,1PSp ≤  where ( ).SSylS pp ∈  

Assume that ,PLP <∩  it is clear. So we may assume that ,PLP =∩  

then ( )LL,  satisfy the hypothesis by Lemma 2.2 (2). If L is not a non-

abelian simple group, it is evident. If L is a non-abelian simple group, 
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then every maximal subgroup of P is s-semipermutable in L. Suppose 
that P is cyclic, then L is p-nilpotent by Gorenstein [4, Theorem 6.3, p. 257]. 
This is a contradiction. Hence P has two different maximal subgroups, U 
and V say. Since U and V permutes with ( )LSylL qq ∈  for .qp ≠  Hence 

PLPL qq =  is a subgroup of L since .UVP =  Therefore, P is                   

s-semipermutable in L. We see that L is p-solvable by Chen [2, Theorem 
2], a contradiction. So we can choose the maximal subgroup 1P  of P       

such that .1PSp ≤  By the hypothesis, there is a subnormal subgroup B 

of G such that BPG 1=  and ( ) .11 GsPBP ≤∩  Clearly, GBG                  

is p-group, so .1≠GBN ∩  If not, then NGBNGG G ∩=  

GBG×  is p-nilpotent, a contradiction. Thus .GBNL ∩≤  For any 

( ) ( )GSylBSylB qqq ⊆∈  with ,pq ≠  we have ( ) ( ) .11 GsqqGs PBBP =  

Since ( ) ( ) ( ) ,1111 qGsqqq BPLBBPLBBPLBPL ∩∩∩∩∩∩ ≤==  we 

get ( ) ,11 qGsq BPLBPL ∩∩ =  so ( ) ,11 qGsq BPSBPS ∩∩ =  thus  

( ) pGs SPSPS == 11 ∩∩  is a Sylow p-subgroup of S. Therefore, 

( ) qGs BPS 1∩  is a Hall { } subgroup-, qp  of S for any q with .pq ≠  Since 

L is not solvable, we get 2=p  by the Odd Order Theorem. Hence, we 

have S is a non-abelian simple group with a Hall { } subgroup-,2 q  for any 

q with .2≠q  This contradicts Lemma 2.3. We are done.   

Corollary 3.2. Let P be a Sylow p-subgroup of G, where p is a prime 
divisor of G  with ( ) .11, =−pG  If G is not p-nilpotent, then there is a 

maximal subgroup of ,pGP N∩  which is not weakly s-semipermutable in 
G. 

Corollary 3.3 ([5, Theorem 3.4]). Let p be the smallest prime number 
dividing the order of a group G and P be a Sylow p-subgroup of G. If every 
maximal subgroup of P is c-normal in G, then G is p-nilpotent. 
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Corollary 3.4 ([13, Theorem 3.3]). Let p be the smallest prime 
number dividing the order of a group G and P be a Sylow p-subgroup of 
G. If every maximal subgroup of P is s-semipermutable in G, then G is      
p-nilpotent. 

Corollary 3.5 ([16, Theorem 3.1.2]). Suppose that N is a normal 
subgroup of a group G such that NG  is p-nilpotent and P is a Sylow     

p-subgroup of N, where ( )Gp π∈  with ( ) .11, =−pG  If all maximal 

subgroup of P are weakly s-permutable subgroups of G, then G is                
p-nilpotent. 

Theorem 3.6. Let p be an odd prime dividing the order of a group G 
and P be a Sylow p-subgroup of G. If ( )PNG  is p-nilpotent and every 

maximal subgroup of P is weakly s-semipermutable in G, then G is           
p-nilpotent. 

Proof. Suppose that the theorem is not true and we choose G be a 
counterexample with the smallest order. Then we make the following 
claims: 

(1) ( ) .1=′ GOp  

In fact, if ( ) ,1≠′ GOp  then we consider the quotient group 

( ).GOG p′  By Lemma 2.2 (2), it is easy to see that ( )GOG p′  satisfies 

the hypotheses of our theorem. Thus, by the minimality of G, we have 
( )GOG p′  is p-nilpotent, so is G, a contradiction. 

(2) If M is a proper subgroup of G with ,GMP <≤  then M is          

p-nilpotent.  

It is clear that ( ) ( )PNPN GM ≤  and hence ( )PNM  is p-nilpotent. 

Applying Lemma 2.2 (1), we see that M satisfies the hypotheses of our 
theorem. Now, by the minimality of G, M is p-nilpotent. 

(3) ( ) .1≠GOp  
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Since G is not p-nilpotent (p be an odd prime), we have ( )( )( )PJZNG  

is not p-nilpotent by Glauberman-Thomposon Theorem, where ( )PJ  is a 

Thomposon subgroup of P. Clearly, ( )( )PJZ  char P, then ( ) GG NPN ≤  

( )( )( ).PJZ  If ( )( )( ) ,GPJZNG <  by (2), ( )( )( )PJZNG  is p-nilpotent, a 

contradiction. So we may assume that ( )( )( ) ,GPJZNG =  thus 

( ) .1≠GOp  

(4) ,PQG =  where Q is a Sylow q-subgroup of G with .pq ≠  

Evidently, ( )GOG p  is p-nilpotent and therefore, G is p-solvable. 

Then for any ( )Gq π∈  with ,pq ≠  there exists a Sylow q-subgroup Q of G 

such that QPPQ =  is a subgroup of G by Gorenstein ([4, Theorem 6.3.5]). 
If ,GPQ <  then PQ is p-nilpotent by (2). It follows that 

( ( )) ( )GOGOCQ ppG ≤≤  by Robinson ([9, Theorem 9.3.1]) since 

( ) ,1=′ GOp  a contradiction. Thus, we have proven that .PQG =  

(5) Conclusion. 

By (3), we can take a minimal normal subgroup L of G with 
( ).GOL p≤  It is easy to see that the quotient group LG  satisfies the 

hypotheses of our theorem. Since the class of all p-nilpotent groups is a 
saturated formation, we may assume that L is the unique minimal 
normal subgroup of G and ( ).GL Φ≤/  Furthermore, by Lemma 2.4, we 

have that ( ) LGOp =  is an elementary abelian p-group. Then there is a 

maximal subgroup M of G such that LMG =  and .1=ML ∩  Since 
,PM p <  where ( ),MSylM pp ∈  we may let 1P  be a maximal subgroup 

of P containing .pM  By the hypothesis, 1P  is a weakly s-semipermutable 

subgroup of G, so there exists a subnormal subgroup T such that 
TPG 1=  and ( ) .11 GsPTP ≤∩  By the subnormality of T in G, we have 

,1≠GT  so GTL ≤  by the unique minimal normality of L in G. Since 

( ) GsP1  permutes with ( ) ( )GSylTSylT pqq ⊆∈  for ,qp ≠  we have 

( ) ( ) .11 GsqqGs PTTP =  Then ( ) ( ) GsGs PLPLTPLPL 1111 ∩∩∩∩∩ ===  
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( ) ,1 qGsq TPT �  so ( )1PLNT Gq ∩≤  for any .pq ≠  Clearly, 

( ),1PLNP G ∩≤  we have .1 GPL �∩  Thus LPL =1∩  or 11 =PL ∩  

by the minimal normality of L in G. If the former case is true,             
then ,1PL ≤  so ,1PLMP p ==  a contradiction. Hence .11 =PL ∩  

Consequently, ,pL =  and therefore ( )LAut  is a cyclic group of order 

.1−p  If ,qp <  then LQ is clearly p-nilpotent and therefore 
( ) ( ( )),GOCLCQ pGG =≤  which contradicts to ( ( )) ( ).GOGOC ppG ≤  If 

,pq <  then, since ( ) =LCG  ( ( )) ( ) ,LGOGOC ppG ==  we see that 

( ) ( ) ( ),LAutLCLNLG GG =  so Q is a cyclic subgroup. Since Q is a 

cyclic and ,pq <  we know that G is q-nilpotent and therefore P is normal 
in G. Hence ( ) GPNG =  is p-nilpotent, which is a contradiction. Thus, 

the proof of the theorem is complete.   

Corollary 3.7. Let p be an odd prime dividing the order of a group G, 
P be a Sylow p-subgroup of G, and ( )PNG  be p-nilpotent. If G is not              

p-nilpotent, then there is a maximal subgroup of P, which is not weakly     
s-semipermutable in G. 

Corollary 3.8 ([5, Theorem 3.1]). Let p be an odd prime dividing the 
order of a group G and P be a Sylow p-subgroup of G. If ( )PNG  is               

p-nilpotent and every maximal subgroup of P is c-normal in G, then G is 
p-nilpotent. 

Corollary 3.9 ([13, Theorem 3.1]). Let p be an odd prime dividing the 
order of a group G and P be a Sylow p-subgroup of G. If ( )PNG  is              

p-nilpotent and every maximal subgroup of P is s-semipermutable in G, 
then G is p-nilpotent. 

Corollary 3.10 ([16, Theorem 3.1.3]). Let p be a prime dividing the 
order of a group G and P be a Sylow p-subgroup of G. If ( )PNG  is            

p-nilpotent and every maximal subgroup of P is weakly s-permutable in G, 
then G is p-nilpotent. 

Proof. By Theorems 3.1 and 3.6, it is clear.   
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Corollary 3.11. Let N be a normal subgroup of a group G and p be an 
odd prime number dividing the order of N. Also, let F  be a saturated 
formation containing pN  and .F∈NG  Let P be a Sylow p-subgroup 

of N. If ( )PNG  is p-nilpotent and every maximal subgroup of P is weakly 

s-semipermutable in G, then .F∈G  

Proof. The proof is very similar to the proof of [13, Corollary 3.2] and 
we omit it.  
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