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Abstract

In this paper, we investigate on the structure of the multiplication algebra of
the duplicate of an algebra. For Bernstein algebras, the structure is described
using Peirce decomposition.

1. Introduction

In this paper, K is an infinite commutative field of characteristic
different from 2 and A is a commutative non-associative K-algebra. We

say that (A, o) is a baric K-algebra if o, called weight morphism is a

nonzero morphism of algebras from A to K.

For any element x of A, the principal powers are defined by x = x,

= b vE > 1
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A nonzero element e of A is an idempotent if e? = e. Whenever the
term idempotent is used in this paper, it is nonzero idempotent.
Let &nd;.(A) be the associative algebra of endomorphisms of A (as a

vector space). For any element x of A, we call right (respectively, left

multiplication) by x, the endomorphism R, (respectively, L,) of A
defined by R,(y) = yx (vespectively, L,(y)= xy), for any y e A. All
multiplications of A generates a subalgebra of &nd,(A) denoted by
M. (A) or simply M(A).

A baric (A, ®) is a Bernstein algebra if x%x? = o(x)?x2, Vx € A.
Several authors have studied the multiplication algebra of a baric
algebra. In particular, the multiplication algebra of a Bernstein algebra
has been the subject of some publications ([1], [2]). The present paper is
devoted to the study of the multiplication algebra of commutative

duplicate of a baric algebra.
2. Basic Results

Considering the action defined on A by c.x = o(x), for any o in

M(A) and any x in A, it is clear that A is an M(A)-left module. In finite
dimension, dim M(A) < (dim A)%.

The left ideals of A are none other than the M(A)-left module of A. If
I'is an ideal of A, (I : A) = {oc € M(A)|o(A) c I} is an ideal of M(A).
Conversely, if I is an ideal of M(A), I(A) = {o(x)|c € I, x € A} is an
ideal of A (see [6]). In ([2]), the authors establish the following result.

Proposition 2.1 ([2]). Let © be a weight morphism and e be an
idempotent of A. We have:

() M(A) = KL,@(N : A).

(1) The map ® : M(A) - K, defined by o(aL, + 0) = a, is a weight
morphism of M(A) called canonical extension of o to M(A).
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Notations. Let N be the subalgebra of M(A) generated by

elements of the form L, ...L, such that at least x; is in N. This

subalgebra N is an ideal of (N : A) = kero.

We define in the second symmetric power S%{ (A) of the K-module A,
a multiplication by (x.y)(x".y") = xy.x'y’. This gives a commutative

K-algebra called commutative duplicate of the algebra A, denoted D(A).
The K-linear map u : D(A) — A2, x.y — xy 1s a surjective morphism of
K-algebras called Etherington morphism. Let N(A) = kerow. If A is a
K-algebra such that A2 is baric, D(A) is baric. In fact, a weight
morphism of D(A) is given by o; = wopn, where o : A? 5 K is a
weight morphism of A2,

For any x, y,x" and y in A, we have L,,(x.y')=xyx’y' and
(noLy y ) (x"y") = (xy) (x") = (£xyom) (x"y"), where

Ly, denotes the left multiplication by x.y in D(A) and /,, the

2y

right multiplication by xy in A?. The following diagram is commutative:

D(A) 225 D(A)

u| [
2 _bv o g2

Proposition 2.2. The Etherington morphism u : D(A) — A? extends
naturally to a morphism of multiplication algebras given by

Hm - M(D(A)) - M(Az)’ Lx‘y = gxy
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Proof. Indeed, (L, 0Ly, ,,)(x"Y") = x1%9.((x2y2) (")) and
(HOLxl.yloLxQ.yg )(x’-y’) = (xlyl)((nyQ)(x'y')) = (fxlylogxgyzou)(x,'y’) for
all x1.y1, x3.y2 and x'y" in D(A). Hence p,(Ly 0Ly, y,) = tim

(Ly, 5y Jorm(Ly, 5, ) and pp, is a morphism of algebras. O
Since p is surjective, then p,, is also. Hence the following result.

Proposition 2.3. The morphism of K-algebras p,, : M(D(A)) > M(A?),
Ly, + (y, is surjective. Thus, it has M(D(A)/ ker,, ~ M(A?) with
kerp,, = {Gd € M(D(A))lum = (Gd) = 0}'

Lemma 24. Let o5 € M(D(A)) and o = p,,(cg). The following

diagram is commutative:

D(A) 2“5 D(A)

"“i lu
A? g \ A2

Proof. Let o4 = Y L L oL We have p,,(cyg)=

finie

1.1 929590 XYk

Z Vo 3y 0 299,00l o, and for any x.y in D(A),

finie

P-(Gd(x-y)) = M(Z x1y1-(x2yz)(((x3y3)( ((xkyk)(xy)))"’ )

finie
= > o) ((029) () (- (g ) @)+ )
finie
= 3 (g a0 0L ) (@)
finie

- Z (L1 0y 0+ 0Ly, 00) (x-5)

finie
= o(u(x.y)),

so pocy = ocop and the diagram is commutative. O
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Remark. For any x.y in D(A), u,,(cz)(xy) = w(cy(x.y)), thus
o4 € Kerp,, is equivalent to o4(x.y) € N(A), i.e., o4 € (N(A): D(A)),
so Kerp,, = (N(A): D(A)).

Corollary 2.5. If A? is a projective K-module, then we have
M(D(A)) = M(A?) x5 4 (N(A) : D(A)).

Proof. The sequence

0 - (N(A) : D(A)) s M(D(4)) ™7 M(A%) - 0

being exact, show that it is split. As A% isa projective K-module, it exists
n: A% - D(A) such that pon =1 42 Let M(A%) 5> M (D(A)) be
the K-linear map defined by m,,(c)(x.y) = n(c(xy)) for any ¢ in M(A?%)
and for any «xy in D(A). We have ((u,on,)(c)(xy)=

M(Tlm(ﬁ)(x-y)) = M(H(G(xy))) = G(xy)’ Y um(nm(c)) =o,le, WmONy, = lM(A2)

and the sequence is split. Therefore, M(D(A))= M(A?) sxd(N (A): D(A)).

0

Theorem 2.6. If A% is a projective K-module, (N(A) : D(A)) is an
annihilator of M(D(A)) and for any derivation d of M(D(A)), d((N(A): D(A)))
is contained in (N(A) : D(A)).

Proof. Let 65 € M(D(A)) and ¢’ € (N(A): D(A)). For any x.y € D(A),

c'(x.y)e N(A) and posing ¢ = Z lg0lgz,0-0ly , Zi € D(A), we have

finie
o(c'(x.y)) = 0 because D(A)N(A) = 0, i.e., cos’ = 0 and ¢’ is contained
in the right annihilator of M(D(A)).
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Conversely, if ¢” is in the right annihilator of M(D(A)), for any
x.y € D(A), we have 0 = L, ,(c"(x.y)) = en(c"(x.y)), which implies that
n(o"(x.y)) = 0 because A2 is a projective K-module. So ¢"(x.y) € N(A)
and 6" € (N(A) : D(A)). Let now d be a derivation of M(D(A)). For any
c in M(D(A)) and any ¢’ in (N(A): D(A)), we have 0 = d(coc’) = dooc’ +
cods’ = coda’, so do’ is contained in the right annihilator of M(D(A)). O

Theorem 2.7. Suppose A% isa projective K-module and consider the
map ¢ : D(A) > M(D(A)), z = L, and 6 : A2 > M(A%), x — (.. The

following diagram is commutative:

0

N(A) ! D(A) —~ A2 0

0— (N(A) : D(A)) " M(D(A)) £~ M(4?) —>0
Proof. For any x.y € N(A), ¢(i(x.y)) = o(x.y) and i,,(¢(x.y))=0(x.y),
so (ol = i,,0¢. Also, for every x.y e D(A), O8(u(x.y)) = 8(xy) = ¢, and
o (0(x.3)) = 1y (Ly y ) = Ly, 80 Bop = pp00. Tt follows that the diagram
is commutative. O

The next result concerns the functor M.

Theorem 2.8. Let C the category of K-algebras and D the category of
multiplication K-algebras. Let M :C — D, u € Homy(A, B) = M(u)

defined by Mu)( D, LyoLyo0-L, )= > Lyy(21)0Lu(xy )0 0Ly, ) for

finie finie
any x; € A. Then M is a covariant functor.
Proof.  Indeed, Vu € Hom¢(A, B), M(u) e Homy(M(A), M(B))
and VA e C, M(14) =1yy4) Furthermore, if u e Hom¢(A, B) and
v € Hom¢(B, C), we have
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M(wou)( Y Ly 0Ley0 Ly )= D Tufusy)©Lofu(a))0 " OLu(u(x, )

finie finie

= M(v)( Z Lu(xl )OLu(x2 Yo OLu(xk ) )

finie

= M) (M@) (Y. LyoLy,0- Ly, )

finie
= (MEOM@) (Y Ly oLy,o- Ly, ),
finie

s0 M(vou) = M(v)oM(u) and M is a covariant functor. In particular, if
w: D(A) - A? is Etherington morphism, then M(p) = p,,. O

Remark. The map oy : M(D(A)) > K defined by oyz(aL,, +0) = o
for any a in K and for any 0 in (N; : D(A)), is a weight morphism of
M(D(A)).

We have @g(Ly ) = og(x.y) = ©(ly,), so ©g(cq)) = o(kn(cq)),
where o is a weight morphism of A2. We have also (N :D(A))=kera,.

Let N, be the subalgebra of M(D(A)) contained in (Ny : D(A)),
generated by the elements of the form L, oL, o--oL, such that at
least z; bein N . Itis clear that N is an ideal of M(D(A)) included in
(Ng : D(4)).

Proposition 2.9. Let (A, ®) be a baric K-algebra. We have n,,((Ng4

: D(A))) = (N : A?) and p,,(Ny)= N, where N = hera 2.

Proof. Let o; in (Ny: D(A)), that is to say wg°cy4 =0 or
wopooy =0, so (neoy)(D(A) = N and p,(cy)(A%) = N because

Hooy = ty(og)on Therefore p,(cgz)e (N :A%). Let o e (N:A?).



112 ANDRE CONSEIBO

Since p,, : M(D(A)) > M(A?) is subjective, it exists 65 = aL,, + 0 in
M(D(A)), o in K, 0 in (N : D(A)) such that p,,(c4) = o, that is to

say al o, =06, 0 K,0)=c and o ep,(Ng:D(A))). Thus

Hm(e)
(N:A%)s e p,(Ng:D(A))) and o e p,(Ng : D(A))) = (N : A?). Let

L, oL, 0oL, bea generator of N,. We have p(Lzy oLy, 00 L

Zk)
= Lu(zy) © lu(zg) © 0 bu(zy) € N, so u,(Ng)c N. Reciprocal inclusion

results from the surjectivity of p,, and p. O

The following result is a direct consequence of the previous
Proposition 2.9.

Corollary 2.10. Let (A, o) be a baric K-algebra and N = ker(o‘Ag.
The ideal Nd is nilpotent if and only if N is nilpotent.

Thus we have the following result:

Proposition 2.11. Let (A, o) be a baric K-algebra and 1; an ideal of
D(A). Then p,,((Ig : D(A))) = (w(Iq) : A%).

Proof. Let I; be an ideal of D(A). Then p(I;) is an ideal of
A% (I;: D(A)) and (w(I;): A?) are, respectively, the ideals of
M(D(A)) and M(A?). The following commutative diagram gives us

m(cg) e (w(Ig): A?) for any o4 (I, : D(A)).

D(A) = I,

" |

A2 ;U*m(gd) ,U»(Id)
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3. Case of Bernstein Algebras

Let (A, ®) be a Bernstein K-algebra. Let &; =2Lt, —~L2,. We have
¢ (ee)=ee and ¢y(x.y)=0 for any x.y in Ng. So €; is a nonzero

idempotent of M(D(A)) not belonging to (N, : D(A)).

Theorem 3.1. Let A = Ke®@ U @V be the Peirce decomposition of a
Bernstein K-algebra. Then

(i) M(D(A)=Key; ®Uy ®V,;, where Uy = {og € (Ng : D(A))|og o

Ed = Gd} and Vd = {Gd (S (Nd ZD(A))lGd Ogd = 0}.

() Uy = {oq € (Nq : D(A))|og(Ng) = 0} and Vy = {64 € (Ng : D
(4))[oq(ee) =0}.

(i) We have the following relations: 173 =0, Vdﬁd c ﬁd and
V2 <V, particularly Uy is an ideal of M(D(A)) and V; is a left ideal
of M(D(A)).

Proof. The proof is similar to the case of ([2], Theorem 1).

Proposition 3.2. Let M(D(A)) = Ke; ® Uy ® V,; be the multiplication

algebra of commutative duplicate of a Bernstein algebra A. We have

w,(Uyg)=U and p,,(Vy) =V with M(A?)=Ke, ®U @ V.

Proof. Let 6; € Uy and x € N = kero_,». We have p,,(cy)(x) =

|A
wWoy(z)), where z e Ny such as p(z)=x, so p,(cg)(x)=0 and
wn(cg) € U. Let o4 e V;, we have p,,(c4)(e) = n(og(ee)) = u(0) = 0,
that is to say p,(cg)e V. So u,(Uz)cU and p,(Vy)c V. Let
o e U. It exists 64 = 0+ ¢ in M(D(A)), with 6 € U, and ¢ € V; such

as W, (cg4) = o. The equality p,,(c,) = o is equivalent to p,,(0)+ u,,(¢) = o,
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S0 p,(0) =0 because p,(p)=0 due to the direct sum M(A?)=
K&, ®U ® V. Therefore 1,,(0)=c with 0 e Uy, that is to say

U c u,,(Uy). It similarly shows that V < p,,(Vy). O

Corollary 3.3. Let M(D(A)) = Ke; ® ﬁd ® Vd be the multiplication
algebra of commutative duplicate of a Bernstein algebra A. We
have Uy JUN(N(A): D(A)=U and V;/VN(N(A): D(A)=V with
MAY) =K 0UV.

Proof. Indeed, U, /ker(pm\ﬁd )=U and V, /ker(um\‘;d )=V by
Proposition 2.2. Furthermore ker(um\ﬁd) =UN(N(A): D(A)) and

ker(um\‘;d )=V N(N(A): D(A)), hence the corollary holds. O
We end this paragraph by giving examples in the case of specific
Bernstein algebra.

Example 1. Let A = Ke®V be the Peirce decomposition of a

constant Bernstein algebra (i.e., a baric algebra such that x2 = o(x)e for
any x in A). Then we have A% = Ke, D(A) = Ke.e ® N(A). We show that
then M(A) = KL,, M(A®) = K1, and M(D(A))=KL,,, so (N(A):
D(A)) = kerp,, =0 and M(A)= M(A*)= M(D(A)).

Example 2. Let A = Ke® U be the Peirce decomposition of an
elementary Bernstein algebra (i.e., a baric algebra such that x2 = o(x)x
for any x in A). Then we have A% = A, M(A) = M(A?) = K&, ® {p,,
ueU}®Key; and D(A)= Kee® KeU®UU. It is shown that
M(D(A) = Keiq ® U, ® Vy with V= Kepg ®{L,y —2Le Loy, uecU},
where &, =22, - L,, and @&y = 4L,, — 4I2,. We also show that
(N(4):
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D(A)) = {vy, v € N(A)} & {Loy — 2LgoLoys u € U}, Ug N(N(A) : D(4)) =

{0y, v € N(A)} and Vg N(N(A): D(A)) = {L,,, —2Le oLy, u € U}, so

ﬁd /{wv’ SIS N(A)}:{wu’ ue U} and Vd/{Le.u —2LeeLey, u € U}:KEQ-

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]
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